1
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Sandouka D, Heeh M, Idais TI. AMPA receptor neurotransmission and therapeutic applications: A comprehensive review of their multifaceted modulation. Eur J Med Chem 2024; 266:116151. [PMID: 38237342 DOI: 10.1016/j.ejmech.2024.116151] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The neuropharmacological community has shown a strong interest in AMPA receptors as critical components of excitatory synaptic transmission during the last fifteen years. AMPA receptors, members of the ionotropic glutamate receptor family, allow rapid excitatory neurotransmission in the brain. AMPA receptors, which are permeable to sodium and potassium ions, manage the bulk of the brain's rapid synaptic communications. This study thoroughly examines the recent developments in AMPA receptor regulation, focusing on a shift from single chemical illustrations to a more extensive investigation of underlying processes. The complex interplay of these modulators in modifying the function and structure of AMPA receptors is the main focus, providing insight into their influence on the speed of excitatory neurotransmission. This research emphasizes the potential of AMPA receptor modulation as a therapy for various neurological disorders such as epilepsy and Alzheimer's disease. Analyzing these regulators' sophisticated molecular details enhances our comprehension of neuropharmacology, representing a significant advancement in using AMPA receptors for treating intricate neurological conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Tala Iyad Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
3
|
Scherer JS, Riedesel OE, Arkhypchuk I, Meiser S, Kretzberg J. Initial Variability and Time-Dependent Changes of Neuronal Response Features Are Cell-Type-Specific. Front Cell Neurosci 2022; 16:858221. [PMID: 35573827 PMCID: PMC9092978 DOI: 10.3389/fncel.2022.858221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Different cell types are commonly defined by their distinct response features. But several studies proved substantial variability between cells of the same type, suggesting rather the appraisal of response feature distributions than a limitation to "typical" responses. Moreover, there is growing evidence that time-dependent changes of response features contribute to robust and functional network output in many neuronal systems. The individually characterized Touch (T), Pressure (P), and Retzius (Rz) cells in the medicinal leech allow for a rigid analysis of response features, elucidating differences between and variability within cell types, as well as their changes over time. The initial responses of T and P cells to somatic current injection cover a wide range of spike counts, and their first spike is generated with a high temporal precision after a short latency. In contrast, all Rz cells elicit very similar low spike counts with variable, long latencies. During prolonged electrical stimulation the resting membrane potential of all three cell types hyperpolarizes. At the same time, Rz cells reduce their spiking activity as expected for a departure from the spike threshold. In contrast, both mechanoreceptor types increase their spike counts during repeated stimulation, consistent with previous findings in T cells. A control experiment reveals that neither a massive current stimulation nor the hyperpolarization of the membrane potential is necessary for the mechanoreceptors' increase in excitability over time. These findings challenge the previously proposed involvement of slow K+-channels in the time-dependent activity changes. We also find no indication for a run-down of HCN channels over time, and a rigid statistical analysis contradicts several potential experimental confounders as the basis of the observed variability. We conclude that the time-dependent change in excitability of T and P cells could indicate a cell-type-specific shift between different spiking regimes, which also could explain the high variability in the initial responses. The underlying mechanism needs to be further investigated in more naturalistic experimental situations to disentangle the effects of varying membrane properties versus network interactions. They will show if variability in individual response features serves as flexible adaptation to behavioral contexts rather than just "randomness".
Collapse
Affiliation(s)
- Jens-Steffen Scherer
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Oda E. Riedesel
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Ihor Arkhypchuk
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Sonja Meiser
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Badash I, Applegate BE, Oghalai JS. In Vivo Cochlear imaging provides a tool to study endolymphatic hydrops. J Vestib Res 2021; 31:269-276. [PMID: 33136083 DOI: 10.3233/ves-200718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Exposure to noise trauma, such as that from improvised explosive devices, can lead to sensorineural hearing loss and a reduced quality of life. In order to elucidate the mechanisms underlying noise-induced hearing loss, we have adapted optical coherence tomography (OCT) for real-time cochlear visualization in live mice after blast exposure. We demonstrated that endolymphatic hydrops develops following blast injury, and that this phenomenon may be associated with glutamate excitotoxicity and cochlear synaptopathy. Additionally, osmotic stabilization of endolymphatic hydrops partially rescues cochlear synapses after blast trauma. OCT is thus a valuable research tool for investigating the mechanisms underlying acoustic trauma and dynamic changes in endolymph volume. It may also help with the diagnosis and treatment of human hearing loss and/or vertigo in the near future.
