1
|
Hibbard EA, Du X, Zhang Y, Xu XM, Deng L, Sengelaub DR. Differential effects of exercise and hormone treatment on spinal cord injury-induced changes in micturition and morphology of external urethral sphincter motoneurons. Restor Neurol Neurosci 2024; 42:151-165. [PMID: 39213108 PMCID: PMC11851999 DOI: 10.3233/rnn-241385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Spinal cord injury (SCI) results in lesions that destroy tissue and spinal tracts, leading to deficits in locomotor and autonomic function. We have previously shown that after SCI, surviving motoneurons innervating hindlimb muscles exhibit extensive dendritic atrophy, which can be attenuated by treadmill training or treatment with gonadal hormones post-injury. We have also shown that following SCI, both exercise and treatment with gonadal hormones improve urinary function. Animals exercised with forced running wheel training show improved urinary function as measured by bladder cystometry and sphincter electromyography, and treatment with gonadal hormones improves voiding patterns as measured by metabolic cage testing. Objective The objective of the current study was to examine the potential protective effects of exercise or hormone treatment on the structure and function of motoneurons innervating the external urethral sphincter (EUS) after contusive SCI. Methods Gonadally intact young adult male rats received either a sham or a thoracic contusion injury. Immediately after injury, one cohort of animals was implanted with subcutaneous Silastic capsules filled with estradiol (E) and dihydrotestosterone (D) or left blank; continuous hormone treatment occurred for 4 weeks post-injury. A separate cohort of SCI-animals received either 12 weeks of forced wheel running exercise or no exercise treatment starting two weeks after injury. At the end of treatment, urinary void volume was measured using metabolic cages and EUS motoneurons were labeled with cholera toxin-conjugated horseradish peroxidase, allowing for assessment of dendritic morphology in three dimensions. Results Locomotor performance was improved in exercised animals after SCI. Void volumes increased after SCI in all animals; void volume was unaffected by treatment with exercise, but was dramatically improved by treatment with E + D. Similar to what we have previously reported for hindlimb motoneurons after SCI, dendritic length of EUS motoneurons was significantly decreased after SCI compared to sham animals. Exercise did not reverse injury-induced atrophy, however E + D treatment significantly protected dendritic length. Conclusions These results suggest that some aspects of urinary dysfunction after SCI can be improved through treatment with gonadal hormones, potentially through their effects on EUS motoneurons. Moreover, a more comprehensive treatment regime that addresses multiple SCI-induced sequelae, i.e., locomotor and voiding deficits, would include both hormones and exercise.
Collapse
Affiliation(s)
- Emily A. Hibbard
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Xiaolong Du
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yihong Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lingxiao Deng
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dale R. Sengelaub
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
2
|
Sánchez-Torres S, Orozco-Barrios C, Salgado-Ceballos H, Segura-Uribe JJ, Guerra-Araiza C, León-Cholula Á, Morán J, Coyoy-Salgado A. Tibolone Improves Locomotor Function in a Rat Model of Spinal Cord Injury by Modulating Apoptosis and Autophagy. Int J Mol Sci 2023; 24:15285. [PMID: 37894971 PMCID: PMC10607734 DOI: 10.3390/ijms242015285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Spinal cord injury (SCI) harms patients' health and social and economic well-being. Unfortunately, fully effective therapeutic strategies have yet to be developed to treat this disease, affecting millions worldwide. Apoptosis and autophagy are critical cell death signaling pathways after SCI that should be targeted for early therapeutic interventions to mitigate their adverse effects and promote functional recovery. Tibolone (TIB) is a selective tissue estrogen activity regulator (STEAR) with neuroprotective properties demonstrated in some experimental models. This study aimed to investigate the effect of TIB on apoptotic cell death and autophagy after SCI and verify whether TIB promotes motor function recovery. A moderate contusion SCI was produced at thoracic level 9 (T9) in male Sprague Dawley rats. Subsequently, animals received a daily dose of TIB orally and were sacrificed at 1, 3, 14 or 30 days post-injury. Tissue samples were collected for morphometric and immunofluorescence analysis to identify tissue damage and the percentage of neurons at the injury site. Autophagic (Beclin-1, LC3-I/LC3-II, p62) and apoptotic (Caspase 3) markers were also analyzed via Western blot. Finally, motor function was assessed using the BBB scale. TIB administration significantly increased the amount of preserved tissue (p < 0.05), improved the recovery of motor function (p < 0.001) and modulated the expression of autophagy markers in a time-dependent manner while consistently inhibiting apoptosis (p < 0.05). Therefore, TIB could be a therapeutic alternative for the recovery of motor function after SCI.
Collapse
Affiliation(s)
- Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (S.S.-T.); (H.S.-C.); (Á.L.-C.)
- Consejo Nacional de Ciencia y Tecnología, Mexico City 03940, Mexico
| | - Carlos Orozco-Barrios
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (S.S.-T.); (H.S.-C.); (Á.L.-C.)
| | - Julia J. Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ángel León-Cholula
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (S.S.-T.); (H.S.-C.); (Á.L.-C.)
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Angélica Coyoy-Salgado
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| |
Collapse
|
3
|
The neuroprotective effects of estrogen and estrogenic compounds in spinal cord injury. Neurosci Biobehav Rev 2023; 146:105074. [PMID: 36736846 DOI: 10.1016/j.neubiorev.2023.105074] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) occurs when the spinal cord is damaged from either a traumatic event or disease. SCI is characterised by multiple injury phases that affect the transmission of sensory and motor signals and lead to temporary or long-term functional deficits. There are few treatments for SCI. Estrogens and estrogenic compounds, however, may effectively mitigate the effects of SCI and therefore represent viable treatment options. This review systematically examines the pre-clinical literature on estrogen and estrogenic compound neuroprotection after SCI. Several estrogens were examined by the included studies: estrogen, estradiol benzoate, Premarin, isopsoralen, genistein, and selective estrogen receptor modulators. Across these pharmacotherapies, we find significant evidence that estrogens indeed offer protection against myriad pathophysiological effects of SCI and lead to improvements in functional outcomes, including locomotion. A STRING functional network analysis of proteins modulated by estrogen after SCI demonstrated that estrogen simultaneously upregulates known neuroprotective pathways, such as HIF-1, and downregulates pro-inflammatory pathways, including IL-17. These findings highlight the strong therapeutic potential of estrogen and estrogenic compounds after SCI.
Collapse
|
4
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
5
|
Haque A, Drasites KP, Cox A, Capone M, Myatich AI, Shams R, Matzelle D, Garner DP, Bredikhin M, Shields DC, Vertegel A, Banik NL. Protective Effects of Estrogen via Nanoparticle Delivery to Attenuate Myelin Loss and Neuronal Death after Spinal Cord Injury. Neurochem Res 2021; 46:2979-2990. [PMID: 34269965 PMCID: PMC9723545 DOI: 10.1007/s11064-021-03401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Spinal cord injury (SCI) is associated with devastating neurological deficits affecting more than 11,000 Americans each year. Although several therapeutic agents have been proposed and tested, no FDA-approved pharmacotherapy is available for SCI treatment. We have recently demonstrated that estrogen (E2) acts as an antioxidant and anti-inflammatory agent, attenuating gliosis in SCI. We have also demonstrated that nanoparticle-mediated focal delivery of E2 to the injured spinal cord decreases lesion size, reactive gliosis, and glial scar formation. The current study tested in vitro effects of E2 on reactive oxygen species (ROS) and calpain activity in microglia, astroglia, macrophages, and fibroblasts, which are believed to participate in the inflammatory events and glial scar formation after SCI. E2 treatment decreased ROS production and calpain activity in these glial cells, macrophages, and fibroblast cells in vitro. This study also tested the efficacy of fast- and slow-release nanoparticle-E2 constructs in a rat model of SCI. Focal delivery of E2 via nanoparticles increased tissue distribution of E2 over time, attenuated cell death, and improved myelin preservation in injured spinal cord. Specifically, the fast-release nanoparticle-E2 construct reduced the Bax/Bcl-2 ratio in injured spinal cord tissues, and the slow-release nanoparticle-E2 construct prevented gliosis and penumbral demyelination distal to the lesion site. These data suggest this novel E2 delivery strategy to the lesion site may decrease inflammation and improve functional outcomes following SCI.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Kelsey P Drasites
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - April Cox
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Mollie Capone
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Ali I Myatich
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - Ramsha Shams
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Dena P Garner
- Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | | | - Donald C Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA.
