1
|
Jayachandra K, Gowda MDM, Rudresha GV, Manjuprasanna VN, Urs AP, Nandana MB, Bharatha M, Jameel NM, Vishwanath BS. Inhibition of sPLA 2 enzyme activity by cell-permeable antioxidant EUK-8 and downregulation of p38, Akt, and p65 signals induced by sPLA 2 in inflammatory mouse paw edema model. J Cell Biochem 2023; 124:294-307. [PMID: 36585945 DOI: 10.1002/jcb.30366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
The arachidonic acid (AA) metabolic pathway, plays a vital role in the production of eicosanoids by the action of pro-inflammatory secretory phospholipase A2 (PLA2 ). Release of eicosanoids is known to be involved in many inflammatory diseases. Identification of the inhibitory molecules of this AA pathway enzyme along with the regulation of intracellular signaling cascades may be a finer choice to develop as a powerful anti-inflammatory drug. In this regard, we have screened few cell-permeable antioxidant molecules Tempo, Mito-TEMPO, N,N'-Bis(salicylideneamino)ethane-manganese(II) (EUK)-134, and EUK-8 against pro-inflammatory sPLA2 s. Among these, we found EUK-8 is a potent inhibitor with its IC50 value ranges 0.7-2.0 µM for sPLA2 s isolated from different sources. Furthermore, docking studies confirm the strong binding of EUK-8 towards sPLA2 . In vivo effect of EUK-8 was studied in HSF-sPLA2 -induced edema in mouse paw model. In addition to neutralizing the edema, EUK-8 significantly reduces the phosphorylation level of inflammatory proteins such as p38 member of MAPK pathway, Akt, and p65 along with the suppression of pro-inflammatory cytokine (interleukin-6) and chemokine (CXCL1) in edematous tissue. This shows that EUK-8 not only inhibits the sPLA2 activity, it also plays an important role in the regulation of sPLA2 -induced cell signaling cascades. Apart from the sPLA2 inhibition, we also examine the regulatory actions of EUK-8 with other downstream enzymes of AA pathway such as 5-LOX assay in human polymorphonuclear leukocytes (PMNs) and COX-2 expression in carrageenan-λ induced paw edema. Here EUK-8 significantly inhibits 5-LOX enzyme activity and downregulates COX-2 expression. These data indicate that EUK-8 found to be a promising multitargeted inhibitory molecule toward inflammatory pathway. In conclusion, mitochondrial targeted antioxidant EUK-8 is not only the powerful antioxidant, also a potent anti-inflammatory molecule and may be a choice of molecule for pharmacological applications.
Collapse
Affiliation(s)
- Krishnegowda Jayachandra
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - M D Milan Gowda
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Gotravalli V Rudresha
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Amog P Urs
- Comprehensive Cancer Centre, The Ohio State University, Columbus, Ohio, USA
| | | | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Noor Mohamed Jameel
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
2
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Šribar J, Kovačič L, Oberčkal J, Ivanušec A, Petan T, Fox JW, Križaj I. The neurotoxic secreted phospholipase A 2 from the Vipera a. ammodytes venom targets cytochrome c oxidase in neuronal mitochondria. Sci Rep 2019; 9:283. [PMID: 30670719 PMCID: PMC6342964 DOI: 10.1038/s41598-018-36461-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
The β-neurotoxic secreted phospholipases A2 (sPLA2s) block neuro-muscular transmission by poisoning nerve terminals. Damage inflicted by such sPLA2s (β-ntx) on neuronal mitochondria is characteristic, very similar to that induced by structurally homologous endogenous group IIA sPLA2 when its activity is elevated, as, for example, in the early phase of Alzheimer's disease. Using ammodytoxin (Atx), the β-ntx from the venom of the nose-horned viper (Vipera a. ammodytes), the sPLA2 receptor R25 has been detected in neuronal mitochondria. This receptor has been purified from porcine cerebral cortex mitochondria by a new Atx-affinity-based chromatographic procedure. Mass spectrometry analysis revealed R25 to be the subunit II of cytochrome c oxidase (CCOX), an essential constituent of the respiratory chain complex. CCOX was confirmed as being the first intracellular membrane receptor for sPLA2 by alternative Atx-affinity-labellings of purified CCOX, supported also by the encounter of Atx and CCOX in PC12 cells. This discovery suggests the explanation of the mechanism by which β-ntx hinders production of ATP in poisoned nerve endings. It also provides a new insight into the potential function and dysfunction of endogenous GIIA sPLA2 in mitochondria.
