1
|
Lenka A, Sundaravadivel P, Christopher R, Arumugham SS, Hegde S, Yadav R, Pal PK. HOMER1 Polymorphism and Parkinson's Disease-Psychosis: Is there an Association? Ann Indian Acad Neurol 2024; 27:178-182. [PMID: 38751916 PMCID: PMC11093156 DOI: 10.4103/aian.aian_1038_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/13/2024] [Accepted: 02/10/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Homer1, a postsynaptic protein coded by the HOMER1 gene, presumably has a role in homeostatic plasticity that dampens neuronal responsiveness when the input activity is too high. HOMER1 polymorphism has been studied in major psychiatric disorders such as schizophrenia. The objective of this study is to investigate if polymorphisms of the HOMER1 gene are associated with psychosis in Parkinson's disease (PD-P). Methods One hundred patients with Parkinson's disease (PD) and 100 healthy controls were enrolled consecutively in a PD-P biomarker study at the National Institute of Mental Health and Neurosciences, Bangalore, India. Of the 100 PD patients, 50 had psychosis (PD-P) and 50 did not have psychosis (PD-NP). Two single-nucleotide polymorphisms of HOMER1 (rs4704559 and rs4704560) were analyzed from the DNA isolated from peripheral blood. The allele and genotype frequencies in the PD-P and PD-NP groups were compared. Results Analysis of HOMER1 rs4704560 revealed a significant difference in both genotype and allele levels between PD-P and PD-NP groups. There was an overrepresentation of T-allele (42% vs. 16%; P < 0.001) and TT genotype (24% vs. 6%; P < 0.001) in the PD-P group compared to PD-NP group. There was no significant difference between PD-P and PD-NP groups when various genotypes and allele frequencies related to HOMER1 rs4704559 were compared. Conclusion PD-P is probably associated with overrepresentation of T-allele of HOMER1 rs4704560, and larger studies are warranted to confirm our results.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Department of Neurology, Baylor College of Medicine, Houston, USA
| | - Pandarisamy Sundaravadivel
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Department of Integrative Medical Research, PES University Institute of Medical Sciences and Research, Bengaluru, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Department of Integrative Medical Research, PES University Institute of Medical Sciences and Research, Bengaluru, Karnataka, India
| | - Shyam S. Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Shantala Hegde
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Mellios N, Papageorgiou G, Gorgievski V, Maxson G, Hernandez M, Otero M, Varangis M, Dell'Orco M, Perrone-Bizzozero N, Tzavara E. Regulation of neuronal circHomer1 biogenesis by PKA/CREB/ERK-mediated pathways and effects of glutamate and dopamine receptor blockade. RESEARCH SQUARE 2024:rs.3.rs-3547375. [PMID: 38260249 PMCID: PMC10802743 DOI: 10.21203/rs.3.rs-3547375/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules. CircHomer1 is a neuronal-enriched, activity-dependent circRNA, derived from the precursor of the long HOMER1B mRNA isoform, which is significantly downregulated in the prefrontal cortex of subjects with psychosis and is able to regulate cognitive function. Even though its relevance to psychiatric disorders and its role in brain function and synaptic plasticity have been well established, little is known about the molecular mechanisms that underlie circHomer1 biogenesis in response to neuronal activity and psychiatric drug treatment. Here we suggest that the RNA-binding protein (RBP) FUS positively regulates neuronal circHomer1 expression. Furthermore, we show that the MEK/ERK and PKA/CREB pathways positively regulate neuronal circHomer1 expression, as well as promote the transcription of Fus and Eif4a3, another RBP previously shown to activate circHomer1 biogenesis. We then demonstrate via both in vitro and in vivo studies that NMDA and mGluR5 receptors are upstream modulators of circHomer1 expression. Lastly, we report that in vivo D2R antagonism increases circHomer1 expression, whereas 5HT2AR blockade reduces circHomer1 levels in multiple brain regions. Taken together, this study allows us to gain novel insights into the molecular circuits that underlie the biogenesis of a psychiatric disease-associated circRNA.
Collapse
|
3
|
Angelopoulou E, Bougea A, Papageorgiou SG, Villa C. Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes (Basel) 2022; 13:genes13061099. [PMID: 35741861 PMCID: PMC9222985 DOI: 10.3390/genes13061099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. Although several risk factors for PDP development have been identified, such as aging, sleep disturbances, long history of PD, cognitive impairment, depression and visual disorders, the pathophysiology of psychosis in PD is complex and still insufficiently clarified. Additionally, several drugs used to treat PD can aggravate or even precipitate PDP. Herein, we reviewed and critically analyzed recent studies exploring the genetic architecture of psychosis in PD in order to further understand the pathophysiology of PDP, the risk factors as well as the most suitable therapeutic strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8138
| |
Collapse
|
4
|
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F. The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev 2022; 136:104596. [PMID: 35248676 DOI: 10.1016/j.neubiorev.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
5
|
Dopamine D1 Receptor-Mediated Regulation of Per1, Per2, CLOCK, and BMAL1 Expression in the Suprachiasmatic Nucleus in Adult Male Rats. J Mol Neurosci 2021; 72:618-625. [PMID: 34751875 DOI: 10.1007/s12031-021-01923-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Photic and non-photic inputs are reported to affect clock gene expressions and behavioral activities in the SCN. However, it is not known whether dopaminergic input mediates these regulatory effects on clock genes. The present study examined the molecular effects of dopamine D1 agonist on Per1, Per2, CLOCK, and Bmal1 expressions in the SCN and its effect on behavioral activities to determine the role of dopamine D1 receptor in regulation of these gene expressions and behavioral activities in adult male Wistar rats. To examine the molecular effects of dopamine D1 agonist day and night, we injected 20 mg/kg SKF38393 to the first group of rats at 6 a.m. and the second group at 6 p.m. We also injected saline to the third and fourth groups of rats at 6 a.m. and 6 p.m. as control groups. All rats were sacrificed 2 h following the injections. The real-time PCR technique was used to evaluate the clock gene expression. In addition, to examine the effects of dopamine D1 agonists on behavioral activities, we injected 20 mg/kg SKF38393 to SKF receiving group and saline to control group. The behavioral activities of the rats were monitored on the running wheel for 21 days, 1 week following the injections. SKF injections increased the Per2 and CLOCK expressions in the daytime and significantly decreased the Per1 and Bmal1 expressions. However, at night, SKF injections increased only Per2 expressions significantly and decreased the Per1, CLOCK, and Bmal1 genes expressions. Both saline receiving groups showed that all gene expressions were significantly higher except Per2 during nighttime. SKF injection increased the running wheel activity during nighttime significantly. Based on the obtained result, clock gene expression and behavioral activities in adult male Wistar rats may be altered or monitored by administration of exogenous dopamine.