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
| |
Collapse
|
6
|
Liu NK, Byers JS, Lam T, Lu QB, Sengelaub DR, Xu XM. Inhibition of Cytosolic Phospholipase A 2 Has Neuroprotective Effects on Motoneuron and Muscle Atrophy after Spinal Cord Injury. J Neurotrauma 2021; 38:1327-1337. [PMID: 25386720 DOI: 10.1089/neu.2014.3690] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that cytosolic phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cytosolic PLA2 (cPLA2) pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy after SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter, compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area, or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that, after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James S Byers
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Tom Lam
- Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Qing-Bo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dale R Sengelaub
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Gottipati MK, Ellman SAT, Puhl DL, Guan Z, Popovich PG, Palermo EF, Gilbert RJ. Acute Dose-Dependent Neuroprotective Effects of Poly(pro-17β-estradiol) in a Mouse Model of Spinal Contusion Injury. ACS Chem Neurosci 2021; 12:959-965. [PMID: 33635633 DOI: 10.1021/acschemneuro.0c00798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
17β-Estradiol (E2) confers neuroprotection in preclinical models of spinal cord injury when administered systemically. The goal of this study was to apply E2 locally to the injured spinal cord for a sustained duration using poly(pro-E2) film biomaterials. Following contusive spinal cord injury in adult male mice, poly(pro-E2) films were implanted subdurally and neuroprotection was assessed using immunohistochemistry 7 days after injury and implantation. In these studies, poly(pro-E2) films modestly improved neuroprotection without affecting the inflammatory response when compared to the injured controls. To increase the E2 dose released, bolus-releasing poly(pro-E2) films were fabricated by incorporating unbound E2 into the poly(pro-E2) films. However, compared to the injured controls, bolus-releasing poly(pro-E2) films did not significantly enhance neuroprotection or limit inflammation at either 7 or 21 days post-injury. Future work will focus on developing poly(pro-E2) biomaterials capable of more precisely releasing therapeutic doses of E2.
Collapse
Affiliation(s)
- Manoj K. Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Samuel A. T. Ellman
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Zhen Guan
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Phillip G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Edmund F. Palermo
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
8
|
Luo Y, Xu T, Liu W, Rong Y, Wang J, Fan J, Yin G, Cai W. Exosomes derived from GIT1-overexpressing bone marrow mesenchymal stem cells promote traumatic spinal cord injury recovery in a rat model. Int J Neurosci 2021; 131:170-182. [PMID: 32223487 DOI: 10.1080/00207454.2020.1734598] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/27/2019] [Accepted: 01/24/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study aims to explore the effects of exosomes derived from G protein-coupled receptor kinase 2 interacting protein 1 (GIT1)-overexpressing bone marrow mesenchymal stem cell (GIT1-BMSC-Exos) on the treatment of traumatic spinal cord injury (SCI) in a rat model. METHODS All the rats underwent a T10 laminectomy. A weight-drop impact was performed using a 10-g rod from a height of 12.5 mm except the sham group. Rats with SCI were distributed into three groups randomly and then treated with tail vein injection of GIT1-BMSCs-Exos, BMSCs-Exos and PBS, respectively. The effects of GIT1-Exos on glutamate (GLU)-induced apoptosis in vitro were also evaluated by TUNEL staining. RESULTS The results showed that rats treated with GIT1-BMSCs-Exos had better functional behavioral recovery than those treated with PBS or BMSCs-Exos only. The overexpression of GIT1 in BMSCs-Exos not only restrained glial scar formation and neuroinflammation after SCI, but also attenuated apoptosis and promoted axonal regeneration in the injured lesion area. Neuronal cell death induced by GLU was controlled remarkably in vitro as well. CONCLUSION In conclusion, our study suggested that the application of GIT1-BMSCs-Exos may provide a novel avenue for traumatic SCI treatment.
Collapse
Affiliation(s)
- Yongjun Luo
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
ÖZTÜRK G, SİLAV G, İNCİR S, ARSLANHAN A, AKÇETİN MA, TOKTAŞ OZ, KONYA D. Ratlarda Deneysel Spinal Kord Hasar Modelinde Genisteinin Nöroprotektif Etkisinin Araştırılması, Diffüz Tensor Görüntüleme ile Değerlendirilmesi. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2020. [DOI: 10.38079/igusabder.742525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Díaz-Galindo MDC, Calderón-Vallejo D, Olvera-Sandoval C, Quintanar JL. Therapeutic approaches of trophic factors in animal models and in patients with spinal cord injury. Growth Factors 2020; 38:1-15. [PMID: 32299267 DOI: 10.1080/08977194.2020.1753724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Trophic factors are naturally produced by different tissues that participate in several functions such as the intercellular communication, in the development, stability, differentiation and regeneration at the cellular level. Specifically, in the case of spinal injuries, these factors can stimulate neuronal recovery. They are applied both in experimental models and in clinical trials in patients. The trophic factors analysed in this review include gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), growth hormone (GH), melatonin, oestrogens, the family of fibroblast growth factors (FGFs), the family of neurotrophins and the glial cell-derived neurotrophic factor (GDNF). There are some trophic (neurotrophic) factors that already been tested in patients with spinal cord injury (SCI), but only shown partial recovery effect. It is possible that, the administration of these trophic factors together with physical rehabilitation, act synergistically and, therefore, significantly improve the quality of life of patients with SCI.
Collapse
Affiliation(s)
- María Del Carmen Díaz-Galindo
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
- Department of Morphology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| | - Carlos Olvera-Sandoval
- Facultad de Medicina-Mexicali, Universidad Autónoma de Baja California, México. Dr. Humberto Torres Sanginés S/N. Centro Cívico, Mexicali, México
| | - J Luis Quintanar
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| |
Collapse
|
11
|
Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int 2019; 127:22-28. [PMID: 30654116 PMCID: PMC6579702 DOI: 10.1016/j.neuint.2019.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Despite the immeasurable burden on patients and families, no effective therapies to protect the CNS after an acute injury are available yet. Furthermore, the underlying mechanisms that promote neuronal death and functional deficits after injury remain to be poorly understood. The prevalence, age of onset, pathophysiology, and symptomatology of many CNS insults differ significantly between males and females. In the case of stroke, younger males tend to show a higher risk than younger females, while this trend reverses with age. Accumulating evidence from preclinical studies have shown that sex hormones play a crucial role in providing neuroprotection following ischemic stroke and other acute CNS injuries. Estrogen, in particular, exerts a neuroprotective effect by modulating the immune responses after injury. In addition, there exists a sexual dimorphism in cell death pathways between males and females that are independent of hormones. Meanwhile, recent studies suggest that microRNAs are critically involved in the sex-specific mechanisms of cell death. This review discusses the current knowledge on the contribution of sex and age to outcome after stroke. Implication of the interplay between these two factors on other CNS injuries (spinal cord injury and traumatic brain injury) from the experimental evidence were also discussed.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
12
|
Nazari-Robati M, Akbari M, Khaksari M, Mirzaee M. Trehalose attenuates spinal cord injury through the regulation of oxidative stress, inflammation and GFAP expression in rats. J Spinal Cord Med 2019; 42:387-394. [PMID: 30513271 PMCID: PMC6522923 DOI: 10.1080/10790268.2018.1527077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Inflammation and oxidative stress are implicated in pathogenesis of spinal cord injury (SCI). Trehalose, a nonreducing disaccharide, exhibits anti-inflammatory and antioxidant effects. The present study investigated the therapeutic efficacy of trehalose in the SCI model. DESIGN AND SETTING An experimental study was designed using 120 male Wistar rats which were randomly divided into three groups including SCI, SCI + phosphate buffer saline (vehicle) and SCI + trehalose. All rats were subjected to SCI. Immediately after SCI, vehicle and trehalose groups received intrathecal injection of buffer and trehalose, respectively. OUTCOME MEASURES The level of tissue TNFα, IL-1β, nitric oxide, malondialdehyde, myeloperoxidase, glial fibrillary acidic protein (GFAP) as well as hindlimb function were assessed at 4 hours, 1, 3 and 7 days post-SCI. RESULTS Data indicated an early significant decrease in inflammatory and oxidative responses following SCI in trehalose treated group. Moreover, trehalose reduced GFAP expression as soon as 1-day post-trauma. Furthermore, trehalose treatment increased the score of hindlimb function. CONCLUSION Our results indicated that treatment with trehalose reduces the development of secondary injury associated with SCI. This effect likely underlies improved neurological function.