Collapse
Affiliation(s)
- Ido Badash
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Brian E Applegate
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Meiser S, Ashida G, Kretzberg J. Non-synaptic Plasticity in Leech Touch Cells. Front Physiol 2019; 10:1444. [PMID: 31827443 PMCID: PMC6890822 DOI: 10.3389/fphys.2019.01444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 01/06/2023] Open
Abstract
The role of Na+/K+-pumps in activity-dependent synaptic plasticity has been described in both vertebrates and invertebrates. Here, we provide evidence that the Na+/K+-pump is also involved in activity-dependent non-synaptic cellular plasticity in leech sensory neurons. We show that the resting membrane potential (RMP) of T cells hyperpolarizes in response to repeated somatic current injection, while at the same time their spike count (SC) and the input resistance (IR) increase. Our Hodgkin–Huxley-type neuron model, adjusted to physiological T cell properties, suggests that repetitive action potential discharges lead to increased Na+/K+-pump activity, which then hyperpolarizes the RMP. In consequence, a slow, non-inactivating current decreases, which is presumably mediated by voltage-dependent, low-threshold potassium channels. Closing of these putative M-type channels due to hyperpolarization of the resting potential increases the IR of the cell, leading to a larger number of spikes. By this mechanism, the response behavior switches from rapidly to slowly adapting spiking. These changes in spiking behavior also effect other T cells on the same side of the ganglion, which are connected via a combination of electrical and chemical synapses. An increased SC in the presynaptic T cell results in larger postsynaptic responses (PRs) in the other T cells. However, when the number of elicited presynaptic spikes is kept constant, the PR does not change. These results suggest that T cells change their responses in an activity-dependent manner through non-synaptic rather than synaptic plasticity. These changes might act as a gain-control mechanism. Depending on the previous activity, this gain could scale the relative impacts of synaptic inputs from other mechanoreceptors, versus the spike responses to tactile skin stimulation. This multi-tasking ability, and its flexible adaptation to previous activity, might make the T cell a key player in a preparatory network, enabling the leech to perform fast behavioral reactions to skin stimulation.
Collapse
Affiliation(s)
- Sonja Meiser
- Computational Neuroscience, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Go Ashida
- Computational Neuroscience, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Summers T, Wang Y, Hanten B, Burrell BD. Physiological, pharmacological and behavioral evidence for a TRPA1 channel that can elicit defensive responses in the medicinal leech. ACTA ACUST UNITED AC 2015; 218:3023-31. [PMID: 26254323 DOI: 10.1242/jeb.120600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
Transient receptor potential ankyrin subtype 1 (TRPA1) channels are chemosensitive to compounds such as allyl isothiocyanate (AITC, the active component of mustard oil) and other reactive electrophiles and may also be thermodetectors in many animal phyla. In this study, we provide the first pharmacological evidence of a putative TRPA1-like channel in the medicinal leech. The leech's polymodal nociceptive neuron was activated by both peripheral and central application of the TRPA1 agonist AITC in a concentration-dependent manner. Responses to AITC were inhibited by the selective TRPA1 antagonist HC030031, but also by the TRPV1 antagonist SB366791. Other TRPA1 activators - N-methylmaleimide (NMM) and cinnamaldehyde (CIN) - also activated this nociceptive neuron, although HC030031 only inhibited the effects of NMM. The polymodal nociceptive neurons responded to moderately cold thermal stimuli (<17°C) and these responses were blocked by HC030031. AITC sensitivity was also found in the pressure-sensitive sensory neurons and was blocked by HC030031, but not by SB366791. AITC elicited a nocifensive withdrawal of the posterior sucker in a concentration-dependent manner that could be attenuated with HC030031. Peripheral application of AITC in vivo also produced swimming-like behavior that was attenuated by HC030031. These results suggest the presence of a TRPA1-like channel in the medicinal leech nervous system that responds to cold temperatures and may interact with the leech TRPV-like channel.
