1
|
Hryciw G, Wong J, Heinricher MM. Brainstem pain-modulating neurons are sensitized to visual light in persistent inflammation. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 13:100111. [PMID: 36605934 PMCID: PMC9808023 DOI: 10.1016/j.ynpai.2022.100111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Many individuals with chronic pain report abnormal sensitivity to visual light, referred to as "photosensitivity" or "photophobia," yet how processing of light and nociceptive information come together remains a puzzle. Pain-modulating neurons in the rostral ventromedial medulla (RVM) have been shown to respond to bright visual light in male rats: activity of pain-enhancing ON-cells is increased, while that of pain-inhibiting OFF-cells is decreased. Since the RVM is the output node of a well-known pain modulation pathway, light-related input to these neurons could contribute to photosensitivity. The purpose of the present study was to fully characterize RVM ON- and OFF-cell responses to visual light by defining stimulus-response curves in male and female rats across a range of intensities (30 to 16,000 lx). We also determined if light-evoked responses are altered in animals subjected to persistent inflammation. We found that ON- and OFF-cells responded to relatively dim light (<1000 lx in naïve animals), with no difference between the sexes in threshold for light-evoked changes in firing or the percentage of responsive cells. Second, light-evoked suppression of OFF-cell firing was enhanced in persistent inflammation, with no change in light-evoked activation of ON-cells. These data indicate that pain-modulating neurons can be engaged by dim light, even under normal conditions. Further, they suggest that decreased descending inhibition during light exposure could contribute to reduced nociceptive thresholds in chronic pain states, resulting in light-induced somatic discomfort and aversion to light. Lastly, our findings argue for differences in how light and somatic stimuli engage RVM, and suggest that light-related input acts as a "top-down" regulatory input to RVM.
Collapse
Affiliation(s)
- Gwen Hryciw
- School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Dept. Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Wong
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Mary M. Heinricher
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
- Dept. Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Corresponding author at: Department of Neurological Surgery, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
2
|
Hryciw G, De Preter CC, Wong J, Heinricher MM. Physiological properties of pain-modulating neurons in rostral ventromedial medulla in female rats, and responses to opioid administration. NEUROBIOLOGY OF PAIN 2021; 10:100075. [PMID: 34660937 PMCID: PMC8503581 DOI: 10.1016/j.ynpai.2021.100075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Physiological properties of RVM pain-modulating neurons were described in female rats. ON- and OFF-cells in females have fundamental properties comparable to those in males. As in males, RVM neuron output is altered in persistent inflammation and by morphine. This work provides a foundation for future studies of RVM in females.
Functional pain disorders disproportionately impact females, but most pain research in animals has been conducted in males. While there are anatomical and pharmacological sexual dimorphisms in brainstem pain-modulation circuits, the physiology of pain-modulating neurons that comprise a major functional output, the rostral ventromedial medulla (RVM), has not been explored in female animals. The goal of this study was to identify and characterize the activity of RVM cells in female, compared to male, rats. ON- and OFF-cells were identified within the RVM in females, with firing properties comparable to those described in males. In addition, both ON- and OFF-cells exhibited a sensitized response to somatic stimuli in females subjected to persistent inflammation, and both ON- and OFF-cells responded to systemically administered morphine at a dose sufficient to produce behavioral antinociception. These data demonstrate that the ON-/OFF-cell framework originally defined in males is also present in females, and that as in males, these neurons are recruited in females in persistent inflammation and by systemically administered morphine. Importantly, this work establishes a foundation for the use of female animals in studies of RVM and descending control.