Collapse
Affiliation(s)
- Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Lidija Kovačič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Jernej Oberčkal
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Yamamoto Y, Koma H, Nishii S, Yagami T. Anti-heat Shock 70 kDa Protein Antibody Induced Neuronal Cell Death. Biol Pharm Bull 2017; 40:402-412. [PMID: 28381795 DOI: 10.1248/bpb.b16-00641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock protein 70 (Hsp70) is not only a molecular chaperone in cytosol, but also presents in synaptic plasma membranes. To detect plasmalemmal Hsp70 (pl-Hsp70), neurons were immunostained with anti-Hsp70 antibody without permeabilization and fixation. Dotted immunofluorescent signals at neuronal cell bodies and neurites indicated the localization of Hsp70 on the neuronal cell surface. To target only pl-Hsp70, but not cytosolic Hsp70, the anti-Hsp70 antibody was applied without permeabilization in the primary culture of rat cortical neurons. The antibody induced neuronal cell death in a concentration-dependent manner. The anti-Hsp70 antibody activated ubiquitin-proteasome pathway, but inactivated caspase-3. A lag time was required for the neurotoxicity of anti-Hsp70 antibody. Hydrogen peroxide was increased in the anti-Hsp70 antibody-treated neurons during the lag time. Catalase suppressed the anti-Hsp70 antibody-reduced cell viability via the plausible inhibition of hydrogen peroxide generation. One of down-streams of hydrogen peroxide exposure is activation of the mitogen-activated protein kinase (MAPK) signaling cascade. The neurotoxicity of anti-Hsp70 antibody was partially ascribed to c-Jun N-terminal kinase among MAPKs. In conclusion, the anti-Hsp70 antibody targeted pl-Hsp70 on the neuronal cell surface and induced neuronal cell death without complement. Furthermore, hydrogen peroxide appeared to mediate the neuronal cell death, which was accompanied with the enhancement of the ubiquitin-proteasome pathway and the suppression of caspase in a different fashion from the known cell death.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences,
Himeji Dokkyo University
| | | | | | | |
Collapse
|
5
|
Yazdani M. Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro. Toxicol In Vitro 2015; 30:578-82. [PMID: 26318276 DOI: 10.1016/j.tiv.2015.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/30/2015] [Accepted: 08/18/2015] [Indexed: 12/27/2022]
Abstract
Reactive oxygen species (ROS) are formed in biological systems by partial reduction of molecular oxygen. The essential role of ROS in maintaining physiological health may be corrupted into oxidative stress by their overproduction or the exhaustion of antioxidant mechanisms. Many studies covering a broad range of methodologies have investigated ROS production and their toxic mechanisms of action. Of these methodologies, fluorometry has been among the preferred techniques. Three frequently used fluorescent probes for in vitro studies are 2',7'-dichlorodihydrofluorescein diacetate (DCDHF-DA), Dihydrorhodamine 123 (DHR 123) and Dihydroethidium (DHE). Apart from the unavoidable limitations of auto-oxidation, photo-oxidation and photo-conversion, there are also concerns relating to protocol modification for the improved monitoring of ROS. This paper aims to highlight such contributing factors, including cell culture conditions and the characteristics of individual fluorescent probes in the utilization of these selected probes in in vitro systems.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
6
|
Li Z, Zhang J, Sun H. Increased plasma levels of phospholipid in Parkinson’s disease with mild cognitive impairment. J Clin Neurosci 2015; 22:1268-71. [DOI: 10.1016/j.jocn.2015.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/18/2015] [Accepted: 02/03/2015] [Indexed: 12/23/2022]
|
7
|
Strand JM, Scheffler K, Bjørås M, Eide L. The distribution of DNA damage is defined by region-specific susceptibility to DNA damage formation rather than repair differences. DNA Repair (Amst) 2014; 18:44-51. [PMID: 24685126 DOI: 10.1016/j.dnarep.2014.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/20/2023]
Abstract
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism.