Collapse
Affiliation(s)
- Torrie Summers
- Center for Brain and Behavior Research and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Yanqing Wang
- Center for Brain and Behavior Research and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Brandon Hanten
- Center for Brain and Behavior Research and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Brian D Burrell
- Center for Brain and Behavior Research and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
7
|
Summers T, Holec S, Burrell BD. Physiological and behavioral evidence of a capsaicin-sensitive TRPV-like channel in the medicinal leech. ACTA ACUST UNITED AC 2014; 217:4167-73. [PMID: 25324339 DOI: 10.1242/jeb.110049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transient receptor potential vanilloid (TRPV) channels are found throughout the animal kingdom, where they play an important role in sensory transduction. In this study, we combined physiological studies with in vivo behavioral experiments to examine the presence of a putative TRPV-like receptor in the medicinal leech, building upon earlier studies in this lophotrochozoan invertebrate. The leech polymodal nociceptive neuron was activated by both peripheral and central application of the TRPV1-activator capsaicin in a concentration-dependent manner, with 100 μmol l(-1) being the lowest effective concentration. Responses to capsaicin were inhibited by the selective TRPV1 antagonist SB366791. The polymodal nociceptive neuron also responded to noxious thermal stimuli (>40°C), and this response was also blocked by SB366791. Capsaicin sensitivity was selective to the polymodal nociceptor with no direct response being elicited in the mechanical nociceptive neuron or in the non-nociceptive touch- or pressure-sensitive neurons. Capsaicin also elicited nocifensive behavioral responses (withdrawals and locomotion) in a concentration-dependent manner, and these behavioral responses were significantly attenuated with SB366791. These results suggest the presence of a capsaicin-sensitive TRPV-like channel in the medicinal leech central nervous system and are relevant to the evolution of nociceptive signaling.
Collapse
Affiliation(s)
- Torrie Summers
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford, School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Sara Holec
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford, School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Brian D Burrell
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford, School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
8
|
Yuan S, Burrell BD. Nonnociceptive afferent activity depresses nocifensive behavior and nociceptive synapses via an endocannabinoid-dependent mechanism. J Neurophysiol 2013; 110:2607-16. [PMID: 24027102 DOI: 10.1152/jn.00170.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, low-frequency stimulation (LFS) of a nonnociceptive touch-sensitive neuron has been found to elicit endocannabinoid-dependent long-term depression (eCB-LTD) in nociceptive synapses in the leech central nervous system (CNS) that requires activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor by postsynaptically synthesized 2-arachidonoyl glycerol (2-AG). This capacity of nonnociceptive afferent activity to reduce nociceptive signaling resembles gate control of pain, albeit longer lasting in these synaptic experiments. Since eCB-LTD has been observed at a single sensory-motor synapse, this study examines the functional relevance of this mechanism, specifically whether this form of synaptic plasticity has similar effects at the behavioral level in which additional, intersegmental neural circuits are engaged. Experiments were carried out using a semi-intact preparation that permitted both synaptic recordings and monitoring of the leech whole body shortening, a defensive withdrawal reflex that was elicited via intracellular stimulation of a single nociceptive neuron (the N cell). The same LFS of a nonnociceptive afferent that induced eCB-LTD in single synapses also produced an attenuation of the shortening reflex. Similar attenuation of behavior was also observed when 2-AG was applied. LFS-induced behavioral and synaptic depression was blocked by tetrahydrolipstatin (THL), a diacylglycerol lipase inhibitor, and by SB366791, a TRPV1 antagonist. The effects of both THL and SB366791 were observed following either bath application of the drug or intracellular injection into the presynaptic (SB366791) or postsynaptic (THL) neuron. These findings demonstrate a novel, endocannabinoid-based mechanism by which nonnociceptive afferent activity may modulate nocifensive behaviors via action on primary afferent synapses.
