1
|
Lee JE, Lee H, Baek E, Choi B, Yun HS, Yoo YK, Lee YS, Song GJ, Cho KS. The role of glial and neuronal Eph/ephrin signaling in Drosophila mushroom body development and sleep and circadian behavior. Biochem Biophys Res Commun 2024; 720:150072. [PMID: 38749187 DOI: 10.1016/j.bbrc.2024.150072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The Eph receptor, a prototypically large receptor protein tyrosine kinase, interacts with ephrin ligands, forming a bidirectional signaling system that impacts diverse brain functions. Eph receptors and ephrins mediate forward and reverse signaling, affecting neurogenesis, axon guidance, and synaptic signaling. While mammalian studies have emphasized their roles in neurogenesis and synaptic plasticity, the Drosophila counterparts are less studied, especially in glial cells, despite structural similarities. Using RNAi to modulate Eph/ephrin expression in Drosophila neurons and glia, we studied their roles in brain development and sleep and circadian behavior. Knockdown of neuronal ephrin disrupted mushroom body development, while glial knockdown had minimal impact. Surprisingly, disrupting ephrin in neurons or glial cells altered sleep and circadian rhythms, indicating a direct involvement in these behaviors independent from developmental effects. Further analysis revealed distinct sleep phenotypes between neuronal and glial knockdowns, underscoring the intricate interplay within the neural circuits that govern behavior. Glia-specific knockdowns showed altered sleep patterns and reduced circadian rhythmicity, suggesting an intricate role of glia in sleep regulation. Our findings challenge simplistic models of Eph/ephrin signaling limited to neuron-glia communication and emphasize the complexity of the regulatory networks modulating behavior. Future investigations targeting specific glial subtypes will enhance our understanding of Eph/ephrin signaling's role in sleep regulation across species.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyungi Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunji Baek
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea
| | - Young-Sun Lee
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea; Korea Hemp Institute, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Dutrow EV, Serpell JA, Ostrander EA. Domestic dog lineages reveal genetic drivers of behavioral diversification. Cell 2022; 185:4737-4755.e18. [PMID: 36493753 PMCID: PMC10478034 DOI: 10.1016/j.cell.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.
Collapse
Affiliation(s)
- Emily V Dutrow
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James A Serpell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Bimschleger H, Garcia Martinez A, George T, Gileta AF, Han W, Horvath A, Hughson A, Ishiwari K, King CP, Lamparelli A, Versaggi CL, Martin C, St Pierre CL, Tripi JA, Wang T, Chen H, Flagel SB, Meyer P, Richards J, Robinson TE, Palmer AA, Solberg Woods LC. Genome-Wide Association Study in 3,173 Outbred Rats Identifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose. Obesity (Silver Spring) 2020; 28:1964-1973. [PMID: 32860487 PMCID: PMC7511439 DOI: 10.1002/oby.22927] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Obesity is influenced by genetic and environmental factors. Despite the success of human genome-wide association studies, the specific genes that confer obesity remain largely unknown. The objective of this study was to use outbred rats to identify the genetic loci underlying obesity and related morphometric and metabolic traits. METHODS This study measured obesity-relevant traits, including body weight, body length, BMI, fasting glucose, and retroperitoneal, epididymal, and parametrial fat pad weight in 3,173 male and female adult N/NIH heterogeneous stock (HS) rats across three institutions, providing data for the largest rat genome-wide association study to date. Genetic loci were identified using a linear mixed model to account for the complex family relationships of the HS and using covariates to account for differences among the three phenotyping centers. RESULTS This study identified 32 independent loci, several of which contained only a single gene (e.g., Epha5, Nrg1, Klhl14) or obvious candidate genes (e.g., Adcy3, Prlhr). There were strong phenotypic and genetic correlations among obesity-related traits, and there was extensive pleiotropy at individual loci. CONCLUSIONS This study demonstrates the utility of HS rats for investigating the genetics of obesity-related traits across institutions and identify several candidate genes for future functional testing.