Collapse
Affiliation(s)
- Janne M Strand
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Norway; Department of Microbiology, Oslo University Hospital, University of Oslo, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Norway; Department of Microbiology, Oslo University Hospital, University of Oslo, Norway
| | - Magnar Bjørås
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Norway; Department of Microbiology, Oslo University Hospital, University of Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Norway.
| |
Collapse
|
8
|
Aziz G, Odlo K, Hansen TV, Paulsen RE, Mathisen GH. Combretastatin A-4 and structurally related triazole analogues induce caspase-3 and reactive oxygen species-dependent cell death in PC12 cells. Eur J Pharmacol 2013; 703:25-32. [DOI: 10.1016/j.ejphar.2013.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 11/27/2022]
|
9
|
Jabůrek M, Ježek J, Zelenka J, Ježek P. Antioxidant activity by a synergy of redox-sensitive mitochondrial phospholipase A2 and uncoupling protein-2 in lung and spleen. Int J Biochem Cell Biol 2013; 45:816-25. [PMID: 23354121 DOI: 10.1016/j.biocel.2013.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 12/24/2022]
Abstract
Mitochondrial uncoupling protein-2 (UCP2) has been suggested to participate in the attenuation of the reactive oxygen species production, but the mechanism of action and the physiological significance of UCP2 activity remain controversial. Here we tested the hypothesis that UCP2 provides feedback downregulation of oxidative stress in vivo via synergy with an H2O2-activated mitochondrial calcium-independent phospholipase A2 (mt-iPLA2). Tert-butylhydroperoxide or H2O2 induced free fatty acid release from mitochondrial membranes as detected by gas chromatography/mass spectrometry, which was inhibited by r-bromoenol lactone (r-BEL) but not by its stereoisomer s-BEL, suggesting participation of mt-iPLA2γ isoform. Tert-butylhydroperoxide or H2O2 also induced increase in respiration and decrease in mitochondrial membrane potential in lung and spleen mitochondria from control but not UCP2-knockout mice. These data suggest that mt-iPLA2γ-dependent release of free fatty acids promotes UCP2-dependent uncoupling. Upon such uncoupling, mitochondrial superoxide formation decreased instantly also in the s-BEL presence, but not when mt-iPLA2 was blocked by R-BEL and not in mitochondria from UCP2-knockout mice. Mt-iPLA2γ was alternatively activated by H2O2 produced probably in conjunction with the electron-transferring flavoprotein:ubiquinone oxidoreductase (ETFQOR), acting in fatty acid β-oxidation. Palmitoyl-d,l-carnitine addition to mouse lung mitochondria, respiring with succinate plus rotenone, caused a respiration increase that was sensitive to r-BEL and insensitive to s-BEL. We thus demonstrate for the first time that UCP2, functional due to fatty acids released by redox-activated mt-iPLA2γ, suppresses mitochondrial superoxide production by its uncoupling action. In conclusion, H2O2-activated mt-iPLA2γ and UCP2 act in concert to protect against oxidative stress.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | | | | | | |
Collapse
|
10
|
Secreted phospholipase A2 group IIA is a neurotoxin released by stimulated human glial cells. Mol Cell Neurosci 2012; 49:430-8. [DOI: 10.1016/j.mcn.2012.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
|
11
|
Abstract
Phospholipases A(2) (PLA(2)s) are essential enzymes in cells. They are not only responsible for maintaining the structural organization of cell membranes, but also play a pivotal role in the regulation of cell functions. Activation of PLA(2) s results in the release of fatty acids and lysophospholipids, products that are lipid mediators and compounds capable of altering membrane microdomains and physical properties. Although not fully understood, recent studies have linked aberrant PLA(2) activity to oxidative signaling pathways involving NADPH oxidase that underlie the pathophysiology of a number of neurodegenerative diseases. In this paper, we review studies describing the involvement of cytosolic PLA(2) in oxidative signaling pathways leading to neuronal impairment and activation of glial cell inflammatory responses. In addition, this review also includes information on the role of cytosolic PLA(2) and exogenous secretory PLA(2) on membrane physical properties, dynamics, and membrane proteins. Unraveling the mechanisms that regulate specific types of PLA(2)s and their effects on membrane dynamics are important prerequisites towards understanding their roles in the pathophysiology of Alzheimer's disease, and in the development of novel therapeutics to retard progression of the disease.