Collapse
Affiliation(s)
- Sharleen Yuan
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | | |
Collapse
|
9
|
Differentially expressed genes in Hirudo medicinalis ganglia after acetyl-L-carnitine treatment. PLoS One 2013; 8:e53605. [PMID: 23308261 PMCID: PMC3537667 DOI: 10.1371/journal.pone.0053605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Acetyl-L-carnitine (ALC) is a naturally occurring substance that, when administered at supra-physiological concentration, is neuroprotective. It is involved in membrane stabilization and in enhancement of mitochondrial functions. It is a molecule of considerable interest for its clinical application in various neural disorders, including Alzheimer's disease and painful neuropathies. ALC is known to improve the cognitive capability of aged animals chronically treated with the drug and, recently, it has been reported that it impairs forms of non-associative learning in the leech. In the present study the effects of ALC on gene expression have been analyzed in the leech Hirudo medicinalis. The suppression subtractive hybridisation methodology was used for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts in the leech nervous system after ALC treatment. The method detects differentially but also little expressed transcripts of genes whose sequence or identity is still unknown. We report that a single administration of ALC is able to modulate positively the expression of genes coding for functions that reveal a lasting effect of ALC on the invertebrate, and confirm the neuroprotective and neuromodulative role of the substance. In addition an important finding is the modulation of genes of vegetal origin. This might be considered an instance of ectosymbiotic mutualism.
Collapse
|
10
|
Li Q, Burrell BD. Associative, bidirectional changes in neural signaling utilizing NMDA receptor- and endocannabinoid-dependent mechanisms. Learn Mem 2011; 18:545-53. [PMID: 21844187 DOI: 10.1101/lm.2252511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We examined plasticity following the pairing of spike trains in the touch mechanosensory neuron (T cell) and S interneuron (S cell) in the medicinal leech. Long-term potentiation (LTP) of T to S signaling was elicited when the T-cell spike train preceded the S-cell train. An interval 0 to +1 sec between the T- and S-cell spike trains was required to elicit long-term potentiation (LTP), and this potentiation was NMDA receptor (NMDAR)-dependent. Long-term depression (LTD) was elicited when S-cell activity preceded T-cell activity and the interval between the two spike trains was -0.2 sec to -10 sec. This surprisingly broad temporal window involved two distinct cellular mechanisms; an NMDAR-mediated LTD (NMDAR-LTD) when the pairing interval was relatively brief (<-1 sec) and an endocannabinoid-mediated LTD (eCB-LTD) when longer pairing intervals were used (-1 to -10 sec). This eCB-LTD also required activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor, presynaptic Ca(2+) release from intracellular stores and activation of voltage-gated Ca(2+) channels (VGCCs). These findings demonstrate that the pairing of spike trains elicits timing-dependent forms of LTP and LTD that are supported by a complex set of cellular mechanisms involving NMDARs and endocannabinoid activation of TRPV-like receptors.