Collapse
Affiliation(s)
- Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran,Correspondence to: Mahdieh Nazari-Robati, Department of Clinical Biochemistry, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman7616914115, Iran.
| | - Mahboobe Akbari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Moghaddameh Mirzaee
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Rezk S, Althani A, Abd-elmaksoud A, Kassab M, Farag A, Lashen S, Cenciarelli C, Caceci T, Marei H. Effects of estrogen on Survival and Neuronal Differentiation of adult human olfactory bulb neural stem Cells Transplanted into Spinal Cord Injured Rats.. [DOI: 10.1101/571950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractIn the present study we developed an excitotoxic spinal cord injury (SCI) model using kainic acid (KA) to evaluate of the therapeutic potential of human olfactory bulb neural stem cells (h-OBNSCs) for spinal cord injury (SCI). In a previous study, we assessed the therapeutic potential of these cells for SCI; all transplanted animals showed successful engraftment. These cells differentiated predominantly as astrocytes, not motor neurons, so no improvement in motor functions was detected. In the current study we used estrogen as neuroprotective therapy before transplantation of OBNSCs to preserve some of endogenous neurons and enhance the differentiation of these cells towards neurons. The present work demonstrated that the h-GFP-OBNSCs were able to survive for more than eight weeks after sub-acute transplantation into injured spinal cord. Stereological quantification of OBNSCs showed approximately a 2.38-fold increase in the initial cell population transplanted. 40.91% of OBNSCs showed differentiation along the neuronal lineages, which was the predominant fate of these cells. 36.36% of the cells differentiated into mature astrocytes; meanwhile 22.73% of the cells differentiated into oligodendrocytes. Improvement in motor functions was also detected after cell transplantation.
Collapse
|
14
|
Farag A, Lashen S, Eltaysh R. Histoarchitecture restoration of cerebellar sub-layers as a response to estradiol treatment following Kainic acid-induced spinal cord injury. Cell Tissue Res 2019; 376:309-323. [PMID: 30788578 DOI: 10.1007/s00441-019-02992-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/29/2018] [Indexed: 12/19/2022]
Abstract
One of the major impacts of spinal cord injury (SCI) is the cerebellar neurological malfunction and deformation of its sub-layers. This could be due to the enormous innervation of the spinocerebellar tract from the posterior gray horn in the spinal cord to the ipsilateral cerebellum. Although the neuroprotective role of estradiol in spinal cord (SC) injuries, as well as its ability to delay secondary cell death changes, is well-known, its effect on cerebellar layers is not fully investigated. In this study, a SCI model was achieved by injection of Kainic acid into SC of adult Male Wistar rats in order to assess the effects of SCI on the cerebellum. The animals were classified into SCI group (animals with SCI), estradiol-treated group (animals with SCI and received estradiol), control groups, and sham control group. The microscopical examination 24 h after induction of SCI revealed that KA induced the most characteristics of neurodegeneration including astrocytic propagation and microglial activation. The estradiol was injected intraperitoneally 20 min after induction of SCI, and the samples were collected at 1, 3, 7, 14, and 30 days. Histologically, the estradiol reduced the inflammatory response, enhanced the recovery of molecular, granular, and Purkinje cell layers, and therefore aided in the restoration of layer organization. These findings were also confirmed by immunohistochemical staining and gene expression profiling.
Collapse
Affiliation(s)
- Amany Farag
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., P.O. box 35516, Mansoura, Egypt.
| | - S Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., P.O. box 35516, Mansoura, Egypt
| | - R Eltaysh
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., P.O. box 35516, Mansoura, Egypt
| |
Collapse
|
15
|
Genistein Loaded Nanofibers Protect Spinal Cord Tissue Following Experimental Injury in Rats. Biomedicines 2018; 6:biomedicines6040096. [PMID: 30287760 PMCID: PMC6316236 DOI: 10.3390/biomedicines6040096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 11/16/2022] Open
Abstract
Innovative drug-delivery systems offer a unique approach to effectively provide therapeutic drug dose over the needed time to achieve better tissue protection and enhanced recovery. The hypothesis of the current study was to test the antioxidant and anti-inflammatory effects of genistein and nanofibers on the spinal cord tissue following experimental spinal cord injury (SCI). Rats were treated post SCI with genistein that is loaded on chitosan/polyvinyl alcohol (CS/PVA) nanofibers as an implantable drug-delivery system. SCI caused marked oxidative damage and inflammation, as is evident by the reduction in the super oxide dismutase (SOD) activity and the level of interleukin-10 (IL-10) in injured spinal cord tissue, as well as the significant increase in the levels of nitric oxide (NO), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-α). Treatment of rats post SCI with genistein and CS/PVA nanofibers improved most of the above-mentioned biochemical parameters and shifted them toward the control group values. Genistein induced an increase in the activity of SOD and the level of IL-10, while causing a decrease in NO, MDA, and TNF-α in injured spinal cord tissue. Genistein and CS/PVA nanofibers provide a novel combination for treating inflammatory nervous tissue conditions, especially when combined as an implantable drug-delivery system.
Collapse
|
16
|
Namjoo Z, Mortezaee K, Joghataei MT, Moradi F, Piryaei A, Abbasi Y, Hosseini A, Majidpoor J. Targeting axonal degeneration and demyelination using combination administration of 17β‐estradiol and Schwann cells in the rat model of spinal cord injury. J Cell Biochem 2018; 119:10195-10203. [DOI: 10.1002/jcb.27361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Zeinab Namjoo
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Mohammad T. Joghataei
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Faculty of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Fateme Moradi
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Faculty of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Yusef Abbasi
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Amir Hosseini
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Jamal Majidpoor
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Estrogen alleviates neuropathic pain induced after spinal cord injury by inhibiting microglia and astrocyte activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2472-2480. [DOI: 10.1016/j.bbadis.2018.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023]
|
18
|
Sengelaub DR, Xu XM. Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury. Neural Regen Res 2018; 13:971-976. [PMID: 29926818 PMCID: PMC6022470 DOI: 10.4103/1673-5374.233434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. The majority of treatment strategies after SCI have concentrated on the damaged spinal cord, for example working to reduce lesion size or spread, or encouraging regrowth of severed descending axonal projections through the lesion, hoping to re-establish synaptic connectivity with caudal targets. In our work, we have focused on a novel target for treatment after SCI, surviving spinal motoneurons and their target musculature, with the hope of developing effective treatments to preserve or restore lost function following SCI. We previously demonstrated that motoneurons, and the muscles they innervate, show pronounced atrophy after SCI. Importantly, SCI-induced atrophy of motoneuron dendrites can be attenuated by treatment with gonadal hormones, testosterone and its active metabolites, estradiol and dihydrotestosterone. Similarly, SCI-induced reductions in muscle fiber cross-sectional areas can be prevented by treatment with androgens. Together, these findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be ameliorated by treatment with gonadal hormones, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.
Collapse
Affiliation(s)
- Dale R. Sengelaub
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Fan DX, Yang XH, Li YN, Guo L. 17β-Estradiol on the Expression of G-Protein Coupled Estrogen Receptor (GPER/GPR30) Mitophagy, and the PI3K/Akt Signaling Pathway in ATDC5 Chondrocytes In Vitro. Med Sci Monit 2018; 24:1936-1947. [PMID: 29608013 PMCID: PMC5898603 DOI: 10.12659/msm.909365] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Osteoarthritis is a progressive inflammatory joint disease resulting in damage to articular cartilage. G-protein coupled estrogen receptor (GPER/GPR30) activates cell signaling in response to 17β-estradiol, which can be blocked by the GPR30 agonist, G15, an analog of G-1. The aims of this study were to investigate the effects of 17β-estradiol on the expression of G-protein coupled estrogen receptor (GPER/GPR30) on mitophagy and the PI3K/Akt signaling pathway in ATDC5 chondrocytes in vitro. Material/Methods Cultured ATDC5 chondrocytes were treated with increasing concentrations of 17β-estradiol with and without G15, p38 inhibitor (SB203580), JNK inhibitor (SP600125), PI3K inhibitor (LY294002, S1737), and mTOR inhibitor (S1842). Expression of GPER/GPR30 and components of the PI3K/Akt pathway in cultured ATDC5 chondrocytes were detected by immunofluorescence (IF) staining, Western blot, and real-time polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) and IF were used to detect mitophagosomes. Expression of LC-3, LAMP2, TOM20, Hsp60, p-Akt, p-mTOR, p-p38, and p-JNK was investigated by Western blot. Proliferation and viability of the ATDC5 chondrocytes were determined using BrdU and MTT assays. Results In 17β-estradiol-treated ATDC5 chondrocytes, increased expression of GPER/GPR30 was found, but fewer mitophagosomes were observed, and decreased numbers of TOM20-positive granules were co-localized with decreased LAMP2 and increased expression levels of TOM20, Hsp60, p-Akt, and p-mTOR, and reduced expression of LC3-II, were found. In 17β-estradiol-treated ATDC5 chondrocytes, the proliferation and viability of the 17β-estradiol-treated ATDC5 chondrocytes were significantly elevated. Conclusions Treatment with 17β-estradiol protected ATDC5 chondrocytes against mitophagy via the GPER/GPR30 and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Dong-Xiao Fan
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland).,Orthopedic Surgery, First Affiliated Hospital, China Medical University, , China (mainland)
| | - Xu-Hao Yang
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yi-Nan Li
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
20
|
Sengelaub DR, Han Q, Liu NK, Maczuga MA, Szalavari V, Valencia SA, Xu XM. Protective Effects of Estradiol and Dihydrotestosterone following Spinal Cord Injury. J Neurotrauma 2018; 35:825-841. [PMID: 29132243 PMCID: PMC5863086 DOI: 10.1089/neu.2017.5329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. We previously demonstrated that motoneurons and the muscles they innervate show pronounced atrophy after SCI, and these changes are prevented by treatment with testosterone. Here, we assessed whether the testosterone active metabolites estradiol and dihydrotestosterone have similar protective effects after SCI. Young adult female rats received either sham or T9 spinal cord contusion injuries and were treated with estradiol, dihydrotestosterone, both, or nothing via Silastic capsules. Basso-Beattie-Bresnahan locomotor testing was performed weekly and voiding behavior was assessed at 3 weeks post-injury. Four weeks after SCI, lesion volume and tissue sparing, quadriceps muscle fiber cross-sectional area, and motoneuron dendritic morphology were assessed. Spontaneous locomotor behavior improved after SCI, but hormone treatments had no effect. Voiding behavior was disrupted after SCI, but was significantly improved by treatment with either estradiol or dihydrotestosterone; combined treatment was maximally effective. Treatment with estradiol reduced lesion volume, but dihydrotestosterone alone and estradiol combined with dihydrotestosterone were ineffective. SCI-induced decreases in motoneuron dendritic length were attenuated by all hormone treatments. SCI-induced reductions in muscle fiber cross-sectional areas were prevented by treatment with either dihydrotestosterone or estradiol combined with dihydrotestosterone, but estradiol treatment was ineffective. These findings suggest that deficits in micturition and regressive changes in motoneuron and muscle morphology seen after SCI are ameliorated by treatment with estradiol or dihydrotestosterone, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.
Collapse
Affiliation(s)
- Dale R. Sengelaub
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Qi Han
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nai-Kui Liu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A. Maczuga
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Violetta Szalavari
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
21
|
Abstract
Several lines of evidence indicate that female sex is a protective factor in trauma and hemorrhage. In both clinical and experimental studies, proestrus females have been shown to have better chances of survival and reduced rates of posttraumatic sepsis. Estrogen receptors are expressed in a variety of tissues and exert genomic, as well as nongenomic effects. By improving cardiac, pulmonary, hepatic, and immune function, estrogens have been shown to prolong survival in animal models of hemorrhagic shock. Despite encouraging results from experimental studies, retrospective clinical studies have not clearly pointed to advantages of estrogens following trauma-hemorrhage, which may be due to insufficient study design. Therefore, this review aims to give an overview on the current evidence and emphasizes on the importance of further clinical investigation on estrogens following trauma.
Collapse
|
22
|
Colón JM, González PA, Cajigas Á, Maldonado WI, Torrado AI, Santiago JM, Salgado IK, Miranda JD. Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats. Exp Neurol 2018; 299:109-121. [PMID: 29037533 PMCID: PMC5723542 DOI: 10.1016/j.expneurol.2017.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
No treatment is available for patients with spinal cord injury (SCI). Patients often arrive to the hospital hours after SCI suggesting the need of a therapy that can be used on a clinically relevant window. Previous studies showed that Tamoxifen (TAM) treatment 24h after SCI benefits locomotor recovery in female rats. Tamoxifen exerts beneficial effects in male and female rodents but a gap of knowledge exists on: the therapeutic window of TAM, the spatio-temporal mechanisms activated and if this response is sexually dimorphic. We hypothesized that TAM will favor locomotor recovery when administered up-to 24h after SCI in male Sprague-Dawley rats. Rats received a thoracic (T10) contusion using the MACSIS impactor followed by placebo or TAM (15mg/21days) pellets in a therapeutic window of 0, 6, 12, or 24h. Animals were sacrificed at 2, 7, 14, 28 or 35days post injury (DPI) to study the molecular and cellular changes in the acute and chronic stages. Immediate or delayed therapy (t=6h) improved locomotor function, increased white matter spared tissue, and neuronal survival. TAM reduced reactive gliosis during chronic stages and increased the expression of Olig-2. A significant difference was observed in estrogen receptor alpha between male and female rodents from 2 to 28 DPI suggesting a sexually dimorphic characteristic that could be related to the behavioral differences observed in the therapeutic window of TAM. This study supports the use of TAM in the SCI setting due to its neuroprotective effects but with a significant sexually dimorphic therapeutic window.
Collapse
Affiliation(s)
- Jennifer M Colón
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Pablo A González
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Ámbar Cajigas
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Wanda I Maldonado
- University of Puerto Rico Carolina Campus, Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, Carolina, PR 00984, USA.
| | - Aranza I Torrado
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - José M Santiago
- University of Puerto Rico Carolina Campus, Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, Carolina, PR 00984, USA.
| | - Iris K Salgado
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Jorge D Miranda
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| |
Collapse
|
23
|
Zhang Y, Zhang WX, Zhang YJ, Liu YD, Liu ZJ, Wu QC, Guan Y, Chen XM. Melatonin for the treatment of spinal cord injury. Neural Regen Res 2018; 13:1685-1692. [PMID: 30136678 PMCID: PMC6128058 DOI: 10.4103/1673-5374.238603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) from trauma or disease severely impairs sensory and motor function. Neurorehabilitation after SCI is a complex medical process that focuses on improving neurologic function and repairing damaged connections in the central nervous system. An increasing number of preclinical studies suggest that melatonin may be useful for the treatment of SCI. Melatonin is an indolamine that is primarily secreted by the pineal gland and known to be regulated by photoperiodicity. However, it is also a versatile hormone with antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. Here, we review the neuroprotective properties of melatonin and the potential mechanisms by which it might be beneficial in the treatment of SCI. We also describe therapies that combine melatonin with exercise, oxytetracycline, and dexamethasone to attenuate the secondary injury after SCI and limit potential side effects. Finally, we discuss how injury at different spinal levels may differentially affect the secretion of melatonin.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wen-Xiu Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan-Jun Zhang
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ya-Dong Liu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zong-Jian Liu
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qi-Chao Wu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology and Critical Care Medicine; Department of Neurological Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xue-Ming Chen
- Central Laboratory; Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Wang Y, Kong QJ, Sun JC, Xu XM, Yang Y, Liu N, Shi JG. Protective effect of epigenetic silencing of CyclinD1 against spinal cord injury using bone marrow-derived mesenchymal stem cells in rats. J Cell Physiol 2017; 233:5361-5369. [PMID: 29215736 DOI: 10.1002/jcp.26354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
This study focuses on the protective effect of epigenetic silencing of CyclinD1 against spinal cord injury (SCI) using bone marrow-derived mesenchymal stem cells (BMSCs) in rats. Eighty-eight adult female Wistar rats were randomly assigned into the sham group, the control group, the si-CyclinD1 + BMSCs group and the BMSCs group. CyclinD1 protein and mRNA expressions after siRNA transfection were detected by Western blotting and qRT-PCR. The siRNA-CyclinD1 BMSCs were transplanted into rats in the si-CyclinD1 + BMSCs group using stereotaxic method 6 hr after SCI. Hindlimb locomotor performance was determined using inclined plane test and Basso-Beattie-Bresnahan (BBB) locomotor rating scale. Expressions of glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) were detected by immunohistochemistry. Inclined plane and BBB scores in the control, si-CyclinD1 + BMSCs, and BMSCs groups were significantly lower than the sham group, but these scores were evidently decreased in the control group and increased in the si-CyclinD1 + BMSCs group compared with the BMSCs group. The repair degree of spinal cord tissues of rats in the si-CyclinD1 + BMSCs group was obvious than the BMSCs group. GFAP and NGF protein expressions were markedly decreased in the control, si-CyclinD1 + BMSCs and BMSCs groups when compared with the sham group. GFAP- and NGF-positive cells were significantly increased in the si-CyclinD1 + BMSCs group while decreased in the control group. Our study provides evidence that epigenetic silencing of CyclinD1 using BMSCs might accelerate the repair of SCI in rats.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Qing-Jie Kong
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Jin-Chuan Sun
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Xi-Ming Xu
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Yong Yang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Ning Liu
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| | - Jian-Gang Shi
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, P. R. China
| |
Collapse
|
25
|
Zendedel A, Mönnink F, Hassanzadeh G, Zaminy A, Ansar MM, Habib P, Slowik A, Kipp M, Beyer C. Estrogen Attenuates Local Inflammasome Expression and Activation after Spinal Cord Injury. Mol Neurobiol 2017; 55:1364-1375. [PMID: 28127698 DOI: 10.1007/s12035-017-0400-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
17-estradiol (E2) is a neuroprotective hormone with a high anti-inflammatory potential in different neurological disorders. The inflammatory response initiated by spinal cord injury (SCI) involves the processing of interleukin-1beta (IL-1b) and IL-18 mediated by caspase-1 which is under the control of an intracellular multiprotein complex called inflammasome. We recently described in a SCI model that between 24 and 72 h post-injury, most of inflammasome components including IL-18, IL-1b, NLRP3, ASC, and caspase-1 are upregulated. In this study, we investigated the influence of E2 treatment after spinal cord contusion on inflammasome regulation. After contusion of T9 spinal segment, 12-week-old male Wistar rats were treated subcutaneously with E2 immediately after injury and every 12 h for the next 3 days. Behavioral scores were significantly improved in E2-treated animals compared to vehicle-treated groups. Functional improvement in E2-treated animals was paralleled by the attenuated expression of certain inflammasome components such as ASC, NLRP1b, and NLRP3 together with IL1b, IL-18, and caspase-1. On the histopathological level, microgliosis and oligodendrocyte injury was ameliorated. These findings support and extend the knowledge of the E2-mediated neuroprotective function during SCI. The control of the inflammasome machinery by E2 might be a missing piece of the puzzle to understand the anti-inflammatory potency of E2.
Collapse
Affiliation(s)
- Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fabian Mönnink
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arash Zaminy
- Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Malek Masoud Ansar
- Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pardes Habib
- Department of Neurology, RWTH Aachen, 52074, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,JARA-Brain, 52074, Aachen, Germany
| |
Collapse
|
26
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
27
|
Samantaray S, Das A, Matzelle DC, Yu SP, Wei L, Varma A, Ray SK, Banik NL. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats. J Neurochem 2016; 137:604-17. [PMID: 26998684 DOI: 10.1111/jnc.13610] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as shown in (a). Furthermore, the alterations in local spinal blood flow could be significantly alleviated with low dose estrogen therapy. This therapy led to the preservation of the structural integrity of the spinal cord (b), which in turn led to the improved functional recovery as shown (c).
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Arabinda Das
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Denise C Matzelle
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shan P Yu
- Department of Anesthesia, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ling Wei
- Department of Anesthesia, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Abhay Varma
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
28
|
Chakrabarti M, Das A, Samantaray S, Smith JA, Banik NL, Haque A, Ray SK. Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury. Rev Neurosci 2016; 27:271-81. [PMID: 26461840 DOI: 10.1515/revneuro-2015-0032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/27/2015] [Indexed: 03/14/2025]
Abstract
Estrogen (EST) is a steroid hormone that exhibits several important physiological roles in the human body. During the last few decades, EST has been well recognized as an important neuroprotective agent in a variety of neurological disorders in the central nervous system (CNS), such as spinal cord injury (SCI), traumatic brain injury (TBI), Alzheimer's disease, and multiple sclerosis. The exact molecular mechanisms of EST-mediated neuroprotection in the CNS remain unclear due to heterogeneity of cell populations that express EST receptors (ERs) in the CNS as well as in the innate and adaptive immune system. Recent investigations suggest that EST protects the CNS from injury by suppressing pro-inflammatory pathways, oxidative stress, and cell death, while promoting neurogenesis, angiogenesis, and neurotrophic support. In this review, we have described the currently known molecular mechanisms of EST-mediated neuroprotection and neuroregeneration in SCI and TBI. At the same time, we have emphasized on the recent in vitro and in vivo findings from our and other laboratories, implying potential clinical benefits of EST in the treatment of SCI and TBI.
Collapse
|
29
|
Lin CW, Chen B, Huang KL, Dai YS, Teng HL. Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats. Neurosci Bull 2016; 32:137-44. [PMID: 26924807 DOI: 10.1007/s12264-016-0017-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
17β-estradiol (E2) has been shown to have neuroprotective effects in different central nervous system diseases. The mechanisms underlying estrogen neuroprotection in spinal cord injury (SCI) remain unclear. Previous studies have shown that autophagy plays a crucial role in the course of nerve injury. In this study, we showed that E2 treatment improved the restoration of locomotor function and decreased the loss of motor neurons in SCI rats. Real-time PCR and western blot analysis revealed that the protective function of E2 was related to the suppression of LC3II and beclin-1 expression. Immunohistochemical study further confirmed that the immunoreactivity of LC3 in the motor neurons was down-regulated when treated with E2. In vitro studies demonstrated similar results that E2 pretreatment decreased the autophagic activity induced by rapamycin (autophagy sensitizer) and increased viability in a PC12 cell model. These results indicated that the neuroprotective effects of E2 in SCI are partly related to the suppression of excessive autophagy.
Collapse
Affiliation(s)
- Chao-Wei Lin
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bi Chen
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ke-Lun Huang
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu-Sen Dai
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Lin Teng
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
30
|
Yeng CH, Chen PJ, Chang HK, Lo WY, Wu CC, Chang CY, Chou CH, Chen SH. Attenuating spinal cord injury by conditioned medium from human umbilical cord blood-derived CD34+ cells in rats. Taiwan J Obstet Gynecol 2016; 55:85-93. [DOI: 10.1016/j.tjog.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2014] [Indexed: 12/19/2022] Open
|
31
|
Samantaray S, Das A, Matzelle DC, Yu SP, Wei L, Varma A, Ray SK, Banik NL. Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cord injury in rats. J Neurochem 2016; 136:1064-73. [PMID: 26662641 DOI: 10.1111/jnc.13464] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/29/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition with neurological deficits and loss of motor function that, depending on the severity, may lead to paralysis. The only treatment currently available is methylprednisolone, which is widely used and renders limited efficacy in SCI. Therefore, other therapeutic agents must be developed. The neuroprotective efficacy of estrogen in SCI was studied with a pre-clinical and pro-translational perspective. Acute SCI was induced in rats that were treated with low doses of estrogen (1, 5, 10, or 100 μg/kg) and compared with vehicle-treated injured rats or laminectomy control (sham) rats at 48 h post-SCI. Changes in gliosis and other pro-inflammatory responses, expression and activity of proteolytic enzymes (e.g., calpain, caspase-3), apoptosis of neurons in SCI, and cell death were monitored via Western blotting and immunohistochemistry. Negligible pro-inflammatory responses or proteolytic events and very low levels of neuronal death were found in sham rats. In contrast, vehicle-treated SCI rats showed profound pro-inflammatory responses with reactive gliosis, elevated expression and activity of calpain and caspase-3, elevated Bax:Bcl-2 ratio, and high levels of neuronal death in lesion and caudal regions of the injured spinal cord. Estrogen treatment at each dose reduced pro-inflammatory and proteolytic activities and protected neurons in the caudal penumbra in acute SCI. Estrogen treatment at 10 μg was found to be as effective as 100 μg in ameliorating the above parameters in injured animals. Results from this investigation indicated that estrogen at a low dose could be a promising therapeutic agent for treating acute SCI. Experimental studies with low dose estrogen therapy in acute spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes. Estrogen has been found to ameliorate several degenerative pathways following SCI. Thus, such early protective effects may even lead to functional recovery in long term injury. Studies are underway in chronic SCI in a follow up manuscript.
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Arabinda Das
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Denise C Matzelle
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shan P Yu
- Department of Anesthesia, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesia, Emory University School of Medicine, Atlanta, GA, USA
| | - Abhay Varma
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
32
|
Letaif OB, Cristante AF, de Barros Filho TEP, Ferreira R, dos Santos GB, da Rocha ID, Marcon RM. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats. Clinics (Sao Paulo) 2015; 70:700-5. [PMID: 26598084 PMCID: PMC4602386 DOI: 10.6061/clinics/2015(10)08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. METHODS In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. RESULTS The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. CONCLUSIONS Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.
Collapse
Affiliation(s)
- Olavo Biraghi Letaif
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Instituto de Ortopedia e Traumatologia, (IOT-HCFMUSP), Divisão de Cirurgia de Coluna Vertebral, Laboratório de Investigação Médica, São Paulo/SP, Brazil
- Corresponding author: E-mail:
| | - Alexandre Fogaça Cristante
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Instituto de Ortopedia e Traumatologia, (IOT-HCFMUSP), Divisão de Cirurgia de Coluna Vertebral, Laboratório de Investigação Médica, São Paulo/SP, Brazil
| | - Tarcísio Eloy Pessoa de Barros Filho
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Instituto de Ortopedia e Traumatologia, (IOT-HCFMUSP), Divisão de Cirurgia de Coluna Vertebral, Laboratório de Investigação Médica, São Paulo/SP, Brazil
| | - Ricardo Ferreira
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto de Ortopedia e Traumatologia, (IOT-HCFMUSP), Laboratório de Investigação Médica (LIM-41), São Paulo, SP, Brazil
| | - Gustavo Bispo dos Santos
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Instituto de Ortopedia e Traumatologia, (IOT-HCFMUSP), Divisão de Cirurgia de Coluna Vertebral, Laboratório de Investigação Médica, São Paulo/SP, Brazil
| | - Ivan Dias da Rocha
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Instituto de Ortopedia e Traumatologia, (IOT-HCFMUSP), Divisão de Cirurgia de Coluna Vertebral, Laboratório de Investigação Médica, São Paulo/SP, Brazil
| | - Raphael Martus Marcon
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Instituto de Ortopedia e Traumatologia, (IOT-HCFMUSP), Divisão de Cirurgia de Coluna Vertebral, Laboratório de Investigação Médica, São Paulo/SP, Brazil
| |
Collapse
|
33
|
Figueroba SR, Franco GCN, Omar NF, Groppo MF, Groppo FC. Dependence of cytokine levels on the sex of experimental animals: a pilot study on the effect of oestrogen in the temporomandibular joint synovial tissues. Int J Oral Maxillofac Surg 2015; 44:1368-75. [PMID: 26194775 DOI: 10.1016/j.ijom.2015.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/28/2022]
Abstract
The aim of this study was to evaluate the effects of 17β-oestradiol (E2) on cartilage thickness and cytokine levels in the temporomandibular joint (TMJ). Thirty rats (15 female, 15 male) were orchidectomized (ORX), ovariectomized (OVX), or sham-operated. After 21 days, animals were assigned to six groups: (1) sham-ORX; (2) ORX; (3) ORX+E2; (4) sham-OVX; (5) OVX; and (6) OVX+E2. Treatments were administered daily for 21 days. The thickness of cartilage layers (fibrous, proliferative, maturation, and hypertrophic) and cytokine levels (interleukins IL-1α, IL-1β, IL-6, and tumour necrosis factor alpha (TNF-α)) were measured by histomorphometry and ELISA, respectively. Kruskal-Wallis/Dunn's tests were used (alpha=5%). Sham-ORX showed thicker layers than ORX+E2, but not thicker than ORX. All layers, except the hypertrophic layer, were thicker in sham-OVX than OVX or OVX+E2. Although IL-1β levels were higher in castrated animals, E2 did not affect the level of this cytokine. IL-1α levels were higher in both ORX (P=0.0010) and ORX+E2 (P=0.0053) than in sham-ORX. However, E2 decreased IL-1α levels in OVX (P=0.0129). When compared to sham-ORX/OVX, IL-6 levels were not affected by E2 in males but were reduced in OVX (P=0.0079) and increased in OVX+E2 (P=0.0434). Levels of TNF-α were reduced by E2 in both ORX+E2 and OVX+E2. E2 treatment caused gender- and layer-dependent changes in the cartilage. Castration increased all cytokine levels, except for IL-6, without respect to gender.
Collapse
Affiliation(s)
- S R Figueroba
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil.
| | - G C N Franco
- Department of General Biology, Area of Physiology, Pathophysiology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - N F Omar
- Department of Morphology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - M F Groppo
- Department of Morphology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - F C Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| |
Collapse
|
34
|
Cox A, Varma A, Barry J, Vertegel A, Banik N. Nanoparticle Estrogen in Rat Spinal Cord Injury Elicits Rapid Anti-Inflammatory Effects in Plasma, Cerebrospinal Fluid, and Tissue. J Neurotrauma 2015; 32:1413-21. [PMID: 25845398 DOI: 10.1089/neu.2014.3730] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Persons with spinal cord injury (SCI) are in need of effective therapeutics. Estrogen (E2), as a steroid hormone, is a highly pleiotropic agent; with anti-inflammatory, anti-apoptotic, and neurotrophic properties, it is ideal for use in treatment of patients with SCI. Safety concerns around the use of high doses of E2 have limited clinical application, however. To address these concerns, low doses of E2 (25 μg and 2.5 μg) were focally delivered to the injured spinal cord using nanoparticles. A per-acute model (6 h after injury) was used to assess nanoparticle release of E2 into damaged spinal cord tissue; in addition, E2 was evaluated as a rapid anti-inflammatory. To assess inflammation, 27-plex cytokine/chemokine arrays were conducted in plasma, cerebrospinal fluid (CSF), and spinal cord tissue. A particular focus was placed on IL-6, GRO-KC, and MCP-1 as these have been identified from CSF in human studies as potential biomarkers in SCI. S100β, an additional proposed biomarker, was also assessed in spinal cord tissue only. Tissue concentrations of E2 were double those found in the plasma, indicating focal release. E2 showed rapid anti-inflammatory effects, significantly reducing interleukin (IL)-6, GRO-KC, MCP-1, and S100β in one or all compartments. Numerous additional targets of rapid E2 modulation were identified including: leptin, MIP-1α, IL-4, IL-2, IL-10, IFNγ, tumor necrosis factor-α, etc. These data further elucidate the rapid anti-inflammatory effects E2 exerts in an acute rat SCI model, have identified additional targets of estrogen efficacy, and suggest nanoparticle delivered estrogen may provide a safe and efficacious treatment option in persons with acute SCI.
Collapse
Affiliation(s)
- April Cox
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina , Charleston, South Carolina
| | - Abhay Varma
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina , Charleston, South Carolina
| | - John Barry
- 2 Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Alexey Vertegel
- 2 Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Naren Banik
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina , Charleston, South Carolina.,3 Ralph H. Johnson VA Medical Center , Charleston, South Carolina
| |
Collapse
|
35
|
Shivers KY, Amador N, Abrams L, Hunter D, Jenab S, Quiñones-Jenab V. Estrogen alters baseline and inflammatory-induced cytokine levels independent from hypothalamic-pituitary-adrenal axis activity. Cytokine 2015; 72:121-9. [PMID: 25647266 DOI: 10.1016/j.cyto.2015.01.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/18/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022]
Abstract
Although estrogen reduces inflammatory-mediated pain responses, the mechanisms behind its effects are unclear. This study investigated if estrogen modulates inflammatory signaling by reducing baseline or inflammation-induced cytokine levels in the injury-site, serum, dorsal root ganglia (DRG) and/or spinal cord. We further tested whether estrogen effects on cytokine levels are in part mediated through hypothalamic-pituitary-adrenal (HPA) axis activation. Lumbar DRG, spinal cord, serum, and hind paw tissue were analyzed for cytokine levels in 17β-estradiol-(20%) or vehicle-(100% cholesterol) treated female rats following ovariectomy/sham adrenalectomy (OVX), adrenalectomy/sham ovariectomy (ADX) or ADX+OVX operation at baseline and post formalin injection. Formalin significantly increased pro-inflammatory interleukin (IL)-6 levels in the paw, as well as pro- and anti-inflammatory cytokine levels in the DRG, spinal cord and serum in comparison to naïve conditions. Estrogen replacement significantly increased anti-inflammatory IL-10 levels in the DRG. Centrally, estradiol significantly decreased pro-inflammatory tumor necrosis factor (TNF)-α and IL-1β levels, as well as IL-10 levels, in the spinal cord in comparison to cholesterol treatment. At both sites, most estradiol modulatory effects occurred irrespective of pain or surgical condition. Estradiol alone had no influence on cytokine release in the paw or serum, indicating that estrogen effects were site-specific. Although cytokine levels were altered between surgical conditions at baseline and following formalin administration, ADX operation did not significantly reverse estradiol's modulation of cytokine levels. These results suggest that estrogen directly regulates cytokines independent of HPA axis activity in vivo, in part by reducing cytokine levels in the spinal cord.
Collapse
Affiliation(s)
- Kai-Yvonne Shivers
- Hunter College and the Graduate Center, The City University of New York, 695 Park Avenue, New York, NY 10065, USA.
| | - Nicole Amador
- Hunter College and the Graduate Center, The City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | - Lisa Abrams
- Hunter College and the Graduate Center, The City University of New York, 695 Park Avenue, New York, NY 10065, USA; Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Deirtra Hunter
- Hunter College and the Graduate Center, The City University of New York, 695 Park Avenue, New York, NY 10065, USA; Marymount Manhattan College, 221 71st Street, New York, NY 10021, USA
| | - Shirzad Jenab
- Hunter College and the Graduate Center, The City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | - Vanya Quiñones-Jenab
- Hunter College and the Graduate Center, The City University of New York, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
36
|
Campbell SL, Robel S, Cuddapah VA, Robert S, Buckingham SC, Kahle KT, Sontheimer H. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 2015; 63:23-36. [PMID: 25066727 PMCID: PMC4237714 DOI: 10.1002/glia.22730] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/07/2022]
Abstract
Seizures frequently accompany gliomas and often escalate to peritumoral epilepsy. Previous work revealed the importance of tumor-derived excitatory glutamate (Glu) release mediated by the cystine-glutamate transporter (SXC) in epileptogenesis. We now show a novel contribution of GABAergic disinhibition to disease pathophysiology. In a validated mouse glioma model, we found that peritumoral parvalbumin-positive GABAergic inhibitory interneurons are significantly reduced, corresponding with deficits in spontaneous and evoked inhibitory neurotransmission. Most remaining peritumoral neurons exhibit elevated intracellular Cl(-) concentration ([Cl(-) ]i ) and consequently depolarizing, excitatory gamma-aminobutyric acid (GABA) responses. In these neurons, the plasmalemmal expression of KCC2, which establishes the low [Cl(-) ]i required for GABAA R-mediated inhibition, is significantly decreased. Interestingly, reductions in inhibition are independent of Glu release, but the presence of both decreased inhibition and decreased SXC expression is required for epileptogenesis. We suggest GABAergic disinhibition renders peritumoral neuronal networks hyper-excitable and susceptible to seizures triggered by excitatory stimuli, and propose KCC2 as a therapeutic target.
Collapse
Affiliation(s)
- Susan L. Campbell
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Robel
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishnu A. Cuddapah
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie Robert
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School; and Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
37
|
Role of melatonin in traumatic brain injury and spinal cord injury. ScientificWorldJournal 2014; 2014:586270. [PMID: 25587567 PMCID: PMC4283270 DOI: 10.1155/2014/586270] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/03/2023] Open
Abstract
Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS). Traumatic brain injury (TBI) is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB), and oxidative stress. Spinal cord injury (SCI) includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.
Collapse
|
38
|
Naderi A, Asgari AR, Zahed R, Ghanbari A, Samandari R, Jorjani M. Estradiol attenuates spinal cord injury-related central pain by decreasing glutamate levels in thalamic VPL nucleus in male rats. Metab Brain Dis 2014; 29:763-70. [PMID: 24879046 DOI: 10.1007/s11011-014-9570-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Central neuropathic pain (CNP) is a complicated medical problem that involves both the spinal and supraspinal regions of the central nervous system. Estrogen, a neuroprotective agent, has been considered a possible candidate for CNP treatment. In this study, we examined the effects of a single dose of 17β-estradiol on glutamate levels in the ventral posterolateral (VPL) nucleus of the rat thalamus. Furthermore, we determined whether there was a correlation between glutamate levels and neuropathic pain induced by unilateral electrolytic spinothalamic tract (STT) lesion. STT lesioning was performed in male Wistar rats at the T8-T9 vertebrae; rats were then administered 17β-estradiol (4 mg/kg, i.p.) 30 min after injury. Glutamate samples were collected using a microdialysis probe and quantified by high performance liquid chromatography. Mechanical allodynia (MA) and thermal hyperalgesia (TH) thresholds were measured pre-injury and 7, 14, and 28 days post-injury. We found that STT lesion significantly increased glutamate levels in the ipsilateral VPL nucleus 14 and 28 days post-injury; this was accompanied by allodynia and hyperalgesia in the hind paws of the rats. Administering 17β-estradiol to the rats decreased glutamate levels in the ipsilateral VPL nucleus and significantly increased MA and TH thresholds. These results suggest that glutamate in the VPL nucleus of the thalamus is involved in the pathology of neuropathic pain after STT injury; furthermore, 17β-estradiol may attenuate this neuropathic pain by decreasing glutamate levels.
Collapse
Affiliation(s)
- Asieh Naderi
- Department of Physiology & Biophysics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| | | | | | | | | | | |
Collapse
|
39
|
Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 2014; 389:48-57. [PMID: 24444786 DOI: 10.1016/j.mce.2014.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
Abstract
Neuroprotective actions of 17β-estradiol (estradiol) are in part mediated by direct actions on neurons. Astrocytes, which play an essential role in the maintenance of the homeostasis of neural tissue, express estrogen receptors and are also involved in the neuroprotective actions of estradiol in the brain. Estradiol controls gliosis and regulates neuroinflammation, edema and glutamate transport acting on astrocytes. In addition, the hormone regulates the release of neurotrophic factors and other neuroprotective molecules by astrocytes. In addition, reactive astrocytes are a local source of neuroprotective estradiol for the injured brain. Since estradiol therapy is not free from peripheral risks, alternatives for the hormone have been explored. Some selective estrogen receptor modulators (SERMs), which are already in use in clinical practice for the treatment of breast cancer, osteoporosis or menopausal symptoms, exert similar actions to estradiol on astrocytes. Therefore, SERMs represent therapeutic alternatives to estradiol for the activation of astroglia-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
| | | | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | |
Collapse
|
40
|
Mosquera L, Colón JM, Santiago JM, Torrado AI, Meléndez M, Segarra AC, Rodríguez-Orengo JF, Miranda JD. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha. Brain Res 2014; 1561:11-22. [PMID: 24637260 DOI: 10.1016/j.brainres.2014.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/20/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022]
Abstract
17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition.
Collapse
Affiliation(s)
- Laurivette Mosquera
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | - Jennifer M Colón
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | - José M Santiago
- University of Puerto Rico Carolina Campus, Department of Natural Sciences, Carolina, PR 00984, USA
| | - Aranza I Torrado
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | | | - Annabell C Segarra
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | - José F Rodríguez-Orengo
- Department of Biochemistry, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | - Jorge D Miranda
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA.
| |
Collapse
|
41
|
Elkabes S, Nicot AB. Sex steroids and neuroprotection in spinal cord injury: a review of preclinical investigations. Exp Neurol 2014; 259:28-37. [PMID: 24440641 DOI: 10.1016/j.expneurol.2014.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/25/2013] [Accepted: 01/04/2014] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition that affects motor, sensory and autonomic functions. Subsequent to the first mechanical trauma, secondary events, which include inflammation and glial activation, exacerbate tissue damage and worsen functional deficits. Although these secondary injury mechanisms are amenable to therapeutic interventions, the efficacy of current approaches is inadequate. Further investigations are necessary to implement new therapies that can protect neural cells and attenuate some of the detrimental effects of inflammation while promoting regeneration. Studies on different animal models of SCI indicated that sex steroids, especially 17β-estradiol and progesterone, exert neuroprotective, anti-apoptotic and anti-inflammatory effects, ameliorate tissue sparing and improve functional deficits in SCI. As sex steroid receptors are expressed in a variety of cells including neurons, glia and immune system-related cells which infiltrate the injury epicenter, sex steroids could impact multiple processes simultaneously and in doing so, influence the outcomes of SCI. However, the translation of these pre-clinical findings into the clinical setting presents challenges such as the narrow therapeutic time window of sex steroid administration, the diversity of treatment regimens that have been employed in animal studies and the lack of sufficient information regarding the persistence of the effects in chronic SCI. The current review will summarize some of the major findings in this field and will discuss the challenges associated with the implementation of sex steroids as a promising treatment in human SCI.
Collapse
Affiliation(s)
- Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| | - Arnaud B Nicot
- UMR 1064, INSERM, Nantes, France; Faculté de Médecine, Université de Nantes, France; ITUN, CHU de Nantes, France
| |
Collapse
|
42
|
Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, Jiang F, Ling S, Heng BC, Hu X, Ouyang H. 17β-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med 2013; 18:326-43. [PMID: 24373095 PMCID: PMC3930419 DOI: 10.1111/jcmm.12191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023] Open
Abstract
Stem cell transplantation represents a promising strategy for the repair of spinal cord injury (SCI). However, the low survival rate of the grafted cells is a major obstacle hindering clinical success because of ongoing secondary injury processes, which includes excitotoxicity, inflammation and oxidative stress. Previous studies have shown that 17b-estradiol (E2) protects several cell types against cytotoxicity. Thus, we examined the effects of E2 on the viability of human eyelid adipose-derived stem cells (hEASCs) in vitro with hydrogen peroxide (H2O2)-induced cell model and in vivo within a rat SCI model. Our results showed that E2 protected hEASCs against H2O2-induced cell death in vitro, and enhanced the survival of grafted hEASCs in vivo by reducing apoptosis. Additionally, E2 also enhanced the secretion of growth factors by hEASCs, thereby making the local microenvironment more conducive for tissue regeneration. Overall, E2 administration enhanced the therapeutic efficacy of hEASCs transplantation and facilitated motor function recovery after SCI. Hence, E2 administration may be an intervention of choice for enhancing survival of transplanted hEASCs after SCI.
Collapse
Affiliation(s)
- Jing Zhou
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China; Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Franco Rodríguez N, Dueñas Jiménez J, De la Torre Valdovinos B, López Ruiz J, Hernández Hernández L, Dueñas Jiménez S. Tamoxifen favoured the rat sensorial cortex regeneration after a penetrating brain injury. Brain Res Bull 2013; 98:64-75. [DOI: 10.1016/j.brainresbull.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 02/01/2023]
|
44
|
Astiz M, Acaz-Fonseca E, Garcia-Segura LM. Sex Differences and Effects of Estrogenic Compounds on the Expression of Inflammatory Molecules by Astrocytes Exposed to the Insecticide Dimethoate. Neurotox Res 2013; 25:271-85. [DOI: 10.1007/s12640-013-9417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
|
45
|
Siriphorn A, Dunham KA, Chompoopong S, Floyd CL. Postinjury administration of 17β-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats. J Comp Neurol 2013; 520:2630-46. [PMID: 22684936 DOI: 10.1002/cne.23056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The majority of spinal cord injuries (SCIs) in the clinic occur at the lower cervical levels, resulting in both white and gray matter disruption. In contrast, most experimental models of SCI in rodents induce damage in the thoracic cord, resulting primarily in white matter disruption. To address this disparity, experimental cervical SCI models have been developed. Thus, we used a recently characterized model of cervical hemicontusion SCI in adult male rats to assess the potential therapeutic effect of post-SCI administration of 17β-estradiol. Rats received a hemicontusion at the level of the fifth cervical vertebra (C5) followed by administration of 17β-estradiol via a slow release pellet (0.5 or 5.0 mg/pellet) beginning at 30 minutes post-SCI. Behavioral evaluation of skilled and unskilled forelimb function and locomotor function were conducted for 7 weeks after SCI. Upon conclusion of the behavioral assessments, spinal cords were collected and histochemistry and stereology were conducted to evaluate the effect of treatment on the lesion characteristics. We found that post-SCI administration of 17β-estradiol decreased neuronal loss in the ventral horn, decreased reactive astrogliosis, decreased the immune response, and increased white mater sparing at the lesion epicenter. Additionally, post-SCI administration of 17β-estradiol improved skilled forelimb function and locomotor function. Taken together, these data suggest that post-SCI administration of 17β-estradiol protected both the gray and white matter in cervical SCI. Moreover, this treatment improved function on skilled motor tasks that involve both gray and white matter components, suggesting that this is likely a highly clinically relevant protective strategy.
Collapse
Affiliation(s)
- Akkradate Siriphorn
- Center for Glial Biology in Medicine and Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Alabama 35249, USA
| | | | | | | |
Collapse
|
46
|
Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM. Gonadal hormones and the control of reactive gliosis. Horm Behav 2013; 63:216-21. [PMID: 22401743 DOI: 10.1016/j.yhbeh.2012.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
Abstract
Astrocytes and microglia respond to central nervous system (CNS) injury with changes in morphology, proliferation, migration and expression of inflammatory regulators. This phenomenon is known as reactive gliosis. Activation of astrocytes and microglia after acute neural insults, such as stroke or traumatic CNS injury, is considered to be an adaptive response that contributes to minimize neuronal damage. However, reactive gliosis may amplify CNS damage under chronic neurodegenerative conditions. Progesterone, estradiol and testosterone have been shown to control reactive gliosis in different models of CNS injury, modifying the number of reactive astrocytes and reactive microglia and the expression of anti-inflammatory and proinflammatory mediators. The actions of gonadal hormones on reactive gliosis involve different mechanisms, including the modulation of the activity of steroid receptors, such as estrogen receptors α and β, the regulation of nuclear factor-κB mediated transcription of inflammatory molecules and the recruitment of the transcriptional corepressor c-terminal binding protein to proinflammatory promoters. In addition, the Parkinson's disease related gene parkin and the endocannabinoid system also participate in the regulation of reactive gliosis by estradiol. The control exerted by gonadal hormones on reactive gliosis may affect the response of neural tissue to trauma and neurodegeneration and may contribute to sex differences in the manifestation of neurodegenerative diseases. However, the precise functional consequences of the regulation of reactive gliosis by gonadal hormones under acute and chronic neurodegenerative conditions are still not fully clarified.
Collapse
|
47
|
|
48
|
Byers JS, Huguenard AL, Kuruppu D, Liu NK, Xu XM, Sengelaub DR. Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury. J Comp Neurol 2012; 520:2683-96. [PMID: 22314886 PMCID: PMC3960947 DOI: 10.1002/cne.23066] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Treatment with testosterone is neuroprotective/neurotherapeutic after a variety of motoneuron injuries. Here we assessed whether testosterone might have similar beneficial effects after spinal cord injury (SCI). Young adult female rats received either sham or T9 spinal cord contusion injuries and were implanted with blank or testosterone-filled Silastic capsules. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. Contusion injury resulted in large lesions, with no significant differences in lesion volume, percent total volume of lesion, or spared white or gray matter between SCI groups. SCI with or without testosterone treatment also had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with testosterone. Similarly, the vastus lateralis muscle weights and fiber cross-sectional areas of untreated SCI animals were smaller than those of sham-surgery controls, and these reductions were both prevented by testosterone treatment. No effects on motor endplate area or density were observed across treatment groups. These findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be prevented by testosterone treatment, further supporting a role for testosterone as a neurotherapeutic agent in the injured nervous system.
Collapse
Affiliation(s)
- James S. Byers
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - Anna L. Huguenard
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - Dulanji Kuruppu
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dale R. Sengelaub
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
49
|
Pérez-Álvarez MJ, Maza MDC, Anton M, Ordoñez L, Wandosell F. Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia. J Neuroinflammation 2012; 9:157. [PMID: 22747981 PMCID: PMC3414748 DOI: 10.1186/1742-2094-9-157] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/29/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Estradiol has been shown to exert neuroprotective effects in several neurodegenerative conditions, including cerebral ischemia. The presence of this hormone prior to ischemia attenuates the damage associated with such events in a rodent model (middle cerebral artery occlusion (MCAO)), although its therapeutic value when administered post-ischemia has not been assessed. Hence, we evaluated the effects of estradiol treatment after permanent MCAO (pMCAO) was induced in rats, studying the PI3K/AKT/GSK3/β-catenin survival pathway and the activation of SAPK-JNK in two brain areas differently affected by pMCAO: the cortex and hippocampus. In addition, we analyzed the effect of estradiol on the glial response to injury. METHODS Male rats were subjected to pMCAO and estradiol (0.04 mg/kg) was administered 6, 24, and 48 h after surgery. The animals were sacrificed 6 h after the last treatment, and brain damage was evaluated by immunohistochemical quantification of 'reactive gliosis' using antibodies against GFAP and Iba1. In addition, Akt, phospho-Akt(Ser473), phospho-Akt(Thr308), GSK3, phospho-GSK3(Ser21/9), β-catenin, SAPK-JNK, and pSAPK-JNK(Thr183/Tyr185) levels were determined in western blots of the ipsilateral cerebral cortex and hippocampus, and regional differences in neuronal phospho-Akt expression were determined by immunohistochemistry. RESULTS The increases in the percentage of GFAP- (5.25-fold) and Iba1- (1.8-fold) labeled cells in the cortex and hippocampus indicate that pMCAO induced 'reactive gliosis'. This effect was prevented by post-ischemic estradiol treatment; diminished the number of these cells to those comparable with control animals. pMCAO down-regulated the PI3K/AkT/GSK3/β-catenin survival pathway to different extents in the cortex and hippocampus, the activity of which was restored by estradiol treatment more efficiently in the cerebral cortex (the most affected region) than in the hippocampus. No changes in the phosphorylation of SAPK-JNK were observed 54 h after inducing pMCAO, whereas pMCAO did significantly decrease the phospho-Akt(Ser473) in neurons, an effect that was reversed by estradiol. CONCLUSION The present study demonstrates that post-pMCAO estradiol treatment attenuates ischemic injury in both neurons and glia, events in which the PI3K/AKT/GSK3/β-catenin pathway is at least partly involved. These findings indicate that estradiol is a potentially useful treatment to enhance recovery after human ischemic stroke.
Collapse
Affiliation(s)
- Maria Jose Pérez-Álvarez
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Maria del Carmen Maza
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Anton
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lara Ordoñez
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa", CIBERNED-CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, C/Nicolás Cabrera n° 1, Madrid, 28049, Spain
| |
Collapse
|
50
|
Role of Microglia and Astrocyte in Central Pain Syndrome Following Electrolytic Lesion at the Spinothalamic Tract in Rats. J Mol Neurosci 2012; 49:470-9. [DOI: 10.1007/s12031-012-9840-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/11/2012] [Indexed: 01/28/2023]
|