1
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
2
|
Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Zhou YQ, Liu DQ, Mei W. Peroxisome proliferator-activated receptor gamma: A promising therapeutic target for the treatment of chronic pain. Brain Res 2025; 1850:149366. [PMID: 39617285 DOI: 10.1016/j.brainres.2024.149366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Chronic pain represents an incapacitating medical condition that profoundly impacts the patients' quality of life. Managing chronic pain poses a significant challenge for healthcare professionals due to its multifaceted nature and the limited effectiveness of current treatment options. Therefore, novel therapeutic interventions are crucially required for the management of chronic pain. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, exerts regulatory effects on physiological processes such as glucose and lipid metabolism. Emerging studies demonstrate that PPARγ is a critical regulator of the expression of various genes, including those of anti-inflammatory cytokines and antioxidant enzymes. Substantial evidence indicates decreased expression of PPARγ in the sciatic nerve, dorsal root ganglia, and spinal cord dorsal horn in animal models of chronic pain. Furthermore, natural or synthetic PPARγ agonists had inhibitory effects on nociceptive hypersensitivity in various animal models of chronic pain. This review summarizes and discusses preclinical evidence demonstrating the therapeutic potential of PPARγ agonists in chronic pain management. The available evidence indicates that PPARγ activation reduces chronic pain by inhibiting neuroinflammation and oxidative stress as well as modulation of opioidergic system. Overall, the use of PPARγ agonists is a promising therapeutic approach for treating chronic pain; however, further research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Lin Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
3
|
Sulimai N, Brown J, Lominadze D. Caffeic Acid Phenethyl Ester Protects Neurons Against Oxidative Stress and Neurodegeneration During Traumatic Brain Injury. Biomolecules 2025; 15:80. [PMID: 39858474 PMCID: PMC11762460 DOI: 10.3390/biom15010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Traumatic brain injury (TBI) is an inflammatory disease causing neurodegeneration. One of the consequences of inflammation is an elevated blood level of fibrinogen (Fg). Earlier we found that extravasated Fg induced an increased expression of neuronal nuclear factor kappa B (NF-κB) p65. In the present study, we aimed to evaluate the effect of caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB, on Fg-induced neurodegeneration in vitro and in mice with mild-to-moderate TBI. Primary mouse brain cortical neurons were treated with Fg (0.5 or 1 mg/mL) in the presence or absence of CAPE. A cortical contusion injury -induced model of TBI in C57BL/6 mice was used. Mice were treated with CAPE for two weeks. The generation of reactive oxygen species (ROS) and neuronal viability were assessed. Mice memory was assessed using novel object recognition and contextual fear conditioning tests. The generation of ROS and viability of neurons in vitro and in the brain samples were assessed. Data showed that CAPE attenuated the Fg-induced generation of ROS and neuronal death. CAPE improved the cognitive function of the mice with TBI. The results suggest that Fg-induced generation of ROS could be a mechanism involved in cognitive impairment and that CAPE can offer protection against oxidative damage and neurodegeneration.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Estrella LD, Manganaro JE, Sheldon L, Roland N, Snyder AD, George JW, Emanuel K, Lamberty BG, Stauch KL. Chronic glial activation and behavioral alterations induced by acute/subacute pioglitazone treatment in a mouse model of traumatic brain injury. Brain Behav Immun 2025; 123:64-80. [PMID: 39242055 DOI: 10.1016/j.bbi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Traumatic brain injury (TBI) is a disabling neurotraumatic condition and the leading cause of injury-related deaths and disability in the United States. Attenuation of neuroinflammation early after TBI is considered an important treatment target; however, while these inflammatory responses can induce secondary brain injury, they are also involved in the repair of the nervous system. Pioglitazone, which activates peroxisome proliferator-activated receptor gamma, has been shown to decrease inflammation acutely after TBI, but the long-term consequences of its use remain unknown. For this reason, the impacts of treatment with pioglitazone during the acute/subacute phase (30 min after injury and each subsequent 24 h for 5 days) after TBI were interrogated during the chronic phase (30- and 274-days post-injury (DPI)) in mice using the controlled cortical impact model of experimental TBI. Acute/subacute pioglitazone treatment after TBI results in long-term deleterious consequences, including disruption of tau homeostasis, chronic glial cell activation, neuronal pathology, and worsened injury severity particularly at 274 DPI, with male mice being more susceptible than female mice. Further, male pioglitazone-treated TBI mice exhibited increased dominant and offensive-like behavior while having a decreased non-social exploring behavior at 274 DPI. After TBI, both sexes exhibited glial activation at 30 DPI when treated with pioglitazone; however, while injury severity was increased in females it was not impacted in male mice. This work reveals that although pioglitazone has been shown to lead to attenuated TBI outcomes acutely, sex-based differences, timing and long-term consequences of treatment with glitazones must be considered and further studied prior to their clinical use for TBI therapy.
Collapse
Affiliation(s)
- L Daniel Estrella
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Jane E Manganaro
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Lexi Sheldon
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Nashanthea Roland
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Austin D Snyder
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Joseph W George
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Katy Emanuel
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Benjamin G Lamberty
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Kelly L Stauch
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA.
| |
Collapse
|
5
|
Weinstock M. Therapeutic agents for Alzheimer's disease: a critical appraisal. Front Aging Neurosci 2024; 16:1484615. [PMID: 39717349 PMCID: PMC11663918 DOI: 10.3389/fnagi.2024.1484615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Mutations in genes and precursors of β amyloid (Aβ) are found in the familial form of the disease. This led to the evaluation of seven monoclonal antibodies against Aβ in subjects with AD, two of which were approved for use by the FDA. They caused only a small improvement in cognitive function, probably because they were given to those with much more prevalent sporadic forms of dementia. They also have potentially serious adverse effects. Oxidative stress and elevated pro-inflammatory cytokines are present in all subjects with AD and are well correlated with the degree of memory impairment. Drugs that affect these processes include TNFα blocking antibodies and MAPK p38 inhibitors that reduce cognitive impairment when given for other inflammatory conditions. However, their adverse effects and inability to penetrate the brain preclude their use for dementia. Rosiglitazone is used to treat diabetes, a risk factor for AD, but failed in a clinical trial because it was given to subjects that already had dementia. Ladostigil reduces oxidative stress and suppresses the release of pro-inflammatory cytokines from activated microglia without blocking their effects. Chronic oral administration to aging rats prevented the decline in memory and suppressed overexpression of genes adversely affecting synaptic function in relevant brain regions. In a phase 2 trial, ladostigil reduced the decline in short-term memory and in whole brain and hippocampal volumes in human subjects with mild cognitive impairment and had no more adverse effects than placebo.
Collapse
Affiliation(s)
- Marta Weinstock
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
6
|
Yao H, Tian J, Cheng S, Dou H, Zhu Y. The mechanism of hypoxia-inducible factor-1α enhancing the transcriptional activity of transferrin ferroportin 1 and regulating the Nrf2/HO-1 pathway in ferroptosis after cerebral ischemic injury. Neuroscience 2024; 559:26-38. [PMID: 39168172 DOI: 10.1016/j.neuroscience.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/05/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Cerebral ischemic/reperfusion (I/R) injury has high disability and morbidity. Hypoxia-inducible factor-1α (HIF-1α) may enhance the transcriptional activity of transferrin ferroportin 1 (FPN1) in regulating ferroptosis after cerebral ischemia injury (CII). In this study, cerebral I/R injury rat models were established and treated with pcDNA3.1-HIF-1α, pcDNA3.1-NC lentiviral plasmid, or ML385 (a specific Nrf2 inhibitor). Additionally, oxygen-glucose deprivation/reoxygenation (OGD/R) exposed PC12 cells were used as an in vitro model of cerebral ischemia and treated with pcDNA3.1-HIF-1α, si-FPN1, or ML385. The results elicited that cerebral I/R injury rats exhibited increased Longa scores, TUNEL and NeuN co-positive cells, Fe2+ concentration, ROS and HIF-1α levels, and MDA content, while reduced cell density and number, GSH content, and GPX4 protein level. Morphologically abnormal and disordered hippocampal neurons were also observed in CII rats. HIF-1α inhibited brain neuron ferroptosis and ameliorated I/R injury. HIF-1α alleviated OGD-induced PC12 cell ferroptosis. OGD/R decreased FPN1 protein level in PC12 cells, and HIF-1α enhanced FPN1 transcriptional activity. FPN1 knockdown reversed HIF-1α-mediated alleviation of OGD/R-induced ferroptosis. HIF-1α activated the Nrf2/HO-1 pathway by enhancing FPN1 expression and alleviating OGD/R-induced ferroptosis. Conjointly, HIF-1α enhanced the transcriptional activity of FPN1, activated the Nrf2/HO-1 pathway, and inhibited ferroptosis of brain neurons, thereby improving I/R injury in CII rats.