Collapse
Affiliation(s)
- Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Katie Holl
- Human and Molecular Genetic Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tony George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | - Alexander F Gileta
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Wenyan Han
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Aidan Horvath
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Alesa Hughson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | | | | | | | - Connor Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | | | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, New York, USA
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shelly B Flagel
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Meyer
- Department of Psychology, University at Buffalo, Buffalo, New York, USA
| | - Jerry Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
4
|
Jager A, Maas DA, Fricke K, de Vries RB, Poelmans G, Glennon JC. Aggressive behavior in transgenic animal models: A systematic review. Neurosci Biobehav Rev 2018; 91:198-217. [DOI: 10.1016/j.neubiorev.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/10/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022]
|
5
|
Deneris E, Gaspar P. Serotonin neuron development: shaping molecular and structural identities. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.301. [PMID: 29072810 PMCID: PMC5746461 DOI: 10.1002/wdev.301] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 02/03/2023]
Abstract
The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Nervous System Development > Secondary: Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Evan Deneris
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, Campus Jussieu, Paris, France
| |
Collapse
|
6
|
Stroud H, Su SC, Hrvatin S, Greben AW, Renthal W, Boxer LD, Nagy MA, Hochbaum DR, Kinde B, Gabel HW, Greenberg ME. Early-Life Gene Expression in Neurons Modulates Lasting Epigenetic States. Cell 2017; 171:1151-1164.e16. [PMID: 29056337 DOI: 10.1016/j.cell.2017.09.047] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
In mammals, the environment plays a critical role in promoting the final steps in neuronal development during the early postnatal period. While epigenetic factors are thought to contribute to this process, the underlying molecular mechanisms remain poorly understood. Here, we show that in the brain during early life, the DNA methyltransferase DNMT3A transiently binds across transcribed regions of lowly expressed genes, and its binding specifies the pattern of DNA methylation at CA sequences (mCA) within these genes. We find that DNMT3A occupancy and mCA deposition within the transcribed regions of genes is negatively regulated by gene transcription and may be modified by early-life experience. Once deposited, mCA is bound by the methyl-DNA-binding protein MECP2 and functions in a rheostat-like manner to fine-tune the cell-type-specific transcription of genes that are critical for brain function.
Collapse
Affiliation(s)
- Hume Stroud
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan C Su
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander W Greben
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - William Renthal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa D Boxer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Hochbaum
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Benyam Kinde
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison W Gabel
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Mamiya PC, Matray-Devoti J, Fisher H, Wagner GC. Mice increased target biting behaviors 24 h after co-administration of alcohol and fluoxetine. Brain Res 2017; 1662:110-115. [DOI: 10.1016/j.brainres.2017.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 11/30/2022]
|
8
|
EphrinA5 Signaling Is Required for the Distinctive Targeting of Raphe Serotonin Neurons in the Forebrain. eNeuro 2017; 4:eN-NWR-0327-16. [PMID: 28197551 PMCID: PMC5292598 DOI: 10.1523/eneuro.0327-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-HT) neurotransmission in the brain relies on a widespread axon terminal network originating from the hindbrain raphe nuclei. These projections are topographically organized such that the dorsal (DR), and median raphe (MnR) nuclei have different brain targets. However, the guidance molecules involved in this selective targeting in development are unknown. Here, we show the implication of ephrinA5 signaling in this process. We find that the EphA5 gene is selectively expressed in a subset of 5-HT neurons during embryonic and postnatal development. Highest coexpression of EphA5 and the 5-HT marker Tph2 is found in the DR, with lower coexpression in the MnR, and hardly any colocalization of the caudal raphe in the medulla. Accordingly, ephrinA induced a dose-dependent collapse response of 5-HT growth cones cultured from rostral but not caudal raphe. Ectopic expression of ephrinA3, after in utero electroporation in the amygdala and piriform cortex, repelled 5-HT raphe fiber ingrowth. Conversely, misplaced DR 5-HT axons were found in ephrin A5 knockout mice in brain regions that are normally only targeted by MnR 5-HT axons. This causes an overall increase in the density of 5-HT innervation in the ventromedial hypothalamus, the suprachiasmatic nucleus, and the olfactory bulb. All these brain areas have high expression of ephrinAs at the time of 5-HT fiber ingrowth. Present results show for the first time the role of a guidance molecule for the region-specific targeting of raphe neurons. This has important implications to understand how functional parsing of central 5-HT neurons is established during development.