Collapse
|
6
|
Striatal Nurr1 Facilitates the Dyskinetic State and Exacerbates Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease. J Neurosci 2020; 40:3675-3691. [PMID: 32238479 DOI: 10.1523/jneurosci.2936-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Nurr1 has been identified to be ectopically induced in the striatum of rodents expressing l-DOPA-induced dyskinesia (LID). In the present study, we sought to characterize Nurr1 as a causative factor in LID expression. We used rAAV2/5 to overexpress Nurr1 or GFP in the parkinsonian striatum of LID-resistant Lewis or LID-prone Fischer-344 (F344) male rats. In a second cohort, rats received the Nurr1 agonist amodiaquine (AQ) together with l-DOPA or ropinirole. All rats received a chronic DA agonist and were evaluated for LID severity. Finally, we performed single-unit recordings and dendritic spine analyses on striatal medium spiny neurons (MSNs) in drug-naïve rAAV-injected male parkinsonian rats. rAAV-GFP injected LID-resistant hemi-parkinsonian Lewis rats displayed mild LID and no induction of striatal Nurr1 despite receiving a high dose of l-DOPA. However, Lewis rats overexpressing Nurr1 developed severe LID. Nurr1 agonism with AQ exacerbated LID in F344 rats. We additionally determined that in l-DOPA-naïve rats striatal rAAV-Nurr1 overexpression (1) increased cortically-evoked firing in a subpopulation of identified striatonigral MSNs, and (2) altered spine density and thin-spine morphology on striatal MSNs; both phenomena mimicking changes seen in dyskinetic rats. Finally, we provide postmortem evidence of Nurr1 expression in striatal neurons of l-DOPA-treated PD patients. Our data demonstrate that ectopic induction of striatal Nurr1 is capable of inducing LID behavior and associated neuropathology, even in resistant subjects. These data support a direct role of Nurr1 in aberrant neuronal plasticity and LID induction, providing a potential novel target for therapeutic development.SIGNIFICANCE STATEMENT The transcription factor Nurr1 is ectopically induced in striatal neurons of rats exhibiting levodopa-induced dyskinesia [LID; a side-effect to dopamine replacement strategies in Parkinson's disease (PD)]. Here we asked whether Nurr1 is causing LID. Indeed, rAAV-mediated expression of Nurr1 in striatal neurons was sufficient to overcome LID-resistance, and Nurr1 agonism exacerbated LID severity in dyskinetic rats. Moreover, we found that expression of Nurr1 in l-DOPA naïve hemi-parkinsonian rats resulted in the formation of morphologic and electrophysiological signatures of maladaptive neuronal plasticity; a phenomenon associated with LID. Finally, we determined that ectopic Nurr1 expression can be found in the putamen of l-DOPA-treated PD patients. These data suggest that striatal Nurr1 is an important mediator of the formation of LID.
Collapse
|
7
|
de Bartolomeis A, Iasevoli F, Marmo F, Buonaguro EF, Avvisati L, Latte G, Tomasetti C. Nicotine and caffeine modulate haloperidol-induced changes in postsynaptic density transcripts expression: Translational insights in psychosis therapy and treatment resistance. Eur Neuropsychopharmacol 2018; 28:538-559. [PMID: 29475793 DOI: 10.1016/j.euroneuro.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/30/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
Caffeine and nicotine are widely used by schizophrenia patients and may worsen psychosis and affect antipsychotic therapies. However, they have also been accounted as augmentation strategies in treatment-resistant schizophrenia. Despite both substances are known to modulate dopamine and glutamate transmission, little is known about the molecular changes induced by these compounds in association to antipsychotics, mostly at the level of the postsynaptic density (PSD), a site of dopamine-glutamate interplay. Here we investigated whether caffeine and nicotine, alone or combined with haloperidol, elicited significant changes in the levels of both transcripts and proteins of the PSD members Homer1 and Arc, which have been implicated in synaptic plasticity, schizophrenia pathophysiology, and antipsychotics molecular action. Homer1a mRNA expression was significantly reduced by caffeine and nicotine, alone or combined with haloperidol, compared to haloperidol. Haloperidol induced significantly higher Arc mRNA levels than both caffeine and caffeine plus haloperidol in the striatum. Arc mRNA expression was significantly higher by nicotine plus haloperidol vs. haloperidol in the cortex, while in striatum gene expression by nicotine was significantly lower than that by both haloperidol and nicotine plus haloperidol. Both Homer1a and Arc protein levels were significantly increased by caffeine, nicotine, and nicotine plus haloperidol. Homer1b mRNA expression was significantly increased by nicotine and nicotine plus haloperidol, while protein levels were unaffected. Locomotor activity was not significantly affected by caffeine, while it was reduced by nicotine. These data indicate that both caffeine and nicotine trigger relevant molecular changes in PSD sites when given in association with haloperidol.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, and Unit of Treatment Resistant Psychosis Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, and Unit of Treatment Resistant Psychosis Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, and Unit of Treatment Resistant Psychosis Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, and Unit of Treatment Resistant Psychosis Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Livia Avvisati
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, and Unit of Treatment Resistant Psychosis Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, and Unit of Treatment Resistant Psychosis Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, and Unit of Treatment Resistant Psychosis Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
8
|
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies. Neuromolecular Med 2018; 20:1-17. [PMID: 29305687 DOI: 10.1007/s12017-017-8473-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
9
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
10
|
Shipley AT, Imeh-Nathaniel A, Orfanakos VB, Wormack LN, Huber R, Nathaniel TI. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse. Front Physiol 2017; 8:1007. [PMID: 29270131 PMCID: PMC5723678 DOI: 10.3389/fphys.2017.01007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022] Open
Abstract
The idea that addiction occurs when the brain is not able to differentiate whether specific reward circuits were triggered by adaptive natural rewards or falsely activated by addictive drugs exist in several models of drug addiction. The suitability of crayfish (Orconectes rusticus) for drug addiction research arises from developmental variation of growth, life span, reproduction, behavior and some quantitative traits, especially among isogenic mates reared in the same environment. This broad spectrum of traits makes it easier to analyze the effect of mammalian drugs of abuse in shaping behavioral phenotype. Moreover, the broad behavioral repertoire allows the investigation of self-reinforcing circuitries involving appetitive and exploratory motor behavior, while the step-wise alteration of the phenotype by metamorphosis allows accurate longitudinal analysis of different behavioral states. This paper reviews a series of recent experimental findings that evidence the suitability of crayfish as an invertebrate model system for the study of drug addiction. Results from these studies reveal that unconditioned exposure to mammalian drugs of abuse produces a variety of stereotyped behaviors. Moreover, if presented in the context of novelty, drugs directly stimulate exploration and appetitive motor patterns along with molecular processes for drug conditioned reward. Findings from these studies indicate the existence of drug sensitive circuitry in crayfish that facilitates exploratory behavior and appetitive motor patterns via increased incentive salience of environmental stimuli or by increasing exploratory motor patterns. This work demonstrates the potential of crayfish as a model system for research into the neural mechanisms of addiction, by contributing an evolutionary, comparative context to our understanding of natural reward as an important life-sustaining process.