Collapse
Affiliation(s)
- Haiqian Yao
- Department of Neurology, The second Affiliated of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang 150001, China
| | - Jianan Tian
- Department of Neurology, The second Affiliated of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang 150001, China
| | - Shi Cheng
- Department of Orthopaedics, The second Affiliated of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang 150001, China
| | - Haitong Dou
- Department of Neurology, The second Affiliated of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang 150001, China
| | - Yulan Zhu
- Department of Neurology, The second Affiliated of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
7
|
Wu F, Li L, Li Z, Zhou D, Huang Z, Sang D, Hao C. Mechanism of Mettl14 regulating AIM2 inflammasome activation and neuronal apoptosis and pyroptosis in spinal cord injury by mediating PPARγ m6A methylation. J Physiol Biochem 2024; 80:881-894. [PMID: 39400644 DOI: 10.1007/s13105-024-01047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 10/15/2024]
Abstract
Spinal cord injury (SCI) represents a destructive pathological and neurological state. Methyltransferase-like 14 (Mettl14)-mediated m6A modification links to spinal cord injury (SCI), and we explored its mechanism. SCI mouse models were subjected to si-Mettl14 and si-negative control treatments and mouse behavior, pathological condition and apoptosis assessments. The oxygen/glucose deprivation (OGD)-induced spinal cord neuronal cell models were processed with si-Mettl14 and si-peroxisome proliferator-activated receptor γ (PPARγ) plasmids, and pcDNA3.1-YTHDF2 or synthetic dsDNA Poly(dA: dT), followed by viability and apoptosis evaluation by MTT and flow cytometry. Levels of Mettl14, PPARγ, and YTHDF2 mRNAs and proteins, AIM2 inflammasome activation-associated and pyroptosis marker proteins, PPARγ m6A methylation and pyroptosis-related inflammatory factors were determined by RT-qPCR, Western blot, Me-RIP and ELISA, with PPARγ mRNA stability and YTHDF2-PPARγ interaction assessed. Mettl14 and PPARγ m6A modification levels rose in SCI spinal cord tissues, while PPARγ levels dropped. Mettl14 knockdown dampened m6A modification, up-regulated PPARγ levels, weakened neuronal apoptosis, and ameliorated SCI in mice. OGD down-regulated PPARγ and accelerated OGD-induced neuronal apoptosis and pyroptosis via inducing Mettl14-mediated m6A modification. Mettl14 amplified PPARγ mRNA degradation and down-regulated PPARγ by mediating m6A methylation via the YTHDF2-dependent pathway. Mettl14 silencing-mediated PPARγ m6A methylation mitigated OGD-induced neuronal apoptosis and pyroptosis by inactivating AIM2 inflammasome. Mettl14 triggered activated AIM2 inflammasomes, promoted neuronal apoptosis and pyroptosis, and worsened SCI in SCI mice via mediating PPARγ m6A methylation. Mettl14 regulates AIM2 inflammasome activation, and redounds to spinal cord neuronal apoptosis and pyroptosis in SCI by mediating m6A methylation of PPARγ.
Collapse
Affiliation(s)
- Fan Wu
- Department of Orthopedics, Geriatric Hospital Affiliated of Wuhan University of Science and Technology, Wuhan, Hubei, 430075, People's Republic of China
- Department of Orthopedics, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, People's Republic of China
| | - Liqun Li
- Department of Orthopedics, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, People's Republic of China
| | - Zhigang Li
- Department of Orthopedics, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, People's Republic of China
| | - Dabiao Zhou
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, People's Republic of China
| | - Zhihui Huang
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, People's Republic of China
| | - Dawei Sang
- Department of Orthopedics, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, People's Republic of China.
| | - Chizi Hao
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
8
|
Baghcheghi Y, Razazpour F, Seyedi F, Arefinia N, Hedayati-Moghadam M. Exploring the molecular mechanisms of PPARγ agonists in modulating memory impairment in neurodegenerative disorders. Mol Biol Rep 2024; 51:945. [PMID: 39215798 DOI: 10.1007/s11033-024-09850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are characterized by progressive memory impairment and cognitive decline. This review aims to unravel the molecular mechanisms involved in the enhancement of memory function and mitigation of memory impairment through the activation of PPARγ agonists in neurodegenerative diseases. The findings suggest that PPARγ agonists modulate various molecular pathways involved in memory formation and maintenance. Activation of PPARγ enhances synaptic plasticity, promotes neuroprotection, suppresses neuroinflammation, attenuates oxidative stress, and regulates amyloid-beta metabolism. The comprehensive understanding of these molecular mechanisms would facilitate the development of novel therapeutic approaches targeting PPARγ to improve memory function and ultimately to alleviate the burden of neurodegenerative diseases. Further research, including clinical trials, is warranted to explore the efficacy, safety, and optimal use of specific PPARγ agonists as potential therapeutic agents in the treatment of memory impairments associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Seyedi
- Department of Anatomical Sciences, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nasir Arefinia
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
9
|
Cheng S, Chen W, Guo Z, Ding C, Zuo R, Liao Q, Liu G. Paeonol alleviates ulcerative colitis by modulating PPAR-γ and nuclear factor-κB activation. Sci Rep 2024; 14:18390. [PMID: 39117680 PMCID: PMC11310503 DOI: 10.1038/s41598-024-68992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the gastrointestinal tract. Although paeonol has been used for treating UC due to its anti-inflammatory and antioxidant effects, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of paeonol's action on UC by conducting in-vitro and in-vivo studies using NCM460 cells and RAW264.7 cells, and the DSS-induced mice colitis model. The in vitro studies demonstrate that paeonol exerts inhibitory effects on the activation of the NF-κB signaling pathway through upregulating PPARγ expression, thereby attenuating pro-inflammatory cytokine production, reducing reactive oxygen species levels, and promoting M2 macrophage polarization. These effects are significantly abrogated upon addition of the PPARγ inhibitor GW9662. Moreover, UC mice treated with paeonol showed increased PPARγ expression, which reduced inflammation and apoptosis to maintain intestinal epithelial barrier integrity. In conclusion, our findings suggest that paeonol inhibits the NF-κB signaling pathway by activating PPARγ, reducing inflammation and oxidative stress and improving Dss-induced colitis. This study provides a new insight into the mechanism of treating UC by paeonol.
Collapse
Affiliation(s)
- Shuyu Cheng
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wujin Chen
- The Third People's Hospital of Fujian Province, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Chenchun Ding
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Renjie Zuo
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Quan Liao
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guoyan Liu
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China.
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 350108, China.
| |
Collapse
|
10
|
Pearson A, Koprivica M, Eisenbaum M, Ortiz C, Browning M, Vincennie T, Tinsley C, Mullan M, Crawford F, Ojo J. PPARγ activation ameliorates cognitive impairment and chronic microglial activation in the aftermath of r-mTBI. J Neuroinflammation 2024; 21:194. [PMID: 39097742 PMCID: PMC11297749 DOI: 10.1186/s12974-024-03173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK.
| | - Milica Koprivica
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | | | - Tessa Vincennie
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Cooper Tinsley
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Joseph Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
11
|
Ren X, Li YF, Pei TW, Wang HS, Wang YH, Chen T. Rosiglitazone regulates astrocyte polarization and neuroinflammation in a PPAR-γ dependent manner after experimental traumatic brain injury. Brain Res Bull 2024; 209:110918. [PMID: 38432497 DOI: 10.1016/j.brainresbull.2024.110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of high mortality and disability worldwide. Overactivation of astrocytes and overexpression of inflammatory responses in the injured brain are characteristic pathological features of TBI. Rosiglitazone (ROS) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist known for its anti-inflammatory activity. However, the relationship between the inflammatory response involved in ROS treatment and astrocyte A1 polarization remains unclear. OBJECTIVE This study aimed to investigate whether ROS treatment improves dysfunction and astrocyte A1 polarization induced after TBI and to elucidate the underlying mechanisms of these functions. METHODS SD rats were randomly divided into sham operation group, TBI group, TBI+ROS group, and TBI+ PPAR-γ antagonist group (GW9662 + TBI). The rat TBI injury model was prepared by the CCI method; brain water content test and wire grip test scores suggested the prognosis; FJB staining showed the changes of ROS on the morphology and number of neurons in the peripheral area of cortical injury; ELISA, immunofluorescence staining, and western blotting analysis revealed the effects of ROS on inflammatory response and astrocyte activation with the degree of A1 polarization after TBI. RESULTS Brain water content, inflammatory factor expression, and astrocyte activation in the TBI group were higher than those in the sham-operated group (P < 0.05); compared with the TBI group, the expression of the above indexes in the ROS group was significantly lower (P < 0.05). Compared with the TBI group, PPAR-γ content was significantly higher and C3 content was considerably lower in the ROS group (P < 0.05); compared with the TBI group, PPAR-γ content was significantly lower and C3 content was substantially higher in the inhibitor group (P < 0.05). CONCLUSION ROS can exert neuroprotective effects by inhibiting astrocyte A1 polarization through the PPAR-γ pathway based on the reduction of inflammatory factors and astrocyte activation in the brain after TBI.
Collapse
Affiliation(s)
- Xu Ren
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Yun-Fei Li
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Tian-Wei Pei
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Hao-Sheng Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Yu-Hai Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China
| | - Tao Chen
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; The Fifth Clinical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China; Department of Neurosurgery, Wuxi Taihu Hosptial, Wuxi, Jiangsu Province, 214044, China.
| |
Collapse
|
12
|
Liu J, Xin X, Sun J, Fan Y, Zhou X, Gong W, Yang M, Li Z, Wang Y, Yang Y, Gao C. Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury. Neural Regen Res 2024; 19:629-635. [PMID: 37721294 PMCID: PMC10581548 DOI: 10.4103/1673-5374.380907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury results in neuronal loss and glial scar formation. Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury. Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue. However, previous studies have reported inconsistent results. In this study, an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects. The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes. Moreover, neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury. In summary, this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury.