Collapse
Affiliation(s)
- Gwen Hryciw
- School of Dentistry, Portland, OR, USA
- Departments of Biomedical Engineering, Portland, OR, USA
- Neurological Surgery, Portland, OR, USA
- Oregon Health & Science University, Portland, OR, USA
| | - Caitlynn C. De Preter
- Behavioral Neuroscience, Portland, OR, USA
- Neurological Surgery, Portland, OR, USA
- Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Wong
- Neurological Surgery, Portland, OR, USA
- Oregon Health & Science University, Portland, OR, USA
| | - Mary M. Heinricher
- Behavioral Neuroscience, Portland, OR, USA
- Neurological Surgery, Portland, OR, USA
- Oregon Health & Science University, Portland, OR, USA
- Corresponding author at: Department of Neurological Surgery, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Mills EP, Alshelh Z, Kosanovic D, Di Pietro F, Vickers ER, Macey PM, Henderson LA. Altered Brainstem Pain-Modulation Circuitry Connectivity During Spontaneous Pain Intensity Fluctuations. J Pain Res 2020; 13:2223-2235. [PMID: 32943915 PMCID: PMC7481287 DOI: 10.2147/jpr.s252594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
Background Chronic pain, particularly that following nerve injury, can occur in the absence of external stimuli. Although the ongoing pain is sometimes continuous, in many individuals the intensity of their pain fluctuates. Experimental animal studies have shown that the brainstem contains circuits that modulate nociceptive information at the primary afferent synapse and these circuits are involved in maintaining ongoing continuous neuropathic pain. However, it remains unknown if these circuits are involved in regulating fluctuations of ongoing neuropathic pain in humans. Methods We used functional magnetic resonance imaging to determine whether in 19 subjects with painful trigeminal neuropathy, brainstem pain-modulation circuitry function changes according to moment-to-moment fluctuations in spontaneous pain intensity as rated online over a 12-minute period. Results We found that when pain intensity was spontaneously high, connectivity strengths between regions of the brainstem endogenous pain-modulating circuitry-the midbrain periaqueductal gray, rostral ventromedial medulla (RVM), and the spinal trigeminal nucleus (SpV)-were high, and vice-versa (when pain was low, connectivity was low). Additionally, sliding-window connectivity analysis using 50-second windows revealed a significant positive relationship between ongoing pain intensity and RVM-SpV connectivity over the duration of the 12-minute scan. Conclusion These data reveal that moment-to-moment changes in brainstem pain-modulation circuitry functioning likely contribute to fluctuations in spontaneous pain intensity in individuals with chronic neuropathic pain.
Collapse
Affiliation(s)
- Emily P Mills
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Zeynab Alshelh
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Danny Kosanovic
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Flavia Di Pietro
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - E Russell Vickers
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Paul M Macey
- School of Nursing and Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Peripheral oxytocin receptors inhibit the nociceptive input signal to spinal dorsal horn wide-dynamic-range neurons. Pain 2017; 158:2117-2128. [DOI: 10.1097/j.pain.0000000000001024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Godínez-Chaparro B, Martínez-Lorenzana G, Rodríguez-Jiménez J, Manzano-García A, Rojas-Piloni G, Condés-Lara M, González-Hernández A. The potential role of serotonergic mechanisms in the spinal oxytocin-induced antinociception. Neuropeptides 2016; 60:51-60. [PMID: 27449278 DOI: 10.1016/j.npep.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023]
Abstract
The role of oxytocin (OXT) in pain modulation has been suggested. Indeed, hypothalamic paraventricular nuclei (PVN) electrical stimuli reduce the nociceptive neuronal activity (i.e., neuronal discharge associated with activation of Aδ- and C-fibers) of the spinal dorsal horn wide dynamic range (WDR) cells and nociceptive behavior. Furthermore, raphe magnus nuclei lesion reduces the PVN-induced antinociception, suggesting a functional interaction between the OXT and the serotoninergic system. The present study investigated in Wistar rats the potential role of spinal serotonergic mechanisms in the OXT- and PVN-induced antinociception. In long-term secondary mechanical allodynia and hyperalgesia induced by formalin or extracellular unitary recordings of the WDR cells we evaluated the role of 5-hydroxytryptamine (5-HT) effect on the OXT-induced antinociception. All drugs were given intrathecally (i.t.). OXT (1×10-5-1×10-4nmol) or 5-HT (1×10-3-1×10-1nmol) prevented the formalin-induced sensitization, an effect mimicked by PVN stimulation. Moreover, administration of OXT (1×10-5nmol) plus 5-HT (1×10-3nmol) at ineffective doses, produced antinociception. This effect was antagonized by: (i) d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH29]OVT (oxytocin receptor antagonist; 2×10-2nmol); or (ii) methiothepin (a non-specific 5-HT1/2/5/6/7 receptor antagonist; 80nmol). Similar results were obtained with PVN stimulation plus 5-HT (5×10-5nmol). In WDR cell recordings, the PVN-induced antinociception was enhanced by i.t. 5-HT and partly blocked when the spinal cord was pre-treated with methiothepin (80nmol). Taken together, these results suggest that serotonergic mechanisms at the spinal cord level are partly involved in the OXT-induced antinociception.