Collapse
Affiliation(s)
- Adam T Shipley
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | | | - Vasiliki B Orfanakos
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | - Leah N Wormack
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | - Robert Huber
- J.P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, United States
| | - Thomas I Nathaniel
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| |
Collapse
|
11
|
Hara Y, Ago Y, Taruta A, Hasebe S, Kawase H, Tanabe W, Tsukada S, Nakazawa T, Hashimoto H, Matsuda T, Takuma K. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice. Psychopharmacology (Berl) 2017; 234:3217-3228. [PMID: 28798977 DOI: 10.1007/s00213-017-4703-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Rodents exposed prenatally to valproic acid (VPA) exhibit autism spectrum disorder (ASD)-like behavioral abnormalities. We recently found that prenatal VPA exposure causes hypofunction of the prefrontal dopaminergic system in mice. This suggests that the dopaminergic system may be a potential pharmacological target for treatment of behavioral abnormalities in ASD patients. OBJECTIVES In the present study, we examined the effects of antipsychotic drugs, which affect the dopaminergic system, on the social interaction deficits, recognition memory impairment, and reduction in dendritic spine density in the VPA mouse model of ASD. RESULTS Both acute and chronic administrations of the atypical antipsychotic drugs risperidone and aripiprazole increased prefrontal dopamine (DA) release, while the typical antipsychotic drug haloperidol did not. Chronic risperidone and aripiprazole, but not haloperidol, increased the expression of c-Fos in the prefrontal cortex, although they all increased c-Fos expression in the striatum. Chronic, but not acute, administrations of risperidone and aripiprazole improved the VPA-induced social interaction deficits and recognition memory impairment, as well as the reduction in dendritic spine density in the prefrontal cortex and hippocampus. In contrast, chronic administration of haloperidol did not ameliorate VPA-induced abnormalities in behaviors and dendritic spine density. CONCLUSIONS These findings indicate that chronic risperidone and aripiprazole treatments improve VPA-induced abnormalities in behaviors and prefrontal dendritic spine density, which may be mediated by repeated elevation of extracellular DA in the prefrontal cortex. Our results also imply that loss of prefrontal dendritic spines may be involved in the abnormal behaviors in the VPA mouse model of ASD.
Collapse
Affiliation(s)
- Yuta Hara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsuki Taruta
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruki Kawase
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Wataru Tanabe
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Tsukada
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Homer1a protein expression in schizophrenia, bipolar disorder, and major depression. J Neural Transm (Vienna) 2017; 124:1261-1273. [DOI: 10.1007/s00702-017-1776-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/31/2017] [Indexed: 01/14/2023]
|
13
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
14
|
de Bartolomeis A, Marmo F, Buonaguro EF, Latte G, Tomasetti C, Iasevoli F. Switching antipsychotics: Imaging the differential effect on the topography of postsynaptic density transcripts in antipsychotic-naïve vs. antipsychotic-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:24-38. [PMID: 27177972 DOI: 10.1016/j.pnpbp.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/17/2016] [Accepted: 04/27/2016] [Indexed: 10/24/2022]
Abstract
The postsynaptic density (PSD) has been regarded as a functional switchboard at the crossroads of a dopamine-glutamate interaction, and it is putatively involved in the pathophysiology of psychosis. Indeed, it has been demonstrated that antipsychotics may modulate several PSD transcripts, such as PSD-95, Shank, and Homer. Despite switching antipsychotics is a frequent strategy to counteract lack of efficacy and/or side effect onset in clinical practice, no information is available on the effects of sequential treatments with different antipsychotics on PSD molecules. The aim of this study was to evaluate whether a previous exposure to a typical antipsychotic and a switch to an atypical one may affect the expression of PSD transcripts, in order to evaluate potential neurobiological correlates of this common clinical practice, with specific regards to putative synaptic plasticity processes. We treated male Sprague-Dawley rats intraperitoneally for 15days with haloperidol or vehicle, then from the sixteenth day we switched the animals to amisulpride or continued to treat them with vehicle or haloperidol for 15 additional days. In this way we got six first treatment/second treatment groups: vehicle/vehicle, vehicle/haloperidol, vehicle/amisulpride, haloperidol/vehicle, haloperidol/haloperidol, haloperidol/amisulpride. In this paradigm, we evaluated the expression of brain transcripts belonging to relevant and interacting PSD proteins, both of the Immediate-Early Gene (Homer1a, Arc) and the constitutive classes (Homer1b/c and PSD-95). The major finding was the differential effect of amisulpride on gene transcripts when administered in naïve vs. antipsychotic-pretreated rats, with modifications of the ratio between Homer1a/Homer1b transcripts and differential effects in cortex and striatum. These results suggest that the neurobiological effects on PSD transcripts of amisulpride, and possibly of other antipsychotics, may be greatly affected by prior antipsychotic treatments and may impact significantly on the switching procedure.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy.