Collapse
Affiliation(s)
- Qin Li
- Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
11
|
A Novel Electrophysiological Technique for Rat Hippocampal CA1 Area Field Potential Recording <I>in vivo</I>: Development and Application of Stimulation/Recording/Drug Delivery System*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Yuan S, Burrell BD. Endocannabinoid-dependent LTD in a nociceptive synapse requires activation of a presynaptic TRPV-like receptor. J Neurophysiol 2010; 104:2766-77. [PMID: 20884761 DOI: 10.1152/jn.00491.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have found that some forms of endocannabinoid-dependent synaptic plasticity in the hippocampus are mediated through activation of transient potential receptor vanilloid (TRPV) receptors instead of cannabinoid receptors CB1 or CB2. The potential role for synaptic localization of TRPV receptors during endocannabinoid modulation of nociceptive synapses was examined in the leech CNS where it is possible to record from the same pair of neurons from one preparation to the next. Long-term depression (LTD) in the monosynaptic connection between the nociceptive (N) sensory neuron and the longitudinal (L) motor neuron was found to be endocannabinoid-dependent given that this depression was blocked by RHC-80267, an inhibitor of DAG lipase that is required for 2-arachidonoyl glycerol (2AG) synthesis. Intracellular injection of a second DAG lipase inhibitor, tetrahyrdolipstatin (THL) was also able to block this endocannabinoid-dependent LTD (ecLTD) when injected postsynaptically but not presynaptically. N-to-L ecLTD was also inhibited by the TRPV1 antagonists capsazepine and SB 366791. Bath application of 2AG or the TRPV1 agonists capsaicin and resiniferatoxin mimicked LTD and both capsaicin- and 2AG-induced depression were blocked by capsazepine. In addition, pretreatment with 2AG or capsaicin occluded subsequent expression of LTD induced by repetitive activity. Presynaptic, but not postsynaptic, intracellular injection of capsazepine blocked both activity- and 2AG-induced ecLTD, suggesting that a presynaptic TRPV-like receptor in the leech mediated this form of synaptic plasticity. These findings potentially extend the role ecLTD to nociceptive synapses and suggest that invertebrate synapses, which are thought to lack CB1/CB2 receptor orthologues, utilize a TRPV-like protein as an endocannabinoid receptor.
Collapse
Affiliation(s)
- Sharleen Yuan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
13
|
Grey KB, Burrell BD. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases. J Neurophysiol 2010; 103:2737-46. [PMID: 20457859 DOI: 10.1152/jn.01112.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular properties of long-term potentiation (LTP) following pairing of pre- and postsynaptic activity were examined at a known glutamatergic synapse in the leech, specifically between the pressure (P) mechanosensory and anterior pagoda (AP) neurons. Stimulation of the presynaptic P cell (25 Hz) concurrent with a 2 nA depolarization of the postsynaptic AP cell significantly potentiated the P-to-AP excitatory postsynaptic potential (EPSP) in an N-methyl-d-aspartate receptor (NMDAR)-dependent manner based on inhibitory effects of the NMDAR antagonist MK801 and inhibition of the NMDAR glycine binding site by 7-chlorokynurenic acid. LTP was blocked by injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) into the postsynaptic (AP) cell, indicating a requirement for postsynaptic elevation of intracellular Ca(2+). Autocamtide-2-related inhibitory peptide (AIP), a specific inhibitor of Ca(2+)/calmodulin-dependent kinase II (CaMKII), and Rp-cAMP, an inhibitor of protein kinase A (PKA), also blocked pairing-induced potentiation, indicating a requirement for activation of CaMKII and PKA. Interestingly, application of AIP during pairing resulted in significantly depressed synaptic transmission. Co-application of AIP with the protein phosphatase inhibitor okadaic acid restored synaptic transmission to baseline levels, suggesting an interaction between CaMKII and protein phosphatases during induction of activity-dependent synaptic plasticity. When postsynaptic activity preceded presynaptic activity, NMDAR-dependent long-term depression (LTD) was observed that was blocked by okadaic acid. Postsynaptic injection of botulinum toxin blocked P-to-AP potentiation while postsynaptic injection of pep2-SVKI, an inhibitor of AMPA receptor endocytosis, inhibited LTD, supporting the hypothesis that glutamate receptor trafficking contributes to both LTP and LTD at the P-to-AP synapse in the leech.