Collapse
|
9
|
Chen X, Wang X, Wei X, Wang J. EphA5 protein, a potential marker for distinguishing histological grade and prognosis in ovarian serous carcinoma. J Ovarian Res 2016; 9:83. [PMID: 27887627 PMCID: PMC5123222 DOI: 10.1186/s13048-016-0292-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022] Open
Abstract
Background Ovarian serous carcinoma (OSC) is the most common ovarian epithelial malignancy. Disregulation of Eph/ephrin signaling has been implicated in oncogenesis and tumor progression. EphA5 receptor is one of large families of Eph tyrosine kinase receptor and is documented in the development of nervous system. Till now, there is no published data about the role of EphA5 in ovarian epithelial neoplasmas. Methods This study aims to investigate the expression of EphA5 protein in ovarian serous carcinoma, and its relationship to clinical pathological characteristics. Sixty-one cases of ovarian serous carcinoma, 24 cases of benign ovarian serous tumors, 42 cases of serous borderline tumors and 20 cases of normal fallopian tubes were examined using immunohistochemical staining. The relationship between EphA5 expression and pathological parameters was analyzed. Kaplan-Meier survival function was used to analyze prognosis of patients. Results Immunostaining analysis demonstrated that the EphA5 protein was highly expressed in 100% (20/20) of normal fallopian tube samples, 100% (24/24) of benign epithelial ovarian tumors, 76% (32/42) of ovarian serous borderline tumors, and 31% (19/61) of ovarian serous carcinomas. Loss of EphA5expression was associated with tumor grade (P < 0.001) and FIGO stage (P = 0.005). The survival analysis showed that patients with negative or weak expression of EphA5 protein had a poor outcome than those with positive expression (P = 0.004). Conclusions Our results show that EphA5 may be a potential biomarker for distinguishing high-and low-grade ovarian serous carcinoma and a potential prognostic marker.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Xue Wei
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
| |
Collapse
|
10
|
Apellániz-Ruiz M, Tejero H, Inglada-Pérez L, Sánchez-Barroso L, Gutiérrez-Gutiérrez G, Calvo I, Castelo B, Redondo A, García-Donás J, Romero-Laorden N, Sereno M, Merino M, Currás-Freixes M, Montero-Conde C, Mancikova V, Åvall-Lundqvist E, Green H, Al-Shahrour F, Cascón A, Robledo M, Rodríguez-Antona C. Targeted Sequencing Reveals Low-Frequency Variants in EPHA Genes as Markers of Paclitaxel-Induced Peripheral Neuropathy. Clin Cancer Res 2016; 23:1227-1235. [PMID: 27582484 DOI: 10.1158/1078-0432.ccr-16-0694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Neuropathy is the dose-limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for interindividual differences remain unexplained. In this study, we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes.Experimental Design: We sequenced the coding region of 4 EPHA genes, 5 genes involved in paclitaxel pharmacokinetics, and 30 Charcot-Marie-Tooth genes, in 228 cancer patients with no/low neuropathy or high-grade neuropathy during paclitaxel treatment. An independent validation series included 202 paclitaxel-treated patients. Variation-/gene-based analyses were used to compare variant frequencies among neuropathy groups, and Cox regression models were used to analyze neuropathy along treatment.Results: Gene-based analysis identified EPHA6 as the gene most significantly associated with paclitaxel-induced neuropathy. Low-frequency nonsynonymous variants in EPHA6 were present exclusively in patients with high neuropathy, and all affected the ligand-binding domain of the protein. Accumulated dose analysis in the discovery series showed a significantly higher neuropathy risk for EPHA5/6/8 low-frequency nonsynonymous variant carriers [HR, 14.60; 95% confidence interval (CI), 2.33-91.62; P = 0.0042], and an independent cohort confirmed an increased neuropathy risk (HR, 2.07; 95% CI, 1.14-3.77; P = 0.017). Combining the series gave an estimated 2.5-fold higher risk of neuropathy (95% CI, 1.46-4.31; P = 9.1 × 10-4).Conclusions: This first study sequencing EPHA genes revealed that low-frequency variants in EPHA6, EPHA5, and EPHA8 contribute to the susceptibility to paclitaxel-induced neuropathy. Furthermore, EPHA's neuronal injury repair function suggests that these genes might constitute important neuropathy markers for many neurotoxic drugs. Clin Cancer Res; 23(5); 1227-35. ©2016 AACR.