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| |
Collapse
|
15
|
Lenka A, Arumugham SS, Christopher R, Pal PK. Genetic substrates of psychosis in patients with Parkinson's disease: A critical review. J Neurol Sci 2016; 364:33-41. [PMID: 27084212 DOI: 10.1016/j.jns.2016.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/05/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
Abstract
Patients with Parkinson's disease (PD) may develop several non-motor symptoms such as psychosis, depression, cognitive impairment, autonomic disturbances and sleep disturbances. Psychosis is one of the common non-motor symptoms, which commonly manifests as visual hallucinations and minor hallucinations such as sense of passage and presence. Though long-term dopaminergic therapy, longer duration of PD and cognitive impairment have been described as risk factors for emergence of psychosis in PD, predicting psychosis in PD remains challenging. Multiple studies have explored the genetic basis of psychosis in PD by studying polymorphisms of several genes. Most of the studies have focused on apolipoprotein E polymorphism followed by polymorphisms in cholecystokinin (CCK) system, dopamine receptors and transporters, HOMER gene, serotonin, catechol-o-methyltransferase, angiotensin converting enzyme and tau. Other than the studies on polymorphisms of CCK, most of the studies have reported conflicting results regarding association with psychosis in PD. Three out of four studies on CCK polymorphism have reported significant association of -45C>T polymorphism with the presence of hallucinations. The discrepancies in the results across the studies reviewed are possibly due to racial differences as well as differences in the patient characteristics. This review critically analyzes the published studies on genetic polymorphisms in patients with PD and psychosis.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Clinical Neurosciences, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India; Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| |
Collapse
|
16
|
de Bartolomeis A, Errico F, Aceto G, Tomasetti C, Usiello A, Iasevoli F. D-aspartate dysregulation in Ddo(-/-) mice modulates phencyclidine-induced gene expression changes of postsynaptic density molecules in cortex and striatum. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:35-43. [PMID: 25979765 DOI: 10.1016/j.pnpbp.2015.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction has been considered a key alteration in schizophrenia pathophysiology. Thus, several strategies aimed at enhancing glutamatergic transmission, included the introduction in therapy of D-amino acids, such as D-serine and D-cycloserine augmentation, have been proposed to counteract difficult-to-treat symptoms or treatment-resistant forms of schizophrenia. Another D-amino acid, D-aspartate, has recently gained increasing interest for its role in NMDAR activation and has been found reduced in post-mortem cortex of schizophrenia patients. NMDAR is the core of the postsynaptic density (PSD), a postsynaptic site involved in glutamate signaling and responsive to antipsychotic treatment. In this study, we investigated striatal and cortical gene expression of key PSD transcripts (i.e. Homer1a, Homer1b/c, and PSD-95) in mice with persistently elevated brain D-aspartate-levels, i.e. the D-aspartate-oxidase knockout mice (Ddo(-/-)). These animal models were analyzed both in naive condition and after phencyclidine (PCP) treatment. Naive Ddo(-/-) mice showed decreased Homer1a expression in the prefrontal cortex, increased Homer1b/c expression in the striatum, and decreased PSD-95 expression in the striatum and in the cortex. Acute PCP treatment restored, and even potentiated, Homer1a expression in the prefrontal cortex of mutant mice, while it had limited effects on the other genes. These results suggest that persistently elevated D-aspartate, by enhancing NMDA transmission, may cause complex adaptive mechanisms affecting Homer1a, which in turn may explain the recently demonstrated protective effects of this D-amino acid against PCP-induced behavioral alterations, such as ataxic behavior.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University School of Medicine Federico II, Naples, Italy.
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University School of Medicine Federico II, Naples, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), Caserta, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University School of Medicine Federico II, Naples, Italy
| |
Collapse
|
17
|
Lepelletier FX, Tauber C, Nicolas C, Solinas M, Castelnau P, Belzung C, Emond P, Cortese S, Faraone SV, Chalon S, Galineau L. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int J Neuropsychopharmacol 2014; 18:pyu044. [PMID: 25522388 PMCID: PMC4360227 DOI: 10.1093/ijnp/pyu044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/24/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Methylphenidate (MPH) is a commonly-used medication for the treatment of children with Attention-Deficit/Hyperactivity Disorders (ADHD). However, its prescription to adults with ADHD and narcolepsy raises the question of how the brain is impacted by MPH exposure during pregnancy. The goal of this study was to elucidate the long-term neurobiological consequences of prenatal exposure to MPH using a rat model. METHODS We focused on the effects of such treatment on the adult dopamine (DA) system and on the reactivity of animals to natural rewards. RESULTS This study shows that adult male rats prenatally exposed to MPH display elevated expression of presynaptic DA markers in the DA cell bodies and the striatum. Our results also suggest that MPH-treated animals could exhibit increased tonic DA activity in the mesolimbic pathway, altered signal-to-noise ratio after a pharmacological stimulation, and decreased reactivity to the locomotor effects of cocaine. Finally, we demonstrated that MPH rats display a decreased preference and motivation for sucrose. CONCLUSIONS This is the first preclinical study reporting long-lasting neurobiological alterations of DA networks as well as alterations in motivational behaviors for natural rewards after a prenatal exposure to MPH. These results raise concerns about the possible neurobiological consequences of MPH treatment during pregnancy.
Collapse
Affiliation(s)
- François-Xavier Lepelletier
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Clovis Tauber
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Céline Nicolas
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Marcello Solinas
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Pierre Castelnau
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Catherine Belzung
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Patrick Emond
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Samuele Cortese
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Stephen V Faraone
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Sylvie Chalon
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone)
| | - Laurent Galineau
- Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR 930, Tours, France (Drs Lepelletier, Tauber, Castelnau, Belzung, Emond, Chalon, and Galineau); Experimental and Clinical Neurosciences Laboratory, INSERM U1084, Poitiers, France (Drs Nicolas and Solinas); University of Poitiers, Poitiers, France (Drs Nicolas and Solinas); Child Neurology Unit, University Hospital, University of Tours, Tours, France (Dr Castelnau); Department of Neurosciences, University François Rabelais of Tours, Tours, France (Drs Belzung and Galineau); Institute for Pediatric Neuroscience, NYU Child Study Center, Langone Medical Center, NY (Dr Cortese); Child Psychiatry Centre, University Hospital, University of Tours, Tours, France (Dr Cortese); Departments of Psychiatry and of Neuroscience and Physiology, Upstate Medical University, State University of New York, Syracuse, NY (Dr Faraone).
| |
Collapse
|
18
|
A Genetic Mouse Model of Parkinson's Disease Shows Involuntary Movements and Increased Postsynaptic Sensitivity to Apomorphine. Mol Neurobiol 2014; 52:1152-1164. [PMID: 25307288 DOI: 10.1007/s12035-014-8911-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
Alpha-synuclein (SNCA) protein aggregation plays a causal role in Parkinson's disease (PD). The SNCA protein modulates neurotransmission via the SNAP receptor (SNARE) complex assembly and presynaptic vesicle trafficking. The striatal presynaptic dopamine deficit is alleviated by treatment with levodopa (L-DOPA), but postsynaptic plastic changes induced by this treatment lead to a development of involuntary movements (dyskinesia). While this process is currently modeled in rodents harboring neurotoxin-induced lesions of the nigrostriatal pathway, we have here explored the postsynaptic supersensitivity of dopamine receptor-mediated signaling in a genetic mouse model of early PD. To this end, we used mice with prion promoter-driven overexpression of A53T-SNCA in the nigrostriatal and corticostriatal projections. At a symptomatic age (18 months), mice were challenged with apomorphine (5 mg/kg s.c.) and examined using both behavioral and molecular assays. After the administration of apomorphine, A53T-transgenic mice showed more severe stereotypic and dystonic movements in comparison with wild-type controls. Molecular markers of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and dephosphorylation, and Fos messenger RNA (mRNA), were examined in striatal tissue at 30 and 100 min after apomorphine injection. At 30 min, wild-type and transgenic mice showed a similar induction of phosphorylated ERK1/2, Dusp1, and Dusp6 mRNA (two MAPK phosphatases). At the same time point, Fos mRNA was induced more strongly in mutant mice than in wild-type controls. At 100 min after apomorphine treatment, the induction of both Fos, Dusp1, and Dusp6 mRNA was significantly larger in mutant mice than wild-type controls. At this time point, apomorphine caused a reduction in phospho-ERK1/2 levels specifically in the transgenic mice. Our results document for the first time a disturbance of ERK1/2 signaling regulation associated with apomorphine-induced involuntary movements in a genetic mouse model of synucleinopathy. This mouse model will be useful to identify novel therapeutic targets that can counteract abnormal dopamine-dependent striatal plasticity during both prodromal and manifest stages of PD.
Collapse
|
19
|
Iasevoli F, Buonaguro EF, Sarappa C, Marmo F, Latte G, Rossi R, Eramo A, Tomasetti C, de Bartolomeis A. Regulation of postsynaptic plasticity genes' expression and topography by sustained dopamine perturbation and modulation by acute memantine: relevance to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:299-314. [PMID: 25025505 DOI: 10.1016/j.pnpbp.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/26/2014] [Accepted: 07/03/2014] [Indexed: 11/25/2022]
Abstract
A relevant role for dopamine-glutamate interaction has been reported in the pathophysiology and treatment of psychoses. Dopamine and glutamate may interact at multiple levels, including the glutamatergic postsynaptic density (PSD), an electron-dense thickening that has gained recent attention as a switchboard of dopamine-glutamate interactions and for its role in synaptic plasticity. Recently, glutamate-based strategies, such as memantine add-on to antipsychotics, have been proposed for refractory symptoms of schizophrenia, e.g. cognitive impairment. Both antipsychotics and memantine regulate PSD transcripts but sparse information is available on memantine's effects under dopamine perturbation. We tested gene expression changes of the Homer1 and PSD-95 PSD proteins in models of sustained dopamine perturbation, i.e. subchronic treatment by: a) GBR-12909, a dopamine receptor indirect agonist; b) haloperidol, a D2R antagonist; c) SCH-23390, a dopamine D1 receptor (D1R) antagonist; and d) SCH-23390+haloperidol. On the last day of treatment, rats were acutely treated with vehicle or memantine. The Homer1a immediate-early gene was significantly induced by haloperidol and by haloperidol+SCH-23390. The gene was not induced by SCH-23390 per se or by GBR-12909. Expression of the constitutive genes Homer1b/c and PSD-95 was less affected by these dopaminergic paradigms. Acute memantine administration significantly increased Homer1a expression by the dopaminergic compounds used herein. Both haloperidol and haloperidol+SCH-23390 shifted Homer1a/Homer1b/c ratio of expression toward Homer1a. This pattern was sharpened by acute memantine. Dopaminergic compounds and acute memantine also differentially affected topographic distribution of gene expression and coordinated expression of Homer1a among cortical-subcortical regions. These results indicate that dopaminergic perturbations may affect glutamatergic signaling in different directions. Memantine may help partially revert dopamine-mediated glutamatergic dysfunctions.
Collapse
Affiliation(s)
- Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Chiara Sarappa
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Anna Eramo
- Medical Affairs & Phase IV Clinical Affairs, Lundbeck Pharmaceutical Services LLC, Deerfield, IL, United States
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| |
Collapse
|
20
|
Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A. The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 2014; 12:219-38. [PMID: 24851087 PMCID: PMC4023453 DOI: 10.2174/1570159x12666140324183406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately
1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its
pathophysiology to postsynaptic abnormalities.
The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia.
More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and
metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being
implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD
constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests
that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including
schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for
the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of
current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this
devastating illness.
The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia
pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic
molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the
possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be
discussed.
Collapse
Affiliation(s)
- Felice Iasevoli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| |
Collapse
|
21
|
Imaging brain gene expression profiles by antipsychotics: region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol. Eur Neuropsychopharmacol 2013; 23:1516-29. [PMID: 23357084 DOI: 10.1016/j.euroneuro.2012.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/05/2012] [Accepted: 11/24/2012] [Indexed: 11/20/2022]
Abstract
Induction of motor disorders is considered the clinical landmark differentiating typical from atypical antipsychotics, and has been mainly correlated to dopamine D2 receptors blockade in striatum. This view is challenged by benzamides, such as amisulpride, which display low liability for motor side effects despite being D2/D3 receptors high-affinity blocking agents. These effects have been explained with the prominent presynaptic action of amisulpride or with the fast dissociation at D2 receptors, but there is scarce information on the effects of amisulpride on postsynaptic signaling. We carried out a molecular imaging study of gene expression after acute administration of haloperidol (0.8 mg/kg), amisulpride (10 or 35 mg/kg), or vehicle, focusing on postsynaptic genes that are key regulators of synaptic plasticity, such as Arc, c-fos, Zif-268, Norbin, Homer. The last one has been associated to schizophrenia both in clinical and preclinical studies, and is differentially induced by antipsychotics with different D2 receptors affinity. Topography of gene expression revealed that amisulpride, unlike haloperidol, triggers transcripts expression peak in medial striatal regions. Correlation analysis of gene expression revealed a prevalent correlated gene induction within motor corticostriatal regions by haloperidol and a more balanced gene induction within limbic and motor corticostriatal regions by amisulpride. Despite the selective dopaminergic profile of both compounds, our results demonstrated a differential modulation of postsynaptic molecules by amisulpride and haloperidol, the former impacting preferentially medial regions of striatum whereas the latter inducing strong gene expression in lateral regions. Thus, we provided a possible molecular profile of amisulpride, putatively explaining its "atypical atypicality".
Collapse
|
22
|
Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson's disease patients. THE PHARMACOGENOMICS JOURNAL 2013; 14:289-94. [PMID: 24126708 DOI: 10.1038/tpj.2013.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 01/20/2023]
Abstract
Levodopa is the most effective symptomatic therapy for Parkinson's disease, but its chronic use could lead to chronic adverse outcomes, such as motor fluctuations, dyskinesia and visual hallucinations. HOMER1 is a protein with pivotal function in glutamate transmission, which has been related to the pathogenesis of these complications. This study investigates whether polymorphisms in the HOMER1 gene promoter region are associated with the occurrence of the chronic complications of levodopa therapy. A total of 205 patients with idiopathic Parkinson's disease were investigated. Patients were genotyped for rs4704559, rs10942891 and rs4704560 by allelic discrimination with Taqman assays. The rs4704559 G allele was associated with a lower prevalence of dyskinesia (prevalence ratio (PR)=0.615, 95% confidence interval (CI) 0.426-0.887, P=0.009) and visual hallucinations (PR=0.515, 95% CI 0.295-0.899, P=0.020). Our data suggest that HOMER1 rs4704559 G allele has a protective role for the development of levodopa adverse effects.
Collapse
|
23
|
Inoue Y, Takayanagi M, Sugiyama H. Presynaptic protein synaptotagmin1 regulates the activity-induced remodeling of synaptic structures in cultured hippocampal neurons. J Neurosci Res 2013; 91:882-9. [PMID: 23606502 DOI: 10.1002/jnr.23215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/07/2013] [Accepted: 01/13/2013] [Indexed: 11/11/2022]
Abstract
Activity-dependent reorganizations of central neuronal synapses are thought to play important roles in learning and memory. Although the precise mechanisms of how neuronal activities modify synaptic connections in neurons remain to be clarified, the activity-induced neuronal presynaptic proteins such as synaptotagmin1 may contribute to the onset of synaptic remodeling. To understand better the physiological roles of synaptotagmin1, we first examined the prolonged effects of neuronal stimulation capable of inducing synaptotagmin1 on the distribution of a postsynaptic proteins (PSD) protein Homer1c by immunostaining. Previously we found that glutamate stimulation induced other postsynaptic proteins, such as postsynaptic density-95 (PSD95), a biphasic change with an initially diffuse distribution after 30 min to 1 hr, followed by reassembly to more than the original level after 4-8 hr, suggesting that glutamate stimulation induces a global biphasic alteration in synaptic structures. To dissect further the functions of synaptotagmin1 in the activity-induced synaptic remodeling, short hairpin RNA (shRNA) vectors that specifically block the expression of endogenous synaptotagmin1 were constructed. When the shRNA of synaptotagmin1 was introduced to the neurons, the activity-induced changes were almost completely suppressed. We found that synaptotagmin1 contributes to the postsynaptic remodeling in a retrograde manner. Our data indicate that synaptotagmin1 regulates the activity-induced biphasic changes of post- and presynaptic sites.
Collapse
Affiliation(s)
- Yuriko Inoue
- Department of Anatomy, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan.
| | | | | |
Collapse
|
24
|
de Bartolomeis A, Tomasetti C. Calcium-Dependent Networks in Dopamine–Glutamate Interaction: The Role of Postsynaptic Scaffolding Proteins. Mol Neurobiol 2012; 46:275-96. [DOI: 10.1007/s12035-012-8293-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
|
25
|
Alteration of c-Fos mRNA in the accessory lobe of crayfish is associated with a conditioned-cocaine induced reward. Neurosci Res 2012; 72:243-56. [DOI: 10.1016/j.neures.2011.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/04/2011] [Accepted: 11/28/2011] [Indexed: 02/02/2023]
|
26
|
Hu Z, Rudd JA, Fang M. Development of the human corpus striatum and the presence of nNOS and 5-HT2A receptors. Anat Rec (Hoboken) 2011; 295:127-31. [PMID: 22095614 DOI: 10.1002/ar.21497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/04/2011] [Indexed: 11/10/2022]
Abstract
This study focussed on the development of the corpus striatum in the fetus, using silver impregnation and immunohistochemistry. For the latter, we looked for nNOS positive cells and 5-HT(2A) receptors positive cells in the corpus striatum during development. During the initial formation of the corpus striatum, there was migration cells of the ganglionic eminence toward the putamen by 15-17 weeks of gestation. Process formation in the neurons started by week 17 and became very complex before term (31/32 weeks of gestation). By 25-27 gestational weeks, the globus pallidus already had two parts and the corpus striatum was similar to the adult in configuration. The nNOS positive cells appeared early (21-23 weeks in gestation) while 5-HT(2A) receptors positive cells were not observed until 31/32 weeks gestation. The number of positive cells in both groups was relatively small. It is anticipated that further developmental changes would occur in the postnatal/neonatal phases.
Collapse
Affiliation(s)
- Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, China
| | | | | |
Collapse
|
27
|
Iasevoli F, Ambesi-Impiombato A, Fiore G, Panariello F, Muscettola G, de Bartolomeis A. Pattern of acute induction of Homer1a gene is preserved after chronic treatment with first- and second-generation antipsychotics: effect of short-term drug discontinuation and comparison with Homer1a-interacting genes. J Psychopharmacol 2011; 25:875-87. [PMID: 20147574 DOI: 10.1177/0269881109358199] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Homer1a is a glutamate-related gene whose expression is induced by antipsychotics acutely (i.e. 90 min after treatment). Acute Homer1a expression is preserved after prolonged antipsychotic treatments, while the effects of short-term discontinuation after chronic antipsychotic treatment have not yet been assessed. Here, we studied early and long-term effects on gene expression by antipsychotics for Homer1a and other components of glutamatergic synapses. In the first paradigm, we evaluated Homer1a acute expression by single administration of antipsychotics (haloperidol 0.8 mg/kg, ziprasidone 10 and 4 mg/kg, clozapine 15 mg/kg). Haloperidol and ziprasidone induced Homer1a in the striatum. Induction by ziprasidone was dose-dependent. These results suggest that acute Homer1a expression correlates with dopaminergic affinity and motor side effects of antipsychotics. In the second paradigm, we studied antipsychotic-mediated long-term changes in Homer1a and glutamate-related genes. Rats were treated (21 days) with haloperidol 0.8 mg/kg, ziprasidone 4 mg/kg, or vehicle, and then sacrificed at 90 min (early time-point) or 24 h (delayed time-point) after last injection. Gene expression at these two time-points was compared. Homer1a preserved its pattern of expression at the early but not at the delayed time-point. Significant changes were also observed for PSD-95. The results suggest that Homer1a preserves its expression profile after chronic antipsychotics.
Collapse
Affiliation(s)
- Felice Iasevoli
- Laboratory of Molecular Psychiatry and Psychopharmacotherapy, Section of Psychiatry, Department of Neuroscience, University School of Medicine 'Federico II', Naples, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Kurz A, Double KL, Lastres-Becker I, Tozzi A, Tantucci M, Bockhart V, Bonin M, García-Arencibia M, Nuber S, Schlaudraff F, Liss B, Fernández-Ruiz J, Gerlach M, Wüllner U, Lüddens H, Calabresi P, Auburger G, Gispert S. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS One 2010; 5:e11464. [PMID: 20628651 PMCID: PMC2898885 DOI: 10.1371/journal.pone.0011464] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/14/2010] [Indexed: 11/22/2022] Open
Abstract
Background Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Methodology/Principal Findings Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice. Conclusions/Significance Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.
Collapse
Affiliation(s)
- Alexander Kurz
- Department of Neurology, Goethe University Medical School, Frankfurt, Germany
| | - Kay L. Double
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | | | - Alessandro Tozzi
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S.-C.E.R.C., European Brain Research Institute, Roma, Italy
| | - Michela Tantucci
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Vanessa Bockhart
- Molecular Psychopharmacology, Department of Psychiatry, Johannes Gutenberg University, Mainz, Germany
| | - Michael Bonin
- Department Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Moisés García-Arencibia
- Department of Biochemistry and Molecular Biology and “Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)”, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Silke Nuber
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Falk Schlaudraff
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Birgit Liss
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology and “Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)”, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Manfred Gerlach
- Laboratory for Clinical Neurochemistry, Department Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Bayerische Julius-Maximilian-Universität, Würzburg, Germany
| | - Ullrich Wüllner
- Department of Neurology, Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Hartmut Lüddens
- Molecular Psychopharmacology, Department of Psychiatry, Johannes Gutenberg University, Mainz, Germany
| | - Paolo Calabresi
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S.-C.E.R.C., European Brain Research Institute, Roma, Italy
| | - Georg Auburger
- Department of Neurology, Goethe University Medical School, Frankfurt, Germany
| | - Suzana Gispert
- Department of Neurology, Goethe University Medical School, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
29
|
Jiménez A, Bonastre M, Aguilar E, Marin C. Effect of the metabotropic glutamate antagonist MPEP on striatal expression of the Homer family proteins in levodopa-treated hemiparkinsonian rats. Psychopharmacology (Berl) 2009; 206:233-42. [PMID: 19636538 DOI: 10.1007/s00213-009-1600-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 06/21/2009] [Indexed: 01/02/2023]
Abstract
RATIONALE Striatal glutamatergic hyperactivity through the metabotropic receptors and their intracellular signaling pathways is considered critical in the development of levodopa-induced dyskinesias in Parkinson's disease and in experimental parkinsonism. OBJECTIVE We investigated whether the administration of the metabotropic glutamate antagonist, MPEP, modifies striatal expression of Homer family proteins which are involved in the intracellular mechanisms mediated by these receptors. MATERIALS AND METHODS Sprague-Dawley rats were unilaterally lesioned in the nigrostriatal pathway with 6-hydroxydopamine (8 microg) and treated with: levodopa (12 mg/kg, i.p.) plus vehicle (n=10) divided in two daily injections; levodopa plus MPEP (1.5 and 3 mg/kg, i.p.; n=6-13) divided in two daily injections; or saline (n=7) for 10 consecutive days. Axial, limb, and orolingual dyskinesias were evaluated. Striatal expression of tyrosine hydroxylase (TH), Homer 1a, 1b/c, and deltaFosB were measured by Western Blot. RESULTS Animals treated with levodopa showed an increase of dyskinesia score (p<0.01) that was attenuated by the administration of MPEP (p<0.01). In the ipsilateral side of the lesion, striatal TH expression was decreased (p<0.01). No significant differences in striatal Homer 1a or b/c expression were observed between the groups of treatment. Striatal deltaFosB expression increased in the animals treated with levodopa (p<0.05) being attenuated after MPEP administration (p<0.05). MPEP effect was not paralleled by any modification of striatal Homer proteins expression. CONCLUSIONS These results suggest that Homer protein family is not causally involved in the development of dyskinetic movements induced by levodopa treatment in this animal model of parkinsonism.
Collapse
Affiliation(s)
- Anna Jiménez
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Iasevoli F, Tomasetti C, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A. Dopamine receptor subtypes contribution to Homer1a induction: insights into antipsychotic molecular action. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:813-21. [PMID: 19243698 DOI: 10.1016/j.pnpbp.2009.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/02/2009] [Accepted: 02/12/2009] [Indexed: 11/19/2022]
Abstract
The inducible gene Homer1a has been considered a candidate gene for schizophrenia. Drugs efficacious in schizophrenia and acting as dopamine receptor antagonists induce Homer1a expression, although the specific role of the different dopamine receptors in its induction is not completely known. In this study, we explored Homer1a expression induced by selective antagonists at dopamine receptors (SCH-23390, D(1) receptor selective antagonist, 0.5 mg/kg; L-741,626, D(2) receptor selective antagonist, 2 mg/kg; U-99194, D(3) receptor selective antagonist, 5 mg/kg; L-745,870, D(4) receptor selective antagonist, 3 mg/kg), haloperidol (0.8 mg/kg), and terguride (0.5 mg/kg), a partial agonist at D(2) receptors. Moreover, we evaluated the expression of two Homer1a-related genes which play essential roles in synaptic plasticity: mGluR5 and Homer1b. Gene expression was analyzed in brain regions relevant for schizophrenia pathophysiology and therapy, namely the striatum, the cortex, and the hippocampus. In striatum, Homer1a was induced by D(2) receptor antagonists and, with a different distribution, by SCH-23390. In the cortex, Homer1a was differentially induced by D(1), D(2), and D(3) receptors antagonists, while haloperidol and terguride did not affect or reduced its expression. Homer1b expression was reduced by L-741,626, L-745,870, terguride, and haloperidol in the ventral caudate-putamen, in the nucleus accumbens and in the cortex, while SCH-23390 increased the expression in the core of the accumbens. mGluR5 expression was increased by SCH-23390 in the dorsomedial putamen, the core of the accumbens, and in some hippocampal subregions. A reduction of gene expression by terguride and an increase by L-745,870 was observed in the dorsomedial putamen. The changes in expression suggest that these gene transcripts are differentially regulated by antagonism at different dopamine receptors.
Collapse
Affiliation(s)
- Felice Iasevoli
- Laboratory of Molecular Psychiatry and Psychopharmacotherapeutics, Section of Psychiatry, Department of Neurosciences, University School of Medicine Federico II, Via Pansini 5, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
31
|
Abstract
The development of drug addiction progresses along a continuum from acute drug use to compulsive use and drug seeking behavior. Many researchers have focused on identifying the physiological mechanisms involved in drug addiction in order to develop effective pharmacotherapies. Neuroplasticity, the putative mechanism underlying learning and memory, is modified by drugs of abuse and may contribute to the development of the eventual addicted state. Innovative treatments directly targeting these drug-induced changes in brain reward components and circuits may be efficacious in reducing drug use and relapse.