Collapse
Affiliation(s)
- Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xun Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
13
|
Kim J, Ryu G, Seo J, Go M, Kim G, Yi S, Kim S, Lee H, Lee JY, Kim HS, Park MC, Shin DH, Shim H, Kim W, Lee SY. 5-aminosalicylic acid suppresses osteoarthritis through the OSCAR-PPARγ axis. Nat Commun 2024; 15:1024. [PMID: 38310093 PMCID: PMC10838344 DOI: 10.1038/s41467-024-45174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Osteoarthritis (OA) is a progressive and irreversible degenerative joint disease that is characterized by cartilage destruction, osteophyte formation, subchondral bone remodeling, and synovitis. Despite affecting millions of patients, effective and safe disease-modifying osteoarthritis drugs are lacking. Here we reveal an unexpected role for the small molecule 5-aminosalicylic acid (5-ASA), which is used as an anti-inflammatory drug in ulcerative colitis. We show that 5-ASA competes with extracellular-matrix collagen-II to bind to osteoclast-associated receptor (OSCAR) on chondrocytes. Intra-articular 5-ASA injections ameliorate OA generated by surgery-induced medial-meniscus destabilization in male mice. Significantly, this effect is also observed when 5-ASA was administered well after OA onset. Moreover, mice with DMM-induced OA that are treated with 5-ASA at weeks 8-11 and sacrificed at week 12 have thicker cartilage than untreated mice that were sacrificed at week 8. Mechanistically, 5-ASA reverses OSCAR-mediated transcriptional repression of PPARγ in articular chondrocytes, thereby suppressing COX-2-related inflammation. It also improves chondrogenesis, strongly downregulates ECM catabolism, and promotes ECM anabolism. Our results suggest that 5-ASA could serve as a DMOAD.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - Gina Ryu
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongmin Seo
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Miyeon Go
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Gyungmin Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Sol Yi
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Suwon Kim
- Department of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Hae Shin
- Department of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Hyunbo Shim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Wankyu Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 2024; 18:102949. [PMID: 38308863 DOI: 10.1016/j.dsx.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
AIMS In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Darban Khales
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mostafa Shahali
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Shang P, Zheng R, Wu K, Yuan C, Pan S. New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema. Curr Neuropharmacol 2024; 22:2330-2352. [PMID: 38808718 PMCID: PMC11451312 DOI: 10.2174/1570159x22666240528160237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 05/30/2024] Open
Abstract
Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to bloodbrain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ruoyi Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kou Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Oliveira TPD, Morais ALB, dos Reis PLB, Palotás A, Vieira LB. A Potential Role for the Ketogenic Diet in Alzheimer's Disease Treatment: Exploring Pre-Clinical and Clinical Evidence. Metabolites 2023; 14:25. [PMID: 38248828 PMCID: PMC10818526 DOI: 10.3390/metabo14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Given the remarkable progress in global health and overall quality of life, the significant rise in life expectancy has become intertwined with the surging occurrence of neurodegenerative disorders (NDs). This emerging trend is poised to pose a substantial challenge to the fields of medicine and public health in the years ahead. In this context, Alzheimer's disease (AD) is regarded as an ND that causes recent memory loss, motor impairment and cognitive deficits. AD is the most common cause of dementia in the elderly and its development is linked to multifactorial interactions between the environment, genetics, aging and lifestyle. The pathological hallmarks in AD are the accumulation of β-amyloid peptide (Aβ), the hyperphosphorylation of tau protein, neurotoxic events and impaired glucose metabolism. Due to pharmacological limitations and in view of the prevailing glycemic hypometabolism, the ketogenic diet (KD) emerges as a promising non-pharmacological possibility for managing AD, an approach that has already demonstrated efficacy in addressing other disorders, notably epilepsy. The KD consists of a food regimen in which carbohydrate intake is discouraged at the expense of increased lipid consumption, inducing metabolic ketosis whereby the main source of energy becomes ketone bodies instead of glucose. Thus, under these dietary conditions, neuronal death via lack of energy would be decreased, inasmuch as the metabolism of lipids is not impaired in AD. In this way, the clinical picture of patients with AD would potentially improve via the slowing down of symptoms and delaying of the progression of the disease. Hence, this review aims to explore the rationale behind utilizing the KD in AD treatment while emphasizing the metabolic interplay between the KD and the improvement of AD indicators, drawing insights from both preclinical and clinical investigations. Via a comprehensive examination of the studies detailed in this review, it is evident that the KD emerges as a promising alternative for managing AD. Moreover, its efficacy is notably enhanced when dietary composition is modified, thereby opening up innovative avenues for decreasing the progression of AD.
Collapse
Affiliation(s)
- Tadeu P. D. Oliveira
- Departamento de Fisiologia e Centro de Investigação em Medicina Molecular (CIMUS), Universidad De Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Ana L. B. Morais
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - Pedro L. B. dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary;
- Kazan Federal University, Kazan R-420012, Russia
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Luciene B. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| |
Collapse
|
17
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
18
|
Sarpolaki MK, Vafaei A, Fattahi MR, Iranmehr A. Mini-Review: Role of Drugs Affecting Renin-Angiotensin System (RAS) in Traumatic Brain Injury (TBI): What We Know and What We Should Know. Korean J Neurotrauma 2023; 19:195-203. [PMID: 37431373 PMCID: PMC10329892 DOI: 10.13004/kjnt.2023.19.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Traumatic brain injuries (TBIs) are among the most important clinical and research areas in neurosurgery, owing to their devastating effects and high prevalence. Over the last few decades, there has been increasing research on the complex pathophysiology of TBI and secondary injuries following TBI. A growing body of evidence has shown that the renin-angiotensin system (RAS), a well-known cardiovascular regulatory pathway, plays a role in TBI pathophysiology. Acknowledging these complex and poorly understood pathways and their role in TBI could help design new clinical trials involving drugs that alter the RAS network, most notably angiotensin receptor blockers and angiotensin-converting enzyme inhibitors. This study aimed to briefly review the molecular, animal, and human studies on these drugs in TBI and provide a clear vision for researchers to fill knowledge gaps in the future.
Collapse
Affiliation(s)
- Mohammad Kazem Sarpolaki
- Neurological Surgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Vafaei
- Experimental Medicine Research Center, Department of Pharmacology, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Fattahi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arad Iranmehr
- Neurological Surgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
19
|
Li J, Chen S, Wang F, Zhang J, Zeyghami MA, Koohsar F, Ayatollahi AA, Amini A. Effect of Rosiglitazone, the Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, on Apoptosis, Inflammatory Cytokines and Oxidative Stress in pentylenetetrazole-Induced Seizures in Kindled Mice. Neurochem Res 2023:10.1007/s11064-023-03951-7. [PMID: 37204549 DOI: 10.1007/s11064-023-03951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
A growing body of evidence has shown that seizure can trigger inflammatory cascades through increasing the expression of several inflammatory cytokines. It has been proved that peroxisome proliferator-activated receptor-γ agonists have immunomodulatory, anti-inflammatory, and neuroprotective effects beyond the putative hypoglycemic effects. Thus, we investigated the inhibitory effect of rosiglitazone on the development of pentylenetetrazol (PTZ)-induced kindling via affecting the inflammatory pathway. Male C57BL/6 mice were randomly divided into vehicle group (0.1% DMSO), PTZ-group and rosiglitazone-PTZ-group. Kindling was induced by the administration of PTZ (40 mg/kg, i.p) every other day and mice were observed for 20 min after each PTZ injection. Twenty-four hours after the last dose, animals were euthanized and hippocampus was isolated. The level of Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase (CAT) activity were quantified in hippocampus by biochemical methods. The protein levels of IL-1β, IL-6, IL-10, IFN-γ, TNF-α, caspase-3, iNOS, PPAR-γ, Bcl-2, or Bax factors were measured with western blotting. Also, the quantitative real-time PCR were used to evaluate the mRNA expression of those factors. Pretreatment with rosiglitazone significantly prevented the progression of kindling in comparison with control group. The rosiglitazone significantly decreased the MDA level and increased the CAT, and SOD levels in the rosiglitazone treated mice compared to those in the PTZ group (P < 0.01). Using real-time PCR and Western blotting assay, similar results were obtained. The expression levels of IL-1β, IL-6, IL-10, IFN-γ, TNF-α, Bax or PPAR-γ were significantly changed in the brain. The results of this study suggest that effect of rosiglitazone may be crucial in its ability to protect against the neuronal damage caused by PTZ induced seizure.
Collapse
Affiliation(s)
- Jinliang Li
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Suping Chen
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Feilong Wang
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Jingyu Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China.
| | - Mohammad Ali Zeyghami
- Neuroscience Research Center, Department of Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Asghar Ayatollahi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Amini
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
20
|
Kluknavsky M, Micurova A, Skratek M, Balis P, Okuliarova M, Manka J, Bernatova I. A Single Infusion of Polyethylene Glycol-Coated Superparamagnetic Magnetite Nanoparticles Alters Differently the Expressions of Genes Involved in Iron Metabolism in the Liver and Heart of Rats. Pharmaceutics 2023; 15:pharmaceutics15051475. [PMID: 37242717 DOI: 10.3390/pharmaceutics15051475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated genotype- and tissue-related differences in the biodistribution of superparamagnetic magnetite (Fe3O4) nanoparticles (IONs) into the heart and liver of normotensive Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats after a single i.v. infusion of polyethylene glycol-coated IONs (~30 nm, 1mg Fe/kg) 100 min post-infusion. The effects of IONs on the expression of selected genes involved in the regulation of iron metabolism, including Nos, Sod and Gpx4, and their possible regulation by nuclear factor (erythroid-derived 2)-like 2 (NRF2, encoded by Nfe2l2) and iron-regulatory protein (encoded by Irp1) were investigated. In addition, superoxide and nitric oxide (NO) production were determined. Results showed reduced ION incorporations into tissues of SHR compared to WKY and in the hearts compared to the livers. IONs reduced plasma corticosterone levels and NO production in the livers of SHR. Elevated superoxide production was found only in ION-treated WKY. Results also showed differences in the regulation of iron metabolism on the gene level in the heart and liver. In the hearts, gene expressions of Nos2, Nos3, Sod1, Sod2, Fpn, Tf, Dmt1 and Fth1 correlated with Irp1 but not with Nfe2l2, suggesting that their expression is regulated by mainly iron content. In the livers, expressions of Nos2, Nos3, Sod2, Gpx4, and Dmt1 correlated with Nfe2l2 but not with Irp1, suggesting a predominant effect of oxidative stress and/or NO.