Collapse
Affiliation(s)
- Beatriz Godínez-Chaparro
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Javier Rodríguez-Jiménez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Alfredo Manzano-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Gerardo Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
6
|
Genaro K, Prado WA. Neural Correlates of the Antinociceptive Effects of Stimulating the Anterior Pretectal Nucleus in Rats. THE JOURNAL OF PAIN 2016; 17:1156-1163. [DOI: 10.1016/j.jpain.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
7
|
Pain modulation from the brain during diabetic neuropathy: Uncovering the role of the rostroventromedial medulla. Neurobiol Dis 2016; 96:346-356. [PMID: 27717882 DOI: 10.1016/j.nbd.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 01/17/2023] Open
Abstract
Diabetic neuropathy has a profound impact in the quality of life of patients who frequently complain of pain. The mechanisms underlying diabetic neuropathic pain (DNP) are no longer ascribed only to damage of peripheral nerves. The effects of diabetes at the central nervous system are currently considered causes of DPN. Management of DNP may be achieved by antidepressants that act on serotonin (5-HT) uptake, namely specific serotonin reuptake inhibitors. The rostroventromedial medulla (RVM) is a key pain control center involved in descending pain modulation at the spinal cord through local release of 5-HT and plays a peculiar role in the balance of bidirectional control (i.e. inhibitory and facilitatory) from the brain to the spinal cord. This review discusses recently uncovered neurobiological mechanisms that mediate nociceptive modulation from the RVM during diabetes installation. In early phases of the disease, facilitation of pain modulation from the RVM prevails through a triplet of mechanisms which include increase in serotonin expression at the RVM and consequent rise of serotonin levels at the spinal cord and upregulation of local facilitatory 5HT3 receptors, enhancement of spontaneous activity of facilitatory RVM neurons and up-regulation of the expression of transient receptor potential vanilloid type 1 (TRPV1) receptor. With the progression of diabetes the alterations in the RVM increase dramatically, with oxidative stress and neuronal death associated to microglia-mediated inflammation. In a manner similar to other central areas, like the thalamus, the RVM is likely to be a "pain generator/amplifier" during diabetes, accounting to increase DNP. Early interventions in DNP prevention using strategies that simultaneously tackle the exacerbation of 5-HT3 spinal receptors and of microglial RVM activity, namely those that increase the levels of anti-inflammatory cytokines, should be considered in the future of DNP treatment.