Collapse
Affiliation(s)
- Kathryn B Grey
- Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
14
|
Li Q, Burrell BD. Two forms of long-term depression in a polysynaptic pathway in the leech CNS: one NMDA receptor-dependent and the other cannabinoid-dependent. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:831-41. [PMID: 19657662 DOI: 10.1007/s00359-009-0462-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/13/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
Abstract
Although long-term depression (LTD) is a well-studied form of synaptic plasticity, it is clear that multiple cellular mechanisms are involved in its induction. In the leech, LTD is observed in a polysynaptic connection between touch mechanosensory neurons (T cells) and the S interneuron following low frequency stimulation. LTD elicited by 450 s low frequency stimulation was blocked by N-methyl-D-aspartic acid (NMDA) receptor antagonists. However, LTD elicited by 900 s low frequency stimulation was insensitive to NMDA receptor antagonists and was instead dependent on cannabinoid signaling. This LTD was blocked by both a cannabinoid receptor antagonist and by inhibition of diacylglycerol lipase, which is necessary for the synthesis of the cannabinoid transmitter 2-arachidonyl glycerol (2-AG). Bath application of 2-AG or the cannabinoid receptor agonist CP55 940 also induced LTD at this synapse. These results indicate that two forms of LTD coexist at the leech T-to-S polysynaptic pathway: one that is NMDA receptor-dependent and another that is cannabinoid-dependent and that activation of either form of LTD is dependent on the level of activity in this circuit.
Collapse
Affiliation(s)
- Qin Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
15
|
Vazquez Y, Mendez B, Trueta C, De-Miguel FF. Summation of excitatory postsynaptic potentials in electrically-coupled neurones. Neuroscience 2009; 163:202-12. [PMID: 19501633 DOI: 10.1016/j.neuroscience.2009.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022]
Abstract
Dendritic electrical coupling increases the number of effective synaptic inputs onto neurones by allowing the direct spread of synaptic potentials from one neurone to another. Here we studied the summation of excitatory postsynaptic potentials (EPSPs) produced locally and arriving from the coupled neurone (transjunctional) in pairs of electrically-coupled Retzius neurones of the leech. We combined paired recordings of EPSPs, the production of artificial excitatory postsynaptic potentials (APSPs) in neurone pairs with different coupling coefficients and simulations of EPSPs produced in the coupled dendrites. Summation of the EPSPs produced in the dendrites was always linear, suggesting that synchronous EPSPs are produced at two or more different pairs of coupled dendrites and not in both sides of any one gap junction. The different spatio-temporal relationships explored between pairs of EPSPs or APSPs produced three main effects. (1) Synchronous pairs of EPSPs or APSPs exhibited an elongation of their decay phase compared to single EPSPs. (2) Asymmetries in the amplitudes between the pair of EPSPs added a "hump" to the smallest EPSP. (3) Modelling the inputs near the electrical synapse or anticipating the production of the transjunctional APSP increased the amplitude of the compound EPSP. The magnitude of all these changes depended on the coupling coefficient of the neurones. We also show that the hump improves the passive conduction of EPSPs by adding low frequency components. The diverse effects of summation of local and alien EPSPs shown here endow electrically-coupled neurones with a wider repertoire of adjustable integrative possibilities.
Collapse
Affiliation(s)
- Y Vazquez
- Departamento de Biofísica, Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Apartado Postal 70-253, C.P. 04510, D.F., Mexico
| | | | | | | |
Collapse
|
16
|
Megalou EV, Brandon CJ, Frost WN. Evidence that the swim afferent neurons of tritonia diomedea are glutamatergic. THE BIOLOGICAL BULLETIN 2009; 216:103-112. [PMID: 19366921 PMCID: PMC3073080 DOI: 10.1086/bblv216n2p103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The escape swim response of the marine mollusc Tritonia diomedea is a well-established model system for studies of the neural basis of behavior. Although the swim neural network is reasonably well understood, little is known about the transmitters used by its constituent neurons. In the present study, we provide immunocytochemical and electrophysiological evidence that the S-cells, the afferent neurons that detect aversive skin stimuli and in turn trigger Tritonia's escape swim response, use glutamate as their transmitter. First, immunolabeling revealed that S-cell somata contain elevated levels of glutamate compared to most other neurons in the Tritonia brain, consistent with findings from glutamatergic neurons in many species. Second, pressure-applied puffs of glutamate produced the same excitatory response in the target neurons of the S-cells as the naturally released S-cell transmitter itself. Third, the glutamate receptor antagonist CNQX completely blocked S-cell synaptic connections. These findings support glutamate as a transmitter used by the S-cells, and will facilitate studies using this model system to explore a variety of issues related to the neural basis of behavior.
Collapse
Affiliation(s)
- E V Megalou
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|