Collapse
Affiliation(s)
- Michal Kluknavsky
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia
| | - Andrea Micurova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia
| | - Martin Skratek
- Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia
| | - Monika Okuliarova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Jan Manka
- Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Iveta Bernatova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia
| |
Collapse
|
21
|
Vielee ST, Wise JP. Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci 2023; 13:500. [PMID: 36979310 PMCID: PMC10046019 DOI: 10.3390/brainsci13030500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3-4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the "Hallmarks of Aging", nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence-a permanent growth arrest in cells-is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis.
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - John P. Wise
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
22
|
PHLDA1 knockdown alleviates mitochondrial dysfunction and endoplasmic reticulum stress-induced neuronal apoptosis via activating PPARγ in cerebral ischemia-reperfusion injury. Brain Res Bull 2023; 194:23-34. [PMID: 36681251 DOI: 10.1016/j.brainresbull.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress occur in ischemic stroke. The disruption of these two organelles can directly lead to cell death through various signaling pathways. Thus, investigation of the associated molecular mechanisms in cerebral ischemia is a prerequisite for stroke treatment. Pleckstrin homology-like domain family A member 1 (PHLDA1) is a multifunctional protein that can modulate mitochondrial function and ER stress in cardiomyocyte and cancer cells. This work studied the role of PHLDA1 in cerebral ischemic/reperfusion (I/R) injury and explored the underlying mechanisms associated with mitochondrial functions and ER stress. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated neurons were used as I/R models in vivo and in vitro, respectively. PHLDA1 was upregulated in ischemic penumbra of MCAO/R-induced mice and OGD/R-exposed neurons. In vitro, PHLDA1 knockdown protected neurons from OGD/R-induced apoptosis. In vivo, PHLDA1 silencing facilitated functional recovery and reduced cerebral infarct volume. Mechanistically, PHLDA1 knockdown promoted PPARγ nuclear translocation, which may mediate the effects on reversion of mitochondrial functions and alleviation of ER stress. In summary, PHLDA1 knockdown alleviates neuronal ischemic injuries in mice. PPARγ activation and mitochondrial dysfunction and endoplasmic reticulum stress attenuation are involved in the underlying mechanisms.
Collapse
|
23
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
24
|
Omega-3 polyunsaturated fatty acids and corneal nerve health: Current evidence and future directions. Ocul Surf 2023; 27:1-12. [PMID: 36328309 DOI: 10.1016/j.jtos.2022.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Corneal nerves play a key role in maintaining ocular surface integrity. Corneal nerve damage, from local or systemic conditions, can lead to ocular discomfort, pain, and, if poorly managed, neurotrophic keratopathy. Omega-3 polyunsaturated fatty acids (PUFAs) are essential dietary components that play a key role in neural development, maintenance, and function. Their potential application in modulating ocular and systemic inflammation has been widely reported. Omega-3 PUFAs and their metabolites also have neuroprotective properties and can confer benefit in neurodegenerative disease. Several preclinical studies have shown that topical administration of omega-3 PUFA-derived lipid mediators promote corneal nerve recovery following corneal surgery. Dietary omega-3 PUFA supplementation can also reduce corneal epithelial nerve loss and promote corneal nerve regeneration in diabetes. Omega-3 PUFAs and their lipid mediators thus show promise as therapeutic approaches to modulate corneal nerve health in ocular and systemic disease. This review discusses the role of dietary omega-3 PUFAs in maintaining ocular surface health and summarizes the possible applications of omega-3 PUFAs in the management of ocular and systemic conditions that cause corneal nerve damage. In examining the current evidence, this review also highlights relatively underexplored applications of omega-3 PUFAs in conferring neuroprotection and addresses their therapeutic potential in mediating corneal nerve regeneration.
Collapse
|
25
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
26
|
Wangler LM, Bray CE, Packer JM, Tapp ZM, Davis AC, O'Neil SM, Baetz K, Ouviña M, Witzel M, Godbout JP. Amplified Gliosis and Interferon-Associated Inflammation in the Aging Brain following Diffuse Traumatic Brain Injury. J Neurosci 2022; 42:9082-9096. [PMID: 36257689 PMCID: PMC9732830 DOI: 10.1523/jneurosci.1377-22.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with chronic psychiatric complications and increased risk for development of neurodegenerative pathology. Aged individuals account for most TBI-related hospitalizations and deaths. Nonetheless, neurobiological mechanisms that underlie worsened functional outcomes after TBI in the elderly remain unclear. Therefore, this study aimed to identify pathways that govern differential responses to TBI with age. Here, adult (2 months of age) and aged (16-18 months of age) male C57BL/6 mice were subjected to diffuse brain injury (midline fluid percussion), and cognition, gliosis, and neuroinflammation were determined 7 or 30 d postinjury (dpi). Cognitive impairment was evident 7 dpi, independent of age. There was enhanced morphologic restructuring of microglia and astrocytes 7 dpi in the cortex and hippocampus of aged mice compared with adults. Transcriptional analysis revealed robust age-dependent amplification of cytokine/chemokine, complement, innate immune, and interferon-associated inflammatory gene expression in the cortex 7 dpi. Ingenuity pathway analysis of the transcriptional data showed that type I interferon (IFN) signaling was significantly enhanced in the aged brain after TBI compared with adults. Age prolonged inflammatory signaling and microgliosis 30 dpi with an increased presence of rod microglia. Based on these results, a STING (stimulator of interferon genes) agonist, DMXAA, was used to determine whether augmenting IFN signaling worsened cortical inflammation and gliosis after TBI. DMXAA-treated Adult-TBI mice showed comparable expression of myriad genes that were overexpressed in the cortex of Aged-TBI mice, including Irf7, Clec7a, Cxcl10, and Ccl5 Overall, diffuse TBI promoted amplified IFN signaling in aged mice, resulting in extended inflammation and gliosis.SIGNIFICANCE STATEMENT Elderly individuals are at higher risk of complications following traumatic brain injury (TBI). Individuals >70 years old have the highest rates of TBI-related hospitalization, neurodegenerative pathology, and death. Although inflammation has been linked with poor outcomes in aging, the specific biological pathways driving worsened outcomes after TBI in aging remain undefined. In this study, we identify amplified interferon-associated inflammation and gliosis in aged mice following TBI that was associated with persistent inflammatory gene expression and microglial morphologic diversity 30 dpi. STING (stimulator of interferon genes) agonist DMXAA was used to demonstrate a causal link between augmented interferon signaling and worsened neuroinflammation after TBI. Therefore, interferon signaling may represent a therapeutic target to reduce inflammation-associated complications following TBI.
Collapse
Affiliation(s)
- Lynde M Wangler
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Chelsea E Bray
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
- College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Jonathan M Packer
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Zoe M Tapp
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Amara C Davis
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Shane M O'Neil
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Kara Baetz
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Michelle Ouviña
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Mollie Witzel
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
- College of Medicine, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
27
|
Davis CK, Bathula S, Hsu M, Morris-Blanco KC, Chokkalla AK, Jeong S, Choi J, Subramanian S, Park JS, Fabry Z, Vemuganti R. An Antioxidant and Anti-ER Stress Combo Therapy Decreases Inflammation, Secondary Brain Damage and Promotes Neurological Recovery following Traumatic Brain Injury in Mice. J Neurosci 2022; 42:6810-6821. [PMID: 35882557 PMCID: PMC9436019 DOI: 10.1523/jneurosci.0212-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The complex pathophysiology of post-traumatic brain damage might need a polypharmacological strategy with a combination of drugs that target multiple, synergistic mechanisms. We currently tested a combination of apocynin (curtails formation of reactive oxygen species), tert-butylhydroquinone (promotes disposal of reactive oxygen species), and salubrinal (prevents endoplasmic reticulum stress) following a moderate traumatic brain injury (TBI) induced by controlled cortical impact in adult mice. Adult mice of both sexes treated with the above tri-combo showed alleviated motor and cognitive deficits, attenuated secondary lesion volume, and decreased oxidative DNA damage. Concomitantly, tri-combo treatment regulated post-TBI inflammatory response by decreasing the infiltration of T cells and neutrophils and activation of microglia in both sexes. Interestingly, sexual dimorphism was seen in the case of TBI-induced microgliosis and infiltration of macrophages in the tri-combo-treated mice. Moreover, the tri-combo treatment prevented TBI-induced white matter volume loss in both sexes. The beneficial effects of tri-combo treatment were long-lasting and were also seen in aged mice. Thus, the present study supports the tri-combo treatment to curtail oxidative stress and endoplasmic reticulum stress concomitantly as a therapeutic strategy to improve TBI outcomes.SIGNIFICANCE STATEMENT Of the several mechanisms that contribute to TBI pathophysiology, oxidative stress, endoplasmic reticulum stress, and inflammation play a major role. The present study shows the therapeutic potential of a combination of apocynin, tert-butylhydroquinone, and salubrinal to prevent oxidative stress and endoplasmic reticulum stress and the interrelated inflammatory response in mice subjected to TBI. The beneficial effects of the tri-combo include alleviation of TBI-induced motor and cognitive deficits and lesion volume. The neuroprotective effects of the tri-combo are also linked to its ability to prevent TBI-induced white matter damage. Importantly, neuroprotection by the tri-combo treatment was observed to be not dependent on sex or age. Our data demonstrate that a polypharmacological strategy is efficacious after TBI.