Collapse
Affiliation(s)
- María Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Héctor Tejero
- Translational Bioinformatics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Lucía Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Lara Sánchez-Barroso
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Isabel Calvo
- Medical Oncology Department, Hospital Montepríncipe, Madrid, Spain.,Medical Oncology Department, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Beatriz Castelo
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Andrés Redondo
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Jesús García-Donás
- Gynecological and Genitourinary Tumors Programme, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Nuria Romero-Laorden
- Gynecological and Genitourinary Tumors Programme, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - María Merino
- Medical Oncology Department, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - María Currás-Freixes
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elisabeth Åvall-Lundqvist
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköpings Universitet, Linköping, Sweden
| | - Henrik Green
- Clinical Pharmacology, Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköpings Universitet, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Fátima Al-Shahrour
- Translational Bioinformatics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. .,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
11
|
Das G, Yu Q, Hui R, Reuhl K, Gale NW, Zhou R. EphA5 and EphA6: regulation of neuronal and spine morphology. Cell Biosci 2016; 6:48. [PMID: 27489614 PMCID: PMC4971699 DOI: 10.1186/s13578-016-0115-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background The Eph family of receptor tyrosine kinases plays important roles in neural development. Previous studies have implicated Eph receptors and their ligands, the ephrins, in neuronal migration, axon bundling and guidance to specific targets, dendritic spine formation and neural plasticity. However, specific contributions of EphA5 and EphA6 receptors to the regulation of neuronal cell morphology have not been well studied. Results Here we show that deletion of EphA5 and EphA6 results in abnormal Golgi staining patterns of cells in the brain, and abnormal spine morphology. Conclusion These observations suggest novel functions of these Eph receptors in the regulation of neuronal and spine structure in brain development and function.
Collapse
Affiliation(s)
- Gitanjali Das
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Qili Yu
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Ryan Hui
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | | | - Renping Zhou
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
12
|
de Almeida Santana MH, Junior GAO, Cesar ASM, Freua MC, da Costa Gomes R, da Luz E Silva S, Leme PR, Fukumasu H, Carvalho ME, Ventura RV, Coutinho LL, Kadarmideen HN, Ferraz JBS. Copy number variations and genome-wide associations reveal putative genes and metabolic pathways involved with the feed conversion ratio in beef cattle. J Appl Genet 2016; 57:495-504. [PMID: 27001052 DOI: 10.1007/s13353-016-0344-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/20/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The use of genome-wide association results combined with other genomic approaches may uncover genes and metabolic pathways related to complex traits. In this study, the phenotypic and genotypic data of 1475 Nellore (Bos indicus) cattle and 941,033 single nucleotide polymorphisms (SNPs) were used for genome-wide association study (GWAS) and copy number variations (CNVs) analysis in order to identify candidate genes and putative pathways involved with the feed conversion ratio (FCR). The GWAS was based on the Bayes B approach analyzing genomic windows with multiple regression models to estimate the proportion of genetic variance explained by each window. The CNVs were detected with PennCNV software using the log R ratio and B allele frequency data. CNV regions (CNVRs) were identified with CNVRuler and a linear regression was used to associate CNVRs and the FCR. Functional annotation of associated genomic regions was performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID) and the metabolic pathways were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We showed five genomic windows distributed over chromosomes 4, 6, 7, 8, and 24 that explain 12 % of the total genetic variance for FCR, and detected 12 CNVRs (chromosomes 1, 5, 7, 10, and 12) significantly associated [false discovery rate (FDR) < 0.05] with the FCR. Significant genomic regions (GWAS and CNV) harbor candidate genes involved in pathways related to energetic, lipid, and protein metabolism. The metabolic pathways found in this study are related to processes directly connected to feed efficiency in beef cattle. It was observed that, even though different genomic regions and genes were found between the two approaches (GWAS and CNV), the metabolic processes covered were related to each other. Therefore, a combination of the approaches complement each other and lead to a better understanding of the FCR.
Collapse
Affiliation(s)
- Miguel Henrique de Almeida Santana
- Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg, Denmark.,Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | | | | | - Mateus Castelani Freua
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Rodrigo da Costa Gomes
- Empresa Brasileira de Pesquisa Agropecuária, CNPGC/EMBRAPA, BR 262 km 4, 79002-970, Campo Grande, Brazil
| | - Saulo da Luz E Silva
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Paulo Roberto Leme
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Heidge Fukumasu
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Minos Esperândio Carvalho
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Ricardo Vieira Ventura
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil.,University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Luiz Lehmann Coutinho
- Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, 13418-900, Piracicaba, Brazil
| | - Haja N Kadarmideen
- Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg, Denmark
| | - José Bento Sterman Ferraz
- Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| |
Collapse
|
13
|
Sheleg M, Yochum CL, Richardson JR, Wagner GC, Zhou R. Ephrin-A5 regulates inter-male aggression in mice. Behav Brain Res 2015; 286:300-7. [PMID: 25746458 PMCID: PMC4390541 DOI: 10.1016/j.bbr.2015.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
The Eph family of receptor tyrosine kinases play key roles in both the patterning of the developing nervous system and neural plasticity in the mature brain. To determine functions of ephrin-A5, a GPI-linked ligand to the Eph receptors, in animal behavior regulations, we examined effects of its inactivation on male mouse aggression. When tested in the resident-intruder paradigm for offensive aggression, ephrin-A5-mutant animals (ephrin-A5(-/-)) exhibited severe reduction in conspecific aggression compared to wild-type controls. On the contrary, defensive aggression in the form of target biting was higher in ephrin-A5(-/-) mice, indicating that the mutant mice are capable of attacking behavior. In addition, given the critical role of olfaction in aggressive behavior, we examined the ability of the ephrin-A5(-/-) mice to smell and found no differences between the mutant and control animals. Testosterone levels in the mutant mice were also found to be within the normal range. Taken together, our data reveal a new role of ephrin-A5 in the regulation of aggressive behavior in mice.
Collapse
Affiliation(s)
- Michal Sheleg
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Carrie L Yochum
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA
| | - George C Wagner
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA; Department of Psychology, Rutgers University, New Brunswick, NJ 08854, USA.
| | - Renping Zhou
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Huan X, Shi J, Lim L, Mitra S, Zhu W, Qin H, Pasquale EB, Song J. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations. PLoS One 2013; 8:e74040. [PMID: 24086308 PMCID: PMC3782497 DOI: 10.1371/journal.pone.0074040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022] Open
Abstract
The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD) simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD), which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J–K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity might be to target specific dynamic states of the Eph receptor LBDs.
Collapse
Affiliation(s)
- Xuelu Huan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Jiahai Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Sayantan Mitra
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Wanlong Zhu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Elena B. Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Pathology Department, University of California San Diego, La Jolla, California, United States of America
| | - Jianxing Song
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Republic of Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
15
|
Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 2011; 59:1567-78. [DOI: 10.1002/glia.21226] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
|
16
|
Association of polymorphisms in the SLIT2 axonal guidance gene with anger in suicide attempters. Mol Psychiatry 2010; 15:10-1. [PMID: 20029409 DOI: 10.1038/mp.2009.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|