Collapse
|
8
|
Albayrak I, Apiliogullari S, Erkocak OF, Kavalci H, Ozerbil OM, Levendoglu F. Total Knee Arthroplasty due to Knee Osteoarthritis: Risk Factors for Persistent Postsurgical Pain. J Natl Med Assoc 2016; 108:236-243. [DOI: 10.1016/j.jnma.2016.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 01/23/2023]
|
9
|
pERK1/2 immunofluorescence in rat dorsal horn and paraventricular nucleus neurons as a marker for sensitization and inhibition in the pain pathway. Tissue Cell 2015; 47:55-60. [DOI: 10.1016/j.tice.2014.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 12/27/2022]
|
10
|
Amorim D, David-Pereira A, Marques P, Puga S, Rebelo P, Costa P, Pertovaara A, Almeida A, Pinto-Ribeiro F. A role of supraspinal galanin in behavioural hyperalgesia in the rat. PLoS One 2014; 9:e113077. [PMID: 25405608 PMCID: PMC4236133 DOI: 10.1371/journal.pone.0113077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/13/2014] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION In chronic pain disorders, galanin (GAL) is able to either facilitate or inhibit nociception in the spinal cord but the contribution of supraspinal galanin to pain signalling is mostly unknown. The dorsomedial nucleus of the hypothalamus (DMH) is rich in galanin receptors (GALR) and is involved in behavioural hyperalgesia. In this study, we evaluated the contribution of supraspinal GAL to behavioural hyperalgesia in experimental monoarthritis. METHODS In Wistar-Han males with a four week kaolin/carrageenan-induced monoarthritis (ARTH), paw-withdrawal latency (PWL) was assessed before and after DMH administration of exogenous GAL, a non-specific GALR antagonist (M40), a specific GALR1 agonist (M617) and a specific GALR2 antagonist (M871). Additionally, the analysis of c-Fos expression after GAL injection in the DMH was used to investigate the potential involvement of brainstem pain control centres. Finally, electrophysiological recordings were performed to evaluate whether pronociceptive On- or antinociceptive Off-like cells in the rostral ventromedial medulla (RVM) relay the effect of GAL. RESULTS Exogenous GAL in the DMH decreased PWL in ARTH and SHAM animals, an effect that was mimicked by a GALR1 agonist (M617). In SHAM animals, an unselective GALR antagonist (M40) increased PWL, while a GALR2 antagonist (M871) decreased PWL. M40 or M871 failed to influence PWL in ARTH animals. Exogenous GAL increased c-Fos expression in the RVM and dorsal raphe nucleus (DRN), with effects being more prominent in SHAM than ARTH animals. Exogenous GAL failed to influence activity of RVM On- or Off-like cells of SHAM and ARTH animals. CONCLUSIONS Overall, exogenous GAL in the DMH had a pronociceptive effect that is mediated by GALR1 in healthy and arthritic animals and is associated with alterations of c-Fos expression in RVM and DRN that are serotonergic brainstem nuclei known to be involved in the regulation of pain.
Collapse
Affiliation(s)
- Diana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana David-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Rebelo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Pinto-Ribeiro F, Amorim D, David-Pereira A, Monteiro AM, Costa P, Pertovaara A, Almeida A. Pronociception from the dorsomedial nucleus of the hypothalamus is mediated by the rostral ventromedial medulla in healthy controls but is absent in arthritic animals. Brain Res Bull 2013; 99:100-8. [PMID: 24121166 DOI: 10.1016/j.brainresbull.2013.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/23/2022]
Abstract
The dorsomedial nucleus of the hypothalamus (DMH) has been proposed to participate in stress-induced hyperalgesia through facilitation of pronociceptive cells in the rostroventromedial medulla (RVM). We hypothesized that the DMH participates in hyperalgesia induced by arthritis. The DMH was pharmacologically manipulated while assessing heat-evoked nociceptive behavior or the discharge rates of pronociceptive RVM ON- and antinociceptive RVM OFF-like cells in NAIVE, SHAM and monoarthritic (ARTH) animals. In NAIVE and SHAM animals, the changes in nociceptive behavior induced by activation of the DMH by glutamate and inhibition by lidocaine were in line with earlier evidence indicating that the DMH has a nociceptive facilitating role. However, in ARTH animals, neither activation nor inhibition of the DMH influenced pain-like behavior evoked by stimulation of an uninflamed skin region (paw and tail). In accordance with these behavioral results, activation or inhibition of the DMH induced pronociceptive changes in the discharge rates of RVM cells in NAIVE and SHAM animals, which suggests that the DMH has a pronociceptive role mediated by the RVM in normal animals. However, in ARTH animals, both glutamate and lidocaine in the DMH failed to influence either pain-like behavior or noxious stimulation-evoked responses of RVM cells, while blocking the DMH increased spontaneous activity in the pronociceptive RVM ON cells. Our data indicate that the DMH participates in descending facilitation of cutaneous nociception in healthy controls, but it is not engaged in the regulation of cutaneous nociception in monoarthritic animals, while a minor role in tonic suppression of nociception in arthritis cannot be discarded.