Collapse
Affiliation(s)
| | | | - Martin Hsu
- Department of Pathology and Laboratory Medicine
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | | | - Anil K Chokkalla
- Department of Neurological Surgery
- Cellular and Molecular Pathology Graduate Program
| | - Soomin Jeong
- Department of Neurological Surgery
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | | | | | | | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine
- Cellular and Molecular Pathology Graduate Program
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
| | - Raghu Vemuganti
- Department of Neurological Surgery
- Cellular and Molecular Pathology Graduate Program
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705
- William S. Middleton Veterans Administration Hospital, Madison, Wisconsin 53705
| |
Collapse
|
28
|
Current and Potential Pharmacologic Therapies for Traumatic Brain Injury. Pharmaceuticals (Basel) 2022; 15:ph15070838. [PMID: 35890136 PMCID: PMC9323622 DOI: 10.3390/ph15070838] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
The present article reviewed the pharmacologic therapies of traumatic brain injury (TBI), including current and potential treatments. Pharmacologic therapies are an essential part of TBI care, and several agents have well-established effects in TBI care. In the acute phase, tranexamic acid, antiepileptics, hyperosmolar agents, and anesthetics are the mainstay of pharmacotherapy, which have proven efficacies. In the post-acute phase, SSRIs, SNRIs, antipsychotics, zolpidem and amantadine, as well as other drugs, have been used to manage neuropsychological problems, while muscle relaxants and botulinum toxin have been used to manage spasticity. In addition, increasing numbers of pre-clinical and clinical studies of pharmaceutical agents, including potential neuroprotective nutrients and natural therapies, are being carried out. In the present article, we classify the treatments into established and potential agents based on the level of clinical evidence and standard of practice. It is expected that many of the potential medicines under investigation will eventually be accepted as standard practice in the care of TBI patients.
Collapse
|
29
|
Neuroprotective and Anti-inflammatory Effects of Pioglitazone on Traumatic Brain Injury. Mediators Inflamm 2022; 2022:9860855. [PMID: 35757108 PMCID: PMC9232315 DOI: 10.1155/2022/9860855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is still a major cause of concern for public health, and out of all the trauma-related injuries, it makes the highest contribution to death and disability worldwide. Patients of TBI continue to suffer from brain injury through an intricate flow of primary and secondary injury events. However, when treatment is provided in a timely manner, there is a significant window of opportunity to avoid a few of the serious effects. Pioglitazone (PG), which has a neuroprotective impact and can decrease inflammation after TBI, activates peroxisome proliferator-activated receptor-gamma (PPARγ). The objective of the study is to examine the existing literature to assess the neuroprotective and anti-inflammatory impact of PG in TBI. It also discusses the part played by microglia and cytokines in TBI. According to the findings of this study, PG has the ability to enhance neurobehavior, decrease brain edema and neuronal injury following TBI. To achieve the protective impact of PG the following was required: (1) stimulating PPARγ; (2) decreasing oxidative stress; (3) decreasing nuclear factor kappa B (NF-κB), interleukin 6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and C-C motif chemokine ligand 20 (CCL20) expression; (4) limiting the increase in the number of activated microglia; and (5) reducing mitochondrial dysfunction. The findings indicate that when PIG is used clinically, it may serve as a neuroprotective anti-inflammatory approach in TBI.
Collapse
|
30
|
Shou JW, Li XX, Tang YS, Lim-Ho Kong B, Wu HY, Xiao MJ, Cheung CK, Shaw PC. Novel mechanistic insight on the neuroprotective effect of berberine: The role of PPARδ for antioxidant action. Free Radic Biol Med 2022; 181:62-71. [PMID: 35093536 DOI: 10.1016/j.freeradbiomed.2022.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic stroke ranks the second leading cause of death and the third leading cause of disability in lifetime all around the world, urgently necessitating effective therapeutic interventions. Reactive oxygen species (ROS) have been implicated in stroke pathogenesis and peroxisome proliferator-activated receptors (PPARs) are prominent targets for ROS management. Although recent research has shown antioxidant effect of berberine (BBR), little is known regarding its effect upon ROS-PPARs signaling in stroke. The aim of this study is to explore whether BBR could target on ROS-PPARs pathway to ameliorate middle cerebral artery occlusion (MCAO)-induced stroke. Herein, we report that BBR is able to scavenge ROS in oxidation-damaged C17.2 neural stem cells and stroked mice. PPARδ, rather than PPARα or PPARγ, is involved in the anti-ROS effect of BBR, as evidenced by the siRNA transfection and specific antagonist treatment data. Further, we have found BBR could upregulate NF-E2 related factor-1/2 (NRF1/2) and NAD(P)H:quinone oxidoreductase 1 (NQO1) following a PPARδ-dependent manner. Mechanistic study has revealed that BBR acts as a potent ligand (Kd = 290 ± 92 nM) to activate PPARδ and initiates the transcriptional regulation functions, thus promoting the expression of PPARδ, NRF1, NRF2 and NQO1. Collectively, our results indicate that BBR confers neuroprotective effects by activating PPARδ to scavenge ROS, providing a novel mechanistic insight for the antioxidant action of BBR.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Meng-Jie Xiao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kai Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Grisley ED, Huber KN, Knapp AN, Butteiger DN, Banz WJ, MacLean JA, Wallace DG, Cheatwood JL. Effects of Dietary Soy Protein Isolate Versus Isoflavones Alone on Poststroke Skilled Ladder Rung Walking and Cortical mRNA Expression Differ in Adult Male Rats. J Med Food 2022; 25:158-165. [PMID: 34936814 PMCID: PMC8867101 DOI: 10.1089/jmf.2020.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dietary soy protein isolate (SPI) and the isoflavones daidzein and genistein have been shown to provide neuroprotection from stroke. However, the mechanisms remain uncertain. We sought to determine whether the addition of isoflavones to a diet containing caseinate (CAS) as the protein source would induce behavioral neuroprotection similar to that seen previously in rats fed SPI. Furthermore, we aimed to characterize the baseline and poststroke expression of mRNAs involved in pathways previously published as perhaps mediating soy-based neuroprotection from stroke and other markers of neuronal plasticity, oxidative stress, and inflammation. Adult male rats were fed a semipurified diet containing (1) sodium caseinate (CAS), (2) CAS plus daidzein and genistein (CAS+ISO), or (3) SPI for 2 weeks. A subset of rats was euthanized, and tissue was collected for quantitative real-time PCR (qPCR). Remaining rats underwent a middle cerebral artery occlusion to induce a stroke. Samples for qPCR were collected on day 3 poststroke. Rats fed SPI made fewer errors on the skilled ladder rung walking task after stroke compared to rats fed CAS (P < .05). Rats fed CAS+ISO were not different from rats fed CAS or SPI. Significant effects of diet were found at day 0 for Syp, Pparg, and Ywhae and at day 3 for Rtn4 expression. We concluded that the benefits of SPI are not solely attributable to daidzein and genistein.
Collapse
Affiliation(s)
- Elizabeth Dawn Grisley
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Kalene N. Huber
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Austen N. Knapp
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | | | - William J. Banz
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - James A. MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Joseph L. Cheatwood
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.,Address correspondence to: Joseph L. Cheatwood, PhD, Department of Anatomy, Southern Illinois University School of Medicine, 1135 Lincoln Drive, Carbondale, IL 62901, USA,
| |
Collapse
|
32
|
Baron DH, Skrobot OA, Palmer JC, Sharma K, Kehoe P. The Renin Angiotensin System as a potential treatment target for Traumatic Brain Injury. J Neurotrauma 2022; 39:473-486. [PMID: 35029131 DOI: 10.1089/neu.2021.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health concern and leading cause of death and disability in young adults in the UK and worldwide, however, there is a paucity of disease modifying therapies for the treatment of TBI. This review investigates the potential of the renin-angiotensin system (RAS) as a treatment pathway for traumatic brain injury (TBI) in adults. Relevant electronic databases were searched on 18 December 2019, updated 16 May 2021. All English language articles with adult human or animal populations investigating RAS drugs as an intervention for TBI or reporting genetic evidence relevant to the RAS and TBI were screened. Eighteen preclinical RCTs (n=2269) and 2 clinical cohort studies (n=771) were included. Meta-analyses of 6 preclinical randomised-controlled trials (n=99) indicated candesartan improved neurological function short-term (<7 days: standardised mean difference (SMD) 0.61, 95% confidence interval (CI) 0.19 - 1.03, I2=0%) and long-term (≥7 days: SMD 1.06, 95% CI 0.38; 1.73, I2=0%) post-TBI. Findings were similar for most secondary outcomes. There was a suggestion of benefit from other RAS-targeting drugs, although evidence was limited due to few small studies. There was insufficient evidence to enable strong assessment of these drugs on mortality post-TBI. We conclude that angiotensin-receptor blockers, especially candesartan, show positive outcomes post-TBI in preclinical studies with moderate quality of evidence (GRADE). More research into the effect of regulatory-RAS targeting drugs is needed. Clinical trials of candesartan following TBI are recommended, due to strong and consistent evidence of neuroprotection shown by these preclinical studies.