Collapse
Affiliation(s)
- James C-M. Lee
- Biological Engineering Department, University of Missouri, Columbia, MO, USA
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Albert Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y. Sun
- Biochemistry Department, University of Missouri, Columbia, MO, USA
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Chemical modification of ascorbic acid and evaluation of its lipophilic derivatives as inhibitors of secretory phospholipase A2 with anti-inflammatory activity. Mol Cell Biochem 2010; 345:69-76. [DOI: 10.1007/s11010-010-0561-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
13
|
Phospholipases A2 in ocular homeostasis and diseases. Biochimie 2010; 92:611-9. [DOI: 10.1016/j.biochi.2010.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/15/2010] [Indexed: 02/02/2023]
|
14
|
Analysis of several PLA2 mRNA in human meningiomas. Mediators Inflamm 2010; 2009:689430. [PMID: 20339511 PMCID: PMC2842896 DOI: 10.1155/2009/689430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/25/2009] [Accepted: 12/21/2009] [Indexed: 01/28/2023] Open
Abstract
In view of the important oncogenic action of phospholipase A2(PLA2) we investigated PLA2 transcripts in human meningiomas. Real-time PCR was used to investigate PLA2 transcripts in 26 human meningioma tumors. Results indicated that three Ca2+-dependent high molecular weight PLA2 (PLA2-IVA, PLA2-IVB, PLA2-IVC), one Ca2+-independent high molecular weight PLA2 (PLA2-VI) and five low molecular weight secreted forms of PLA2 (PLA2-IB, PLA2-IIA, PLA2-III, PLA2-V, and PLA2-XII) are expressed with PLA2-IVA, PLA2-IVB, PLA2-VI, and PLA2-XIIA as the major expressed forms. PLA2-IIE, PLA2-IIF, PLA2-IVD, and PLA2-XIIB are not detected. Plasma (PLA2-VIIA) and intracellular (PLA2-VIIB) platelet-activating factor acetylhydrolase transcripts are expressed in human meningiomas. However no difference was found for PLA2 transcript amounts in relation to the tumor grade, the subtype of meningiomas, the presence of inflammatory infiltrated cells, of an associated edema, mitosis, brain invasion, vascularisation or necrosis. In conclusion numerous genes encoding multiples forms of PLA2 are expressed in meningiomas where they might act on the phospholipid remodeling and on the local eicosanoid and/or cytokine networks.
Collapse
|
15
|
Goracci G, Ferrini M, Nardicchi V. Low Molecular Weight Phospholipases A2 in Mammalian Brain and Neural Cells: Roles in Functions and Dysfunctions. Mol Neurobiol 2010; 41:274-89. [DOI: 10.1007/s12035-010-8108-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/11/2010] [Indexed: 12/14/2022]
|
16
|
Chiricozzi E, Fernandez-Fernandez S, Nardicchi V, Almeida A, Bolaños JP, Goracci G. Group IIA secretory phospholipase A2(GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons. J Neurochem 2010; 112:1574-83. [DOI: 10.1111/j.1471-4159.2010.06567.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Martín R, Hernández M, Ibeas E, Fuentes L, Salicio V, Arnés M, Nieto ML. Secreted phospholipase A2-IIA modulates key regulators of proliferation on astrocytoma cells. J Neurochem 2009; 111:988-99. [DOI: 10.1111/j.1471-4159.2009.06377.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Jensen MD, Sheng W, Simonyi A, Johnson GS, Sun AY, Sun GY. Involvement of oxidative pathways in cytokine-induced secretory phospholipase A2-IIA in astrocytes. Neurochem Int 2009; 55:362-8. [PMID: 19375465 PMCID: PMC2768481 DOI: 10.1016/j.neuint.2009.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 12/14/2022]
Abstract
Recent studies have suggested the involvement of secretory phospholipase A2-IIA (sPLA2-IIA) in neuroinflammatory diseases. Although sPLA2-IIA is transcriptionally induced through the NF-kappaB pathway by pro-inflammatory cytokines, whether this induction pathway is affected by other intracellular signaling pathways has not been investigated in detail. In this study, we demonstrated the induction of sPLA2-IIA mRNA and protein expression in astrocytes by cytokines and detected the protein in the culture medium after stimulation. We further investigated the effects of oxidative pathways and botanical antioxidants on the induction pathway and observed that IL-1beta-induced sPLA2-IIA mRNA expression in astrocytes is dependent on ERK1/2 and PI-3 kinase, but not p38 MAPK. In addition to apocynin, a known NADPH oxidase inhibitor, botanical antioxidants, such as resveratrol and epigallocatechin gallate, also inhibited IL-1beta-induced sPLA2-IIA mRNA expression. These compounds also suppressed IL-1beta-induced ERK1/2 activation and translocation of the NADPH oxidase subunit p67 phox from cytosol to membrane fraction. Taken together, these results support the involvement of reactive oxygen species from NADPH oxidase in cytokine induction of sPLA2-IIA in astrocytes and promote the use of botanical antioxidants as protective agents for inhibition of inflammatory responses in these cells.
Collapse
Affiliation(s)
- Michael D. Jensen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
| | - Wenwen Sheng
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65211
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211
| | - Albert Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65211
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|
19
|
Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A. Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med 2009; 12:133-48. [PMID: 19855947 DOI: 10.1007/s12017-009-8092-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/25/2009] [Indexed: 12/21/2022]
Abstract
Phospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolyzing the sn-2 fatty acids of membrane phospholipids. These enzymes are known to play multiple roles for maintenance of membrane phospholipid homeostasis and for production of a variety of lipid mediators. Over 20 different types of PLA2s are present in the mammalian cells, and in snake and bee venom. Despite their common function in hydrolyzing fatty acids of phospholipids, they are diversely encoded by a number of genes and express proteins that are regulated by different mechanisms. Recent studies have focused on the group IV calcium-dependent cytosolic cPLA2, the group VI calcium-independent iPLA2, and the group II small molecule secretory sPLA2. In the central nervous system (CNS), these PLA2s are distributed among neurons and glial cells. Although the physiological role of these PLA2s in regulating neural cell function has not yet been clearly elucidated, there is increasing evidence for their involvement in receptor signaling and transcriptional pathways that link oxidative events to inflammatory responses that underline many neurodegenerative diseases. Recent studies also reveal an important role of cPLA2 in modulating neuronal excitatory functions, sPLA2 in the inflammatory responses, and iPLA2 with childhood neurologic disorders associated with brain iron accumulation. The goal for this review is to better understand the structure and function of these PLA2s and to highlight specific types of PLA2s and their cross-talk mechanisms in these inflammatory responses under physiological and pathological conditions in the CNS.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Yang CS, Yuk JM, Shin DM, Kang J, Lee SJ, Jo EK. Secretory phospholipase A2 plays an essential role in microglial inflammatory responses to Mycobacterium tuberculosis. Glia 2009; 57:1091-103. [PMID: 19115385 DOI: 10.1002/glia.20832] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In previous studies, we have shown that reactive oxygen species (ROS)-mediated inflammatory signaling is essential for microglial proinflammatory responses to Mycobacterium tuberculosis (Mtb). To further investigate the molecular mechanisms governing these processes, we sought to describe the role of phospholipase A(2) (PLA(2)) in Mtb-induced ROS generation and inflammatory mediator release by microglia. Inhibition of secretory PLA(2) (sPLA(2)), but not cytosolic PLA(2) (cPLA(2)), profoundly abrogated Mtb-mediated ROS release, the generation of various inflammatory mediators (tumor necrosis factor, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinase-2 and -9), and the activation of nuclear factor (NF)-kappaB and MAPKs (ERK1/2, p38, and JNK/SAPK) by murine microglial BV-2 cells or primary mixed glial cells. Interruption of the Ras/Raf-1/MEK1/ERK1/2 pathway abolished Mtb-induced sPLA(2) activity, whereas the blockage of JNK/SAPK or p38 activity had no effect. Specific inhibition of sPLA(2), but not cPLA(2), suppressed the upregulation of ERK1/2 phosphorylation by Mtb stimulation, suggesting the existence of a mutual dependency between the ERK1/2 and sPLA(2) pathways. Moreover, examination of the protein kinase C (PKC) family revealed that classical PKCs are involved in Mtb-induced sPLA(2) activation by microglia. Taken together, our results demonstrate for the first time that sPLA(2), either through pathways comprising Ras/Raf-1/MEK1/ERK1/2 or the classical PKC family, plays an essential role in Mtb-mediated ROS generation and inflammatory mediator release by microglial cells.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
21
|
Rosa AO, Rapoport SI. Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:697-705. [PMID: 19327408 PMCID: PMC2735787 DOI: 10.1016/j.bbalip.2009.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/01/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) and Ca(2+)-independent phospholipase A(2) (iPLA(2)), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca(2+), even though iPLA(2) has been thought to be Ca(2+)-independent. The source of Ca(2+) for activation of cPLA(2) is largely extracellular, whereas Ca(2+) released from the endoplasmic reticulum can activate iPLA(2) by a number of mechanisms. This review focuses on the role of Ca(2+) in modulating cPLA(2) and iPLA(2) activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca(2+) signal.
Collapse
Affiliation(s)
- Angelo O Rosa
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
22
|
Ripcke J, Zarse K, Ristow M, Birringer M. Small-Molecule Targeting of the Mitochondrial Compartment with an Endogenously Cleaved Reversible Tag. Chembiochem 2009; 10:1689-96. [DOI: 10.1002/cbic.200900159] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Chen KC, Kao PH, Lin SR, Chang LS. Upregulation of Fas and FasL in Taiwan cobra phospholipase A2-treated human neuroblastoma SK-N-SH cells through ROS- and Ca2+-mediated p38 MAPK activation. J Cell Biochem 2009; 106:93-102. [PMID: 19009558 DOI: 10.1002/jcb.21979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of the present study is to elucidate the signaling pathway involved in death of human neuroblastoma SK-N-SH cells induced by Naja naja atra phospholipase A(2) (PLA(2)). Upon exposure to PLA(2), p38 MAPK activation, ERK inactivation, ROS generation, increase in intracellular Ca(2+) concentration, and upregulation of Fas and FasL were found in SK-N-SH cells. SB202190 (p38MAPK inhibitor) suppressed upregulation of Fas and FasL. N-Acetylcysteine (ROS scavenger) and BAPTA-AM (Ca(2+) chelator) abrogated p38 MAPK activation and upregulation of Fas and FasL expression, but restored phosphorylation of ERK. Activated ERK was found to attenuate p38 MAPK-mediated upregulation of Fas and FasL. Deprivation of catalytic activity could not diminish PLA(2)-induced cell death and Fas/FasL upregulation. Moreover, the cytotoxicity of arachidonic acid and lysophosphatidylcholine was not related to the expression of Fas and FasL. Taken together, our results indicate that PLA(2)-induced cell death is, in part, elicited by upregulation of Fas and FasL, which is regulated by Ca(2+)- and ROS-evoked p38 MAPK activation, and suggest that non-catalytic PLA(2) plays a role for the signaling pathway.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | |
Collapse
|
24
|
Schönfeld P, Wojtczak L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 2008; 45:231-41. [PMID: 18482593 DOI: 10.1016/j.freeradbiomed.2008.04.029] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 12/17/2022]
Abstract
Long-chain nonesterified ("free") fatty acids (FFA) and some of their derivatives and metabolites can modify intracellular production of reactive oxygen species (ROS), in particular O(2)(-) and H(2)O(2). In mitochondria, FFA exert a dual effect on ROS production. Because of slowing down the rate of electron flow through Complexes I and III of the respiratory chain due to interaction within the complex subunit structure, and between Complexes III and IV due to release of cytochrome c from the inner membrane, FFA increase the rate of ROS generation in the forward mode of electron transport. On the other hand, due to their protonophoric action on the inner mitochondrial membrane ("mild uncoupling effect"), FFA strongly decrease ROS generation in the reverse mode of electron transport. In the plasma membrane of phagocytic neutrophils and a number of other types of cells, polyunsaturated FFA stimulate O(2)(-) generation by NADPH oxidase. These effects of FFA can modulate signaling functions of ROS and be, at least partly, responsible for their proapoptotic effects in several types of cells.
Collapse
Affiliation(s)
- Peter Schönfeld
- Institute of Biochemistry and Cell Biology, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | |
Collapse
|