Collapse
Affiliation(s)
- Jason L. Niehaus
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
| | - Nelson D. Cruz-Bermúdez
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
| | - Julie A. Kauer
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
- Department of Neuroscience, Brown University, Providence, Rhode Island
| |
Collapse
|
32
|
Dell'aversano C, Tomasetti C, Iasevoli F, de Bartolomeis A. Antipsychotic and antidepressant co-treatment: effects on transcripts of inducible postsynaptic density genes possibly implicated in behavioural disorders. Brain Res Bull 2009; 79:123-9. [PMID: 19189858 DOI: 10.1016/j.brainresbull.2009.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 12/11/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) and antipsychotics co-administration is a widely used strategy to treat both psychotic depression and depressive symptoms in schizophrenia. Nonetheless, the molecular mechanisms involved in the therapeutic benefits of antidepressant-antipsychotic combination are still elusive. It has been suggested that co-administration of SSRIs and antipsychotics may result in molecular changes different from their individual effects. In the present study, we evaluated the acute effects of two SSRIs, citalopram and escitalopram, alone or in combination with haloperidol, on the expression of Homer1a together with its splice variant ania-3, and p11, two genes linked respectively to dopaminergic and serotonergic neurotransmission and involved in synaptic plasticity. Homer1a and ania-3 were induced in the striatum by haloperidol, alone and in combination with SSRIs, but not by SSRIs only. Haloperidol+citalopram co-administration induced a stronger Homer1a expression than haloperidol alone in the ventrolateral caudate-putamen. No signal was detected for p11 in striatum, while there were no significant differences among treatments in cortical subregions. Homer1a was significantly down-regulated in the parietal cortex by all treatments. These results demonstrated that haloperidol+citalopram combination exerts synergistic effects on Homer expression, suggesting that citalopram may influence the impact by haloperidol on the dopaminergic neurotransmission. Moreover, present findings confirm that Homer1a and ania-3 are strongly induced in striatum by haloperidol, while they are not influenced by citalopram or escitalopram in this region. Oppositely, in the cortex the two transcripts are modulated by both haloperidol and SSRIs, suggesting a possible role of both dopamine and serotonin in their cortical regulation.
Collapse
Affiliation(s)
- Carmela Dell'aversano
- Laboratory of Molecular Psychiatry and Pharmacotherapeutics, Department of Neuroscience, Section of Psychiatry, University School of Medicine "Federico II", Edificio 18, Via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | |
Collapse
|
33
|
Tomasetti C, Dell’Aversano C, Iasevoli F, de Bartolomeis A. Homer splice variants modulation within cortico-subcortical regions by dopamine D2 antagonists, a partial agonist, and an indirect agonist: Implication for glutamatergic postsynaptic density in antipsychotics action. Neuroscience 2007; 150:144-58. [DOI: 10.1016/j.neuroscience.2007.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
|
34
|
Inoue Y, Udo H, Inokuchi K, Sugiyama H. Homer1a regulates the activity-induced remodeling of synaptic structures in cultured hippocampal neurons. Neuroscience 2007; 150:841-52. [PMID: 18006237 DOI: 10.1016/j.neuroscience.2007.09.081] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/30/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022]
Abstract
Activity-dependent re-organizations of central synapses are thought to play important roles in learning and memory. Although the precise mechanisms of how neuronal activities modify synaptic connections remain to be elucidated, the activity-induced neuronal proteins such as Homer1a may contribute to the onset of synaptic remodeling. To further understand the physiological roles of Homer1a, we first examined prolonged effects of neuronal stimulation capable of inducing Homer1a on the distribution of a postsynaptic protein Homer1c by live imaging and immunostaining. We found that glutamate stimulation induced a biphasic change in the distribution of Homer1c, in which the postsynaptic clusters of Homer1c defused initially after 30 min to 1 h, and then reassembled more than the original level after 4-8 h. When other synaptic proteins (postsynaptic density-95 (PSD95), Filamentous actin (F-actin), glutamate receptors, synaptotagmin, synaptophysin and synapsin) were analyzed by immunocytochemical methods, the distribution of these proteins also showed a similar biphasic pattern, suggesting that glutamate stimulation induces a global alteration in synaptic structures. To further dissect the functions of Homer1a in the activity-induced synaptic remodeling, the short hairpin RNA (shRNA) vectors that specifically block the expression of endogenous Homer1a were constructed. When the shRNA of Homer1a was introduced to the cells, the activity-induced changes were almost completely suppressed. The expression of surface glutamate receptor 2 was also inhibited, suggesting that Homer1a may modulate the efficacy of synaptic transmission. Furthermore, we found that Homer1a contributes to the presynaptic remodeling in a retrograde manner. Our data indicate that Homer1a regulates the activity-induced biphasic changes of post- and pre-synaptic sites.
Collapse
Affiliation(s)
- Y Inoue
- Department of Biology, Graduate School of Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
35
|
Hashimoto K, Nakahara T, Yamada H, Hirano M, Kuroki T, Kanba S. A neurotoxic dose of methamphetamine induces gene expression of Homer 1a, but not Homer 1b or 1c, in the striatum and nucleus accumbens. Neurochem Int 2007; 51:227-32. [PMID: 17630046 DOI: 10.1016/j.neuint.2007.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/17/2007] [Accepted: 05/22/2007] [Indexed: 11/20/2022]
Abstract
Homer proteins, which regulate the signaling pathway of metabotropic glutamate receptors, may contribute to the glutamatergic modulation of dopamine neurons in the basal ganglia. This study examined whether the induction of Homer 1 genes is or not associated with the methamphetamine-induced dopaminergic neurotoxicity in the discrete brain regions of rats. Basal levels of Homer 1a and 1c mRNAs in the forebrain regions were higher than those in the substantia nigra, whereas Homer 1b mRNA levels were higher in the substantia nigra than those in the forebrain regions examined. A neurotoxic dose (40 mg/kg, i.p.) of methamphetamine increased the mRNA and protein levels of Homer 1a in the striatum and nucleus accumbens, but not in the medial prefrontal cortex or the substantia nigra. Both Homer 1b and 1c mRNAs were not affected in any brain regions examined. These results suggest that the induction of Homer 1a gene may be involved at least in part in the methamphetamine-induced dopaminergic neurotoxicity, possibly through the glutamate-dopaminergic interaction.
Collapse
Affiliation(s)
- Kijiro Hashimoto
- Center for Emotional and Behavioral Disorder, National Hospital Organization Hizen Psychiatric Center, Kanzaki, Saga 842-0192, Japan
| | | | | | | | | | | |
Collapse
|