Collapse
Affiliation(s)
- Daniel Hendrik Baron
- University of Bristol, 1980, Dementia Research Group, Clinical Neurosciences, School of Clinical Sciences, Bristol, United Kingdom of Great Britain and Northern Ireland;
| | - Olivia A Skrobot
- University of Bristol, 1980, Translational Health Sciences, Dementia Research Group, Clinical Neurosciences, School of Clinical Sciences, Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland;
| | - Jennifer C Palmer
- University of Bristol, 1980, Population Health Sciences, Bristol Medical School, Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland.,University of Bristol, 1980, MRC Integrative Epidemiology Unit, Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland;
| | - Kanchan Sharma
- University of Bristol, 1980, Translational Health Sciences, Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland.,North Bristol NHS Trust, 1982, Neurology, Westbury on Trym, Bristol, United Kingdom of Great Britain and Northern Ireland;
| | - Patrick Kehoe
- University of Bristol, 1980, Translational Health Sciences, Dementia Research Group,, Clinical Neurosciences, School of Clinical Sciences, Bristol, - None -, United Kingdom of Great Britain and Northern Ireland, BS10 5NB.,University of Bristol;
| |
Collapse
|
33
|
Hubbard WB, Spry ML, Gooch JL, Cloud AL, Vekaria HJ, Burden S, Powell DK, Berkowitz BA, Geldenhuys WJ, Harris NG, Sullivan PG. Clinically relevant mitochondrial-targeted therapy improves chronic outcomes after traumatic brain injury. Brain 2021; 144:3788-3807. [PMID: 34972207 PMCID: PMC8719838 DOI: 10.1093/brain/awab341] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
Pioglitazone, an FDA-approved compound, has been shown to target the novel mitochondrial protein mitoNEET and produce short-term neuroprotection and functional benefits following traumatic brain injury. To expand on these findings, we now investigate the dose- and time-dependent effects of pioglitazone administration on mitochondrial function after experimental traumatic brain injury. We then hypothesize that optimal pioglitazone dosing will lead to ongoing neuroprotection and cognitive benefits that are dependent on pioglitazone-mitoNEET signalling pathways. We show that delayed intervention is significantly more effective than early intervention at improving acute mitochondrial bioenergetics in the brain after traumatic brain injury. In corroboration, we demonstrate that mitoNEET is more heavily expressed, especially near the cortical contusion, in the 18 h following traumatic brain injury. To explore whether these findings relate to ongoing pathological and behavioural outcomes, mice received controlled cortical impact followed by initiation of pioglitazone treatment at either 3 or 18 h post-injury. Mice with treatment initiation at 18 h post-injury exhibited significantly improved behaviour and tissue sparing compared to mice with pioglitazone initiated at 3 h post-injury. Further using mitoNEET knockout mice, we show that this therapeutic effect is dependent on mitoNEET. Finally, we demonstrate that delayed pioglitazone treatment improves serial motor and cognitive performance in conjunction with attenuated brain atrophy after traumatic brain injury. This study illustrates that mitoNEET is the critical target for delayed pioglitazone intervention after traumatic brain injury, mitochondrial-targeting is highly time-dependent after injury and there is an extended therapeutic window to effectively treat mitochondrial dysfunction after brain injury.
Collapse
Affiliation(s)
- W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
| | - Malinda L Spry
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jennifer L Gooch
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Amber L Cloud
- College of Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Shawn Burden
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - David K Powell
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, and Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
34
|
Blood-Brain Barrier Overview: Structural and Functional Correlation. Neural Plast 2021; 2021:6564585. [PMID: 34912450 PMCID: PMC8668349 DOI: 10.1155/2021/6564585] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/16/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) is a semipermeable and extremely selective system in the central nervous system of most vertebrates, that separates blood from the brain's extracellular fluid. It plays a vital role in regulating the transport of necessary materials for brain function, furthermore, protecting it from foreign substances in the blood that could damage it. In this review, we searched in Google Scholar, Pubmed, Web of Science, and Saudi Digital Library for the various cells and components that support the development and function of this barrier, as well as the different pathways to transport the various molecules between blood and the brain. We also discussed the aspects that lead to BBB dysfunction and its neuropathological consequences, with the identification of some of the most important biomarkers that might be used as a biomarker to predict the BBB disturbances. This comprehensive overview of BBB will pave the way for future studies to focus on developing more specific targeting systems in material delivery as a future approach that assists in combinatorial therapy or nanotherapy to destroy or modify this barrier in pathological conditions such as brain tumors and brain stem cell carcinomas.
Collapse
|
35
|
Wang ZJ, Bai Z, Yan JH, Liu TT, Li YM, Xu JH, Meng XQ, Bi YF. Anti-diabetic effects of linarin from Chrysanthemi Indici Flos via AMPK activation. CHINESE HERBAL MEDICINES 2021; 14:97-103. [PMID: 36120128 PMCID: PMC9476778 DOI: 10.1016/j.chmed.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Objective The purpose of this study is to investigate the anti-diabetic effects of linarin, a flavonoid extracted from Chrysanthemi Indici Flos (CIF), and its potential mechanisms. Methods The effects of linarin on cell viability and glucose consumption in HepG2 cells were measured. Meanwhile, monosodium glutamate (MSG) mouse model was constructed to monitor the changes of insulin tolerance, glucose tolerance, triglyceride and cholesterol. The protein expression levels of p-AMPK, p-ACC, PEPCK and p-GS were detected by Western blot. Results Linarin could increase the relative glucose consumption of HepG2 cells, improve insulin tolerance and glucose tolerance, and decrease the levels of triglyceride and cholesterol of MSG mice. Simultaneously, the expression levels of p-AMPK and p-ACC in HepG2 cells and the liver tissue of MSG mice were increased, while the expression levels of PEPCK and p-GS were decreased after treatment with linarin. Conclusion Insulin resistance could be ameliorated by linarin in type 2 diabetes, and its mechanism may be related to AMPK signaling pathway.
Collapse
|
36
|
Katsuki H. Nuclear receptors of NR1 and NR4 subfamilies in the regulation of microglial functions and pathology. Pharmacol Res Perspect 2021; 9:e00766. [PMID: 34676987 PMCID: PMC8532137 DOI: 10.1002/prp2.766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of researches on the NR1 and NR4 nuclear receptors involved in the regulation of microglial functions. Nuclear receptors are attractive candidates for drug targets in the therapies of the central nervous system disorders, because the activation of these receptors is expected to regulate the functions and the phenotypes of microglia, by controlling the expression of specific gene subsets and also by regulating the cellular signaling mechanisms in a nongenomic manner. Several members of NR1 nuclear receptor subfamily have been examined for their ability to regulate microglial functions. For example, stimulation of vitamin D receptor inhibits the production of pro-inflammatory factors and increases the production of anti-inflammatory cytokines. Similar regulatory actions of nuclear receptor ligands on inflammation-related genes have also been reported for other NR1 members such as retinoic acid receptors, peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). In addition, stimulation of PPARγ and LXRs may also result in increased phagocytic activities of microglia. Consistent with these actions, the agonists at nuclear receptors of NR1 subfamily are shown to produce therapeutic effects on animal models of various neurological disorders such as experimental allergic encephalomyelitis, Alzheimer's disease, Parkinson's disease, and ischemic/hemorrhagic stroke. On the other hand, increasing lines of evidence suggest that the stimulation of NR4 subfamily members of nuclear receptors such as Nur77 and Nurr1 also regulates microglial functions and alleviates neuropathological events in several disease models. Further advancement of these research fields may prove novel therapeutic opportunities.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico‐Pharmacological SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
37
|
Pu H, Ma C, Zhao Y, Wang Y, Zhang W, Miao W, Yu F, Hu X, Shi Y, Leak RK, Hitchens TK, Dixon CE, Bennett MV, Chen J. Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:2870-2886. [PMID: 34259069 PMCID: PMC8545055 DOI: 10.1177/0271678x211028680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI) is commonly followed by long-term cognitive deficits that severely impact the quality of life in survivors. Recent studies suggest that microglial/macrophage (Mi/MΦ) polarization could have multidimensional impacts on post-TBI neurological outcomes. Here, we report that repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles for 4 weeks after controlled cortical impact improved hippocampus-dependent spatial and non-spatial cognitive functions in adult C57BL6 mice, as assessed by a battery of neurobehavioral tests for up to 5 weeks after TBI. IL-4-elicited enhancement of cognitive functions was associated with improvements in the integrity of the hippocampus at the functional (e.g., long-term potentiation) and structural levels (CA3 neuronal loss, diffusion tensor imaging of white matter tracts, etc.). Mechanistically, IL-4 increased the expression of PPARγ and arginase-1 within Mi/MΦ, thereby driving microglia toward a global inflammation-resolving phenotype. Notably, IL-4 failed to shift microglial phenotype after TBI in Mi/MΦ-specific PPARγ knockout (mKO) mice, indicating an obligatory role for PPARγ in IL-4-induced Mi/MΦ polarization. Accordingly, post-TBI treatment with IL-4 failed to improve hippocampal integrity or cognitive functions in PPARγ mKO mice. These results demonstrate that administration of exogenous IL-4 nanoparticles stimulates PPARγ-dependent beneficial Mi/MΦ responses, and improves hippocampal function after TBI.
Collapse
Affiliation(s)
- Hongjian Pu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cheng Ma
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yangfan Wang
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wenting Zhang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wanying Miao
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yejie Shi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Vl Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Li DD, Wang Y, Kim EL, Hong J, Jung JH. Neuroprotective Effect of Cyclo-(L-Pro-L-Phe) Isolated from the Jellyfish-Derived Fungus Aspergillus flavus. Mar Drugs 2021; 19:md19080417. [PMID: 34436256 PMCID: PMC8401322 DOI: 10.3390/md19080417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) expression has been implicated in pathological states such as cancer, inflammation, diabetes, and neurodegeneration. We isolated natural PPAR agonists—eight 2,5-diketopiperazines—from the jellyfish-derived fungus Aspergillus flavus. Cyclo-(L-Pro-L-Phe) was the most potent PPAR-γ activator among the eight 2,5-DKPs identified. Cyclo-(L-Pro-L-Phe) activated PPAR-γ in Ac2F rat liver cells and SH-SY5Y human neuroblastoma cells. The neuroprotective effect of this partial PPAR-γ agonist was examined using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase release, and the Hoechst 33342 staining assay in SH-SY5Y cells. Our findings revealed that cyclo-(L-Pro-L-Phe) reduced hydrogen peroxide-induced apoptosis as well as the generation of reactive oxygen species. Rhodamine 123 staining and western blotting revealed that cyclo-(L-Pro-L-Phe) prevented the loss of mitochondrial membrane potential and inhibited the activation of mitochondria-related apoptotic proteins, such as caspase 3 and poly (ADP-ribose) polymerase. Moreover, cyclo-(L-Pro-L-Phe) inhibited the activation and translocation of nuclear factor-kappa B. Thus, the partial PPAR-γ agonist cyclo-(L-Pro-L-Phe) demonstrated potential neuroprotective activity against oxidative stress-induced neurodegeneration in SH-SY5Y cells.