Collapse
Affiliation(s)
- Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
12
|
Pinto PR, McIntyre T, Ferrero R, Almeida A, Araújo-Soares V. Risk factors for moderate and severe persistent pain in patients undergoing total knee and hip arthroplasty: a prospective predictive study. PLoS One 2013; 8:e73917. [PMID: 24058502 PMCID: PMC3772812 DOI: 10.1371/journal.pone.0073917] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/24/2013] [Indexed: 12/27/2022] Open
Abstract
Persistent post-surgical pain (PPSP) is a major clinical problem with significant individual, social and health care costs. The aim of this study was to examine the joint role of demographic, clinical and psychological risk factors in the development of moderate and severe PPSP after Total Knee and Hip Arthroplasty (TKA and THA, respectively). This was a prospective study wherein a consecutive sample of 92 patients were assessed 24 hours before (T1), 48 hours after (T2) and 4–6 months (T3) after surgery. Hierarchical logistic regression analyses were performed to identify predictors of moderate and severe levels of PPSP. Four to six months after TKA and THA, 54 patients (58.7%) reported none or mild pain (Numerical Rating Scale: NRS ≤3), whereas 38 (41.3%) reported moderate to severe pain (NRS >3). In the final multivariate hierarchical logistic regression analyses, illness representations concerning the condition leading to surgery (osteoarthritis), such as a chronic timeline perception of the disease, emerged as a significant predictor of PPSP. Additionally, post-surgical anxiety also showed a predictive role in the development of PPSP. Pre-surgical pain was the most significant clinical predictive factor and, as expected, undergoing TKA was associated with greater odds of PPSP development than THA. The findings on PPSP predictors after major joint arthroplasties can guide clinical practice in terms of considering cognitive and emotional factors, together with clinical factors, in planning acute pain management before and after surgery.
Collapse
Affiliation(s)
- Patrícia R. Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Health Psychology Group, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Teresa McIntyre
- Texas Institute for Measurement, Evaluation and Statistics (TIMES) and Department of Psychology, University of Houston, Houston, United States of America
| | - Ramón Ferrero
- Alto Ave Hospital Center, Orthopedics Unit, Guimarães, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vera Araújo-Soares
- Health Psychology Group, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Health & Society, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Abdallah K, Artola A, Monconduit L, Dallel R, Luccarini P. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats. PLoS One 2013; 8:e73022. [PMID: 23951340 PMCID: PMC3737186 DOI: 10.1371/journal.pone.0073022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C) remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG), into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project) than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project). These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.
Collapse
Affiliation(s)
- Khaled Abdallah
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Alain Artola
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Lénaic Monconduit
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Radhouane Dallel
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
- * E-mail: (RD) (PL)
| | - Philippe Luccarini
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
- * E-mail: (RD) (PL)
| |
Collapse
|
14
|
Silva M, Amorim D, Almeida A, Tavares I, Pinto-Ribeiro F, Morgado C. Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat. Brain Res Bull 2013; 96:39-44. [PMID: 23644033 DOI: 10.1016/j.brainresbull.2013.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/06/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
Neuropathic pain is one of the most frequent complications of diabetes. The increased neuronal activity of primary afferents and spinal cord neurons in streptozotocin (STZ)-diabetic rats increases the recruitment of the nociceptive ascending pathways, which may affect the activity of pain control circuits in the brain. This study aimed to characterize the electrophysiological responses of neurons of the rostroventromedial medulla (RVM), a key brainstem area involved in descending modulation of nociceptive neurotransmission at the spinal cord, in STZ-diabetic rats. Spontaneous and noxious-evoked activity of ON-like cells (pain facilitatory cells) and OFF-like cells (pain inhibitory cells) in the RVM were analyzed by single cell extracellular electrophysiological recordings in STZ-diabetic rats with behavioral signs of diabetic neuropathic pain 4 weeks after diabetes induction and in age-matched non-diabetic controls (CTRL). The electrophysiological analysis revealed an increase in the spontaneous activity of RVM pronociceptive ON-like cells in STZ-diabetic rats when compared to CTRL. On the contrary, the number of active antinociceptive OFF-like cells was significantly lower in the STZ-diabetic rats and their spontaneous activity was decreased when compared with CTRL. Overall, the changes in the activity of RVM pain modulatory cells in STZ-diabetic rats point to enhancement of descending pain facilitation. Based on similar results obtained at the RVM in traumatic neuropathic pain models, the changes in the electrophysiological responses of RVM in STZ-diabetic rats may account for exacerbated pain-like behaviors in diabetic neuropathy.
Collapse
Affiliation(s)
- M Silva
- Department of Experimental Biology, Faculty of Medicine of Porto and IBMC, University of Porto, Rua Dr Plácido Costa, 4200-450 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
15
|
Dorsal horn antinociception mediated by the paraventricular hypothalamic nucleus and locus coeruleous: A comparative study. Brain Res 2012; 1461:41-50. [DOI: 10.1016/j.brainres.2012.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/01/2012] [Accepted: 04/22/2012] [Indexed: 11/23/2022]
|
16
|
Functional interactions between the paraventricular hypothalamic nucleus and raphe magnus. A comparative study of an integrated homeostatic analgesic mechanism. Neuroscience 2012; 209:196-207. [DOI: 10.1016/j.neuroscience.2012.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 11/17/2022]
|
17
|
Pinto PR, McIntyre T, Almeida A, Araújo-Soares V. The mediating role of pain catastrophizing in the relationship between presurgical anxiety and acute postsurgical pain after hysterectomy. Pain 2012; 153:218-226. [DOI: 10.1016/j.pain.2011.10.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/13/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
|
18
|
Pinto-Ribeiro F, Ansah OB, Almeida A, Pertovaara A. Response properties of nociceptive neurons in the caudal ventrolateral medulla (CVLM) in monoarthritic and healthy control rats: Modulation of responses by the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull 2011; 86:82-90. [DOI: 10.1016/j.brainresbull.2011.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 12/29/2022]
|
19
|
Wanigasekera V, Lee MCH, Rogers R, Hu P, Tracey I. Neural correlates of an injury-free model of central sensitization induced by opioid withdrawal in humans. J Neurosci 2011; 31:2835-42. [PMID: 21414905 PMCID: PMC3095083 DOI: 10.1523/jneurosci.5412-10.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/13/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022] Open
Abstract
Preclinical evidence suggests that opioid withdrawal induces central sensitization (CS) that is maintained by supraspinal contributions from the descending pain modulatory system (DPMS). Here, in healthy human subjects we use functional magnetic resonance imaging to study the supraspinal activity during the withdrawal period of the opioid remifentanil. We used a crossover design and thermal stimuli on uninjured skin to demonstrate opioid withdrawal-induced hyperalgesia (OIH) without a CS-inducing peripheral stimulus. Saline was used in the control arm to account for effects of time. OIH in this injury-free model was observed in a subset of the healthy subjects (responders). Only in these subjects did opioid infusion and withdrawal induce a rise in activity in the mesencephalic-pontine reticular formation (MPRF), an area of the DPMS that has been previously shown to be involved in states of CS in humans, which became significant during the withdrawal phase compared with nonresponders. Paradoxically, this opioid withdrawal-induced rise in MPRF activity shows a significant negative correlation with the behavioral OIH score indicating a predominant inhibitory role of the MPRF in the responders. These data illustrate that in susceptible individuals central mechanisms appear to regulate the expression of OIH in humans in the absence of tissue injury, which might have relevance for functional pain syndromes where a peripheral origin for the pain is difficult to identify.
Collapse
Affiliation(s)
- Vishvarani Wanigasekera
- Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, Division of Anaesthetics, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom.
| | | | | | | | | |
Collapse
|
20
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
21
|
Burke N, Hayes E, Calpin P, Kerr D, Moriarty O, Finn D, Roche M. Enhanced nociceptive responding in two rat models of depression is associated with alterations in monoamine levels in discrete brain regions. Neuroscience 2010; 171:1300-13. [DOI: 10.1016/j.neuroscience.2010.10.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
|
22
|
Gerardo RP, Rosalinda MR, Guadalupe ML, Miguel CL. Oxytocin, but not vassopressin, modulates nociceptive responses in dorsal horn neurons. Neurosci Lett 2010; 476:32-5. [DOI: 10.1016/j.neulet.2010.03.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 12/31/2022]
|
23
|
Condés-Lara M, Rojas-Piloni G, Martínez-Lorenzana G, Rodríguez-Jiménez J. Paraventricular hypothalamic oxytocinergic cells responding to noxious stimulation and projecting to the spinal dorsal horn represent a homeostatic analgesic mechanism. Eur J Neurosci 2009; 30:1056-63. [DOI: 10.1111/j.1460-9568.2009.06899.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Paraventricular oxytocinergic hypothalamic prevention or interruption of long-term potentiation in dorsal horn nociceptive neurons: Electrophysiological and behavioral evidence. Pain 2009; 144:320-328. [DOI: 10.1016/j.pain.2009.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/23/2009] [Accepted: 05/01/2009] [Indexed: 11/22/2022]
|
25
|
Pinto-Ribeiro F, Moreira V, Pêgo JM, Leão P, Almeida A, Sousa N. Antinociception induced by chronic glucocorticoid treatment is correlated to local modulation of spinal neurotransmitter content. Mol Pain 2009; 5:41. [PMID: 19630968 PMCID: PMC2727498 DOI: 10.1186/1744-8069-5-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/24/2009] [Indexed: 12/26/2022] Open
Abstract
Background While acute effects of stress on pain are well described, those produced by chronic stress are still a matter of dispute. Previously we demonstrated that chronic unpredictable stress results in antinociception in the tail-flick test, an effect that is mediated by increased levels of corticosteroids. In the present study, we evaluated nociception in rats after chronic treatment with corticosterone (CORT) and dexamethasone (DEX) in order to discriminate the role of each type of corticosteroid receptors in antinociception. Results Both experimental groups exhibited a pronounced antinociceptive effect after three weeks of treatment when compared to controls (CONT); however, at four weeks the pain threshold in CORT-treated animals returned to basal levels whereas in DEX-treated rats antinociception was maintained. In order to assess if these differences are associated with altered expression of neuropeptides involved in nociceptive transmission we evaluated the density of substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin (SS) and B2-γ-aminobutiric acid receptors (GABAB2) expression in the spinal dorsal horn using light density measurements and stereological techniques. After three weeks of treatment the expression of CGRP in the superficial dorsal horn was significantly decreased in both CORT and DEX groups, while GABAB2 was significantly increased; the levels of SP for both experimental groups remained unchanged at this point. At 4 weeks, CGRP and SP are reduced in DEX-treated animals and GABAB2 unchanged, but all changes were restored to CONT levels in CORT-treated animals. The expression of SS remained unaltered throughout the experimental period. Conclusion These data indicate that corticosteroids modulate nociception since chronic corticosteroid treatment alters the expression of neuropeptides involved in nociceptive transmission at the spinal cord level. As previously observed in some supraspinal areas, the exclusive GR activation resulted in more profound and sustained behavioural and neurochemical changes, than the one observed with a mixed ligand of corticosteroid receptors. These results might be of relevance for the pharmacological management of certain types of chronic pain, in which corticosteroids are used as adjuvant analgesics.
Collapse
Affiliation(s)
- Filipa Pinto-Ribeiro
- Life and Health Science Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
26
|
Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. BRAIN RESEARCH REVIEWS 2009; 60:214-25. [PMID: 19146877 PMCID: PMC2894733 DOI: 10.1016/j.brainresrev.2008.12.009] [Citation(s) in RCA: 670] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/23/2022]
Abstract
The dorsal horn of the spinal cord is the location of the first synapse in pain pathways, and as such, offers a very powerful target for regulation of nociceptive transmission by both local segmental and supraspinal mechanisms. Descending control of spinal nociception originates from many brain regions and plays a critical role in determining the experience of both acute and chronic pain. The earlier concept of descending control as an "analgesia system" is now being replaced with a more nuanced model in which pain input is prioritized relative to other competing behavioral needs and homeostatic demands. Descending control arises from a number of supraspinal sites, including the midline periaqueductal gray-rostral ventromedial medulla (PAG-RVM) system, and the more lateral and caudal dorsal reticular nucleus (DRt) and ventrolateral medulla (VLM). Inhibitory control from the PAG-RVM system preferentially suppresses nociceptive inputs mediated by C-fibers, preserving sensory-discriminative information conveyed by more rapidly conducting A-fibers. Analysis of the circuitry within the RVM reveals that the neural basis for bidirectional control from the midline system is two populations of neurons, ON-cells and OFF-cells, that are differentially recruited by higher structures important in fear, illness and psychological stress to enhance or inhibit pain. Dynamic shifts in the balance between pain inhibiting and facilitating outflows from the brainstem play a role in setting the gain of nociceptive processing as dictated by behavioral priorities, but are also likely to contribute to pathological pain states.
Collapse
Affiliation(s)
- M M Heinricher
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | |
Collapse
|
27
|
Shih YY, Chiang YC, Chen JC, Huang CH, Chen YY, Liu RS, Chang C, Jaw FS. Brain nociceptive imaging in rats using 18f-fluorodeoxyglucose small-animal positron emission tomography. Neuroscience 2008; 155:1221-6. [DOI: 10.1016/j.neuroscience.2008.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/07/2008] [Indexed: 12/19/2022]
|
28
|
Condés-Lara M, Martínez-Lorenzana G, Rodríguez-Jiménez J, Rojas-Piloni G. Paraventricular hypothalamic nucleus stimulation modulates nociceptive responses in dorsal horn wide dynamic range neurons. Neurosci Lett 2008; 444:199-202. [PMID: 18721859 DOI: 10.1016/j.neulet.2008.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/07/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
Effects of different parameters of hypothalamic paraventricular nucleus (PVN) electrical stimulation on somatic responses, in dorsal horn neurons were examined. In anaesthetized rats, single-unit extracellular recordings were made from dorsal horn lumbar segments, which receive afferent input from the toe and hind paw regions. We compared the neuronal responses evoked by electrical stimulation of the receptive field (RF) with the responses preceded by ipsilateral PVN stimulation. Only the responses corresponding to Adelta and C-fiber activation were inhibited when PVN stimulation was delivered. Fast-evoked responses corresponding to Abeta fibers were not modified. The magnitude of inhibition depends on the intensity and duration of the PVN stimulation train and gradually decreases as the time interval between the PVN and RF stimulations increases. The results indicate that PVN modulates nociceptive, but not non-nociceptive neuronal responses at the spinal cord level, and this modulation depends on the parameters of the stimulus utilized to activate PVN neurons.
Collapse
Affiliation(s)
- Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro 76230, Mexico
| | | | | | | |
Collapse
|