Collapse
Affiliation(s)
- Dan-dan Li
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Ying Wang
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Jee H. Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
- Correspondence:
| |
Collapse
|
39
|
Zhou JP, Yang XN, Song Y, Zhou F, Liu JJ, Hu YQ, Chen LG. Rosiglitazone alleviates lipopolysaccharide-induced inflammation in RAW264.7 cells via inhibition of NF-κB and in a PPARγ-dependent manner. Exp Ther Med 2021; 22:743. [PMID: 34055059 PMCID: PMC8138265 DOI: 10.3892/etm.2021.10175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Rosiglitazone is a synthetic peroxisome proliferator-activated receptor (PPAR)γ agonist widely used for the treatment of type 2 diabetes. Recent studies have demonstrated that rosiglitazone displays anti-inflammatory effects. The present study aimed to investigate whether rosiglitazone alleviates decreases in RAW264.7 cell viability resulting from lipopolysaccharide (LPS)-induced inflammation, as well as exploring the underlying mechanism. A macrophage inflammatory injury model was established by treating RAW264.7 cells with 100 ng/ml LPS. Cells were divided into LPS and rosiglitazone groups with different concentrations. Cell viability was assessed by performing an MTT assay. The expression of inflammatory cytokines was detected by conducting enzyme-linked immunosorbent assays and reverse transcription-quantitative PCR. Nitric oxidesecretion was assessed using the Griess reagent system. The expression levels of key nuclear factor-κB pathway-associated proteins were detected via western blotting. Rosiglitazone alleviated LPS-induced decrease in RAW264.7 cell viability and inhibited inflammatory cytokine expression in a concentration-dependent manner. Rosiglitazone significantly inhibited LPS-induced upregulation of p65 phosphorylation levels and downregulated IκBα expression levels. However, rosiglitazone-mediated inhibitory effects were reversed by PPARγ knockdown. The results of the present study demonstrated that rosiglitazone significantly inhibited LPS-induced inflammatory responses in RAW264.7 macrophage cells, which was dependent on PPARγ activation and NF-κB suppression.
Collapse
Affiliation(s)
- Jing-Ping Zhou
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Xiao-Ning Yang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Yang Song
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Fei Zhou
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Jing-Jing Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Yi-Qun Hu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Li-Gang Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|
40
|
Sağır D. Dose-dependent effects of prenatal exposure of pioglitazone, the PPARγ agonist, on the hippocampus development and learning and memory performance of rat offspring. Toxicol Appl Pharmacol 2021; 421:115544. [PMID: 33894214 DOI: 10.1016/j.taap.2021.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
It is known that pioglitazone, defined as a PPARγ agonist, has neuron-protective properties in nervous system disorders. The aim of this study is to investigate the effects of pioglitazone administration at different doses during prenatal period on the neurons, glial cells and learning-memory levels in the hippocampus of rat offspring. Pregnant rats were divided into three groups; Low-Dose Pioglitazone (LDP), High-Dose Pioglitazone (HDP) and control (C) (n = 3). Pregnant rats in the HDP and LDP groups were given pioglitazone at 30 mg/kg and 5 mg/kg doses, respectively, by gavage once a day during their pregnancy. No procedure was applied to the rats in the control group. Morris water tank test was applied to offspring obtained from postnatal 24th to 28th day. The offspring were sacrificed on the 29th postal day and their brain tissues removed. Stereological, histopathological and immunohistochemical techniques were used to analyze brain tissues. As a result of the analysis, it was observed that there were delays in learning and memory, the number of pyramidal neurons decreased, and the density of cells stained with glial fibrillar acidic protein (GFAP) positive increased in the HDP group compared to the other groups (p < 0.05). No significant difference was found between the LDP and control groups in terms of these parameters (p > 0.05). Our results showed that pioglitazone administered in the prenatal period had an effect on the hippocampus development and learning and memory performance of rats, depending on the dose.
Collapse
Affiliation(s)
- Dilek Sağır
- Faculty of Health Sciences, Sinop University, 57000 Sinop, Turkey.
| |
Collapse
|
41
|
Michinaga S, Koyama Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22126418. [PMID: 34203960 PMCID: PMC8232783 DOI: 10.3390/ijms22126418] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is immediate damage caused by a blow to the head resulting from traffic accidents, falls, and sporting activity, which causes death or serious disabilities in survivors. TBI induces multiple secondary injuries, including neuroinflammation, disruption of the blood–brain barrier (BBB), and brain edema. Despite these emergent conditions, current therapies for TBI are limited or insufficient in some cases. Although several candidate drugs exerted beneficial effects in TBI animal models, most of them failed to show significant effects in clinical trials. Multiple studies have suggested that astrocytes play a key role in the pathogenesis of TBI. Increased reactive astrocytes and astrocyte-derived factors are commonly observed in both TBI patients and experimental animal models. Astrocytes have beneficial and detrimental effects on TBI, including promotion and restriction of neurogenesis and synaptogenesis, acceleration and suppression of neuroinflammation, and disruption and repair of the BBB via multiple bioactive factors. Additionally, astrocytic aquaporin-4 is involved in the formation of cytotoxic edema. Thus, astrocytes are attractive targets for novel therapeutic drugs for TBI, although astrocyte-targeting drugs have not yet been developed. This article reviews recent observations of the roles of astrocytes and expected astrocyte-targeting drugs in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan;
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
42
|
Lerouet D, Marchand-Leroux C, Besson VC. Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol 2021; 35:524-538. [PMID: 33527472 PMCID: PMC9290810 DOI: 10.1111/fcp.12656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) constitutes a major health problem worldwide and is a leading cause of death and disability in individuals, contributing to devastating socioeconomic consequences. Despite numerous promising pharmacological strategies reported as neuroprotective in preclinical studies, the translation to clinical trials always failed, albeit the great diversity of therapeutic targets evaluated. In this review, first, we described epidemiologic features, causes, and primary and secondary injuries of TBI. Second, we outlined the current literature on animal models of TBI, and we described their goals, their advantages and disadvantages according to the species used, the type of injury induced, and their clinical relevance. Third, we defined the concept of neuroprotection and discussed its evolution. We also identified the reasons that might explain the failure of clinical translation. Then, we reviewed post‐TBI neuroprotective treatments with a focus on the following pleiotropic drugs, considered “low hanging fruit” with high probability of success: glitazones, glibenclamide, statins, erythropoietin, and progesterone, that were largely tested and demonstrated efficient in preclinical models of TBI. Finally, our review stresses the need to establish a close cooperation between basic researchers and clinicians to ensure the best clinical translation for neuroprotective strategies for TBI.
Collapse
Affiliation(s)
- Dominique Lerouet
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Catherine Marchand-Leroux
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Valérie C Besson
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| |
Collapse
|
43
|
Pu H, Zheng X, Jiang X, Mu H, Xu F, Zhu W, Ye Q, Jizhang Y, Hitchens TK, Shi Y, Hu X, Leak RK, Dixon CE, Bennett MV, Chen J. Interleukin-4 improves white matter integrity and functional recovery after murine traumatic brain injury via oligodendroglial PPARγ. J Cereb Blood Flow Metab 2021; 41:511-529. [PMID: 32757740 PMCID: PMC7922743 DOI: 10.1177/0271678x20941393] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Long-term neurological recovery after severe traumatic brain injury (TBI) is strongly linked to the repair and functional restoration of injured white matter. Emerging evidence suggests that the anti-inflammatory cytokine interleukin-4 (IL-4) plays an important role in promoting white matter integrity after cerebral ischemic injury. Here, we report that delayed intranasal delivery of nanoparticle-packed IL-4 boosted sensorimotor neurological recovery in a murine model of controlled cortical impact, as assessed by a battery of neurobehavioral tests for up to five weeks. Post-injury IL-4 treatment failed to reduce macroscopic brain lesions after TBI, but preserved the structural and functional integrity of white matter, at least in part through oligodendrogenesis. IL-4 directly facilitated the differentiation of oligodendrocyte progenitor cells (OPCs) into mature myelin-producing oligodendrocytes in primary cultures, an effect that was attenuated by selective PPARγ inhibition. IL-4 treatment after TBI in vivo also failed to stimulate oligodendrogenesis or improve white matter integrity in OPC-specific PPARγ conditional knockout (cKO) mice. Accordingly, IL-4-afforded improvements in sensorimotor neurological recovery after TBI were markedly impaired in the PPARγ cKO mice compared to wildtype controls. These results support IL-4 as a potential novel neurorestorative therapy to improve white matter functionality and mitigate the long-term neurological consequences of TBI.
Collapse
Affiliation(s)
- Hongjian Pu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuan Zheng
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoyan Jiang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hongfeng Mu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Xu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ye
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yunneng Jizhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yejie Shi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Vl Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.,Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Chen KM, Peng CY, Shyu LY, Lan KP, Lai SC. Peroxisome-Proliferator Activator Receptor γ in Mouse Model with Meningoencephalitis Caused by Angiostrongylus cantonensis. J Parasitol 2021; 107:205-213. [PMID: 33684197 DOI: 10.1645/19-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Peroxisome-proliferator activator receptor γ (PPARγ) has an anti-inflammatory role that inhibits the nuclear factor-κB (NF-κB) pathway and regulates the expressions of pro-inflammatory proteins, whereas its role in parasitic meningoencephalitis remains unknown. In this study we investigated the role of PPARγ and related mechanisms in eosinophilic meningoencephalitis caused by the rat lungworm Angiostrongylus cantonensis. We observed increased protein NF-κB expression in mouse brain tissue using GW9662, which is the specific antagonist of PPARγ, in a mouse model of angiostrongyliasis. Then we investigated NF-κB-related downstream proteins, such as COX-2, NOSs, and IL-1β, with Western blot or enzyme-linked immunosorbent assay and found that the protein expression was upregulated. The results of gelatin zymography also showed that the MMP-9 activities were upregulated. Treatment with GW9662 increased the permeability of the blood-brain barrier and the number of eosinophils in cerebrospinal fluid. These results suggested that in angiostrongyliasis, PPARγ may play an anti-inflammation role in many inflammatory mediators, including NOS-related oxidative stress, cytokines, and matrix metalloproteinase cascade by decreasing the NF-κB action.
Collapse
Affiliation(s)
- Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan
| | - Chi-Yang Peng
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ling-Yuh Shyu
- Department of Parasitology, Chung Shan Medical University, 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan
| | - Kuang-Pin Lan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Shih-Chan Lai
- Department of Parasitology, Chung Shan Medical University, 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
45
|
Hao Y, Bai S, Peng J, Hong R, Ding J, Li Z, Guan Y. TRIM27-mediated ubiquitination of PPARγ promotes glutamate-induced cell apoptosis and inflammation. Exp Cell Res 2021; 400:112437. [PMID: 33385414 DOI: 10.1016/j.yexcr.2020.112437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 01/13/2023]
Abstract
Neurotoxicity induced by glutamate (Glu) is often used to study the signaling mechanism of neurological disorders. The identification of specific genetic factors that cause Glu-induced neurotoxicity provides evidence for the common pathways of neuronal apoptosis and inflammation. TRIM27 has been found to induce apoptosis and inflammation. Nevertheless, there is little evidence that TRIM27 is associated with Glu-induced neurotoxicity. We found that TRIM27 expression was increased in epilepsy patients and in HT22 cells following Glu treatment. Glu-mediated cell apoptosis, decreased PPARγ expression, and increased levels of cleaved Caspase-3 and IL-1β expression in HT22 cells were significantly inhibited by TRIM27 knockdown. TRIM27 overexpression significantly induced cell apoptosis and expression of cleaved Caspase-3 and IL-1β, but inhibited PPARγ expression in HT22 cells, which were reversed by ROZ, suggesting the involvement of PPARγ in TRIM27-mediated cell apoptosis and inflammation in HT22 cells. Mechanically, TRIM27 ubiquitinates and degrades PPARγ, following induces cleaved Caspase-3 and IL-1β expression. Clinically, increased expression of TRIM27 in epilepsy patients was associated with decreased PPARγ expression. Taken together, our study suggests that TRIM27-mediated ubiquitination of PPARγ promotes Glu-induced HT22 cell apoptosis and IL-1β release.
Collapse
Affiliation(s)
- Yong Hao
- Neurology Department, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, 200127, China
| | - Shuwei Bai
- Neurology Department, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, 200127, China
| | - Jing Peng
- Neurology Department, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, 200127, China
| | - Ronghua Hong
- Neurology Department, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, 200127, China
| | - Jie Ding
- Neurology Department, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, 200127, China
| | - Zezhi Li
- Neurology Department, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, 200127, China
| | - Yangtai Guan
- Neurology Department, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, 200127, China.
| |
Collapse
|
46
|
Amorfrutins Relieve Neuropathic Pain through the PPAR γ/CCL2 Axis in CCI Rats. PPAR Res 2021; 2021:8894752. [PMID: 33552153 PMCID: PMC7846402 DOI: 10.1155/2021/8894752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is a public health problem. Although many pharmaceuticals are used to treat neuropathic pain, effective and safe drugs do not yet exist. In this study, we tested nociceptive responses in CCI rats, and ELISA assay was performed to examine the expression of proinflammatory cytokines. We found that amorfrutins significantly reduce the pain behaviors in CCI rats and suppress the expression of proinflammatory cytokines (TNFα, IL-6, and IL-1β) and chemokines (CCL2/CCR2) in the spinal cord. However, concurrent administration of a PPARγ antagonist, GW9662, reversed the antihyperalgesic effect induced by amorfrutins. The results indicate that amorfrutins inhibit the inflammation and chemokine expression by activating PPARγ, thus relieving neuropathic pain in CCI rats. Therefore, PPARγ-CCL2/CCR2 pathway might represent a new treatment option for neuropathic pain.
Collapse
|
47
|
Li C, Wang Y, Yan XL, Guo ZN, Yang Y. Pathological changes in neurovascular units: Lessons from cases of vascular dementia. CNS Neurosci Ther 2021; 27:17-25. [PMID: 33423390 PMCID: PMC7804924 DOI: 10.1111/cns.13572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VD) is the second leading cause of dementia after Alzheimer's disease (AD). The decrease of cerebral blood flow (CBF) to different degrees is one of the main causes of VD. Neurovascular unit (NVU) is a vessel‐centered concept, emphasizing all the cellular components play an integrated role in maintaining the normal physiological functions of the brain. More and more evidence shows that reduced CBF causes a series of changes in NVU, such as impaired neuronal function, abnormal activation of glial cells, and changes in vascular permeability, all of which collectively play a role in the pathogenesis of VD. In this paper, we review NVU changes as CBF decreases, focusing on each cellular component of NVU. We also highlight remote ischemic preconditioning as a promising approach for VD prevention and treatment from the NVU perspective of view.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
48
|
Hu L, Chen H, Zhang X, Feng Z, Zhang H, Meng Q. Rosiglitazone ameliorates radiation-induced intestinal inflammation in rats by inhibiting NLRP3 inflammasome and TNF-α production. JOURNAL OF RADIATION RESEARCH 2020; 61:842-850. [PMID: 32876675 PMCID: PMC7674707 DOI: 10.1093/jrr/rraa062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/08/2020] [Indexed: 02/05/2023]
Abstract
Radiation-induced acute intestinal injury is a common and serious occurrence following abdominal and pelvic irradiation. The Nod-like receptor protein 3 (NLRP3)-dependant inflammasome and inflammation activation is crucial in this process. In a pre-experimental design of radiation-induced intestinal injury, we found that rosiglitazone inhibited caspase-1 which is a key marker of inflammasome activation. The purpose of the present study was to clarify the inhibitory effect of rosiglitazone on the NLRP3 inflammasome both in vivo and in vitro. Radiation-induced intestinal injury after rosiglitazone treatment, and the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), caspase-1 and NLRP3 in a radiation-induced intestinal injury model in a rat and macrophages were observed. We found that rosiglitazone ameliorated radiation-induced intestinal injury in rats by suppressing the expression of caspase-1, NLRP3, IL-1β and TNF-α. Treatment with rosiglitazone in vitro reduced the expression of NLRP3, and the NLRP3 activator monosodium urate (MSU) reversed the inhibition of IL-1β and TNF-α by rosiglitazone in macrophages. MSU reversed the protective effect of rosiglitazone on radiation-induced intestinal injury in rats by reversing the rosiglitazone-induced inhibition of IL-1β and TNF-α. Taken together, these findings indicate that the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone, ameliorates radiation-induced intestine inflammation in rats via inhibiting the induction of the NLRP3-dependent inflammasome in macrophages.
Collapse
Affiliation(s)
- Liqiong Hu
- Department of Intensive Care Unit of Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 51000, China
| | - Hao Chen
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, China
| | | | - Zhencheng Feng
- Guangzhou institute of traumatic surgery, Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 510000, China
| | - Haifeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 51000, China
| | - Qingqi Meng
- Guangzhou institute of traumatic surgery, Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 510000, China
| |
Collapse
|
49
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
50
|
Zhang H, Gong M, Luo X. Methoxytetrahydro-2H-pyran-2-yl)methyl benzoate inhibits spinal cord injury in the rat model via PPAR-γ/PI3K/p-Akt activation. ENVIRONMENTAL TOXICOLOGY 2020; 35:714-721. [PMID: 32149473 DOI: 10.1002/tox.22902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/28/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Spinal cord injury (SCI) is the most commonly seen trauma leading to disability in people worldwide. The purpose of current study was to determine the protective effect of methoxytetrahydro-2H-pyran-2-yl)methyl benzoate (HMPB) on SCI in rat model. TUNEL staining was used to examine apoptotic changes in spinal cord of SCI rats. The ELISA kits were employed to assess inflammatory processes and oxidative factors in the spinal cord tissues. Behavioral changes in SCI rats were assessed using Basso, Beattie, and Bresnahan (BBB) scoring system. Western blotting was used for assessment of proteins. The HMPB treatment of SCI rats reduced apoptotic cell number based on the concentration of dose administered. Treatment of SCI rats with HMPB enhanced BBB score and decreased accumulation of water content in SCI rats significantly. On treatment with HMPB the TNF-α and interleukin-6/1β/18 levels were suppressed in SCI rats. Treatment with HMPB induced excessive release of SOD, CAT, and GSH molecules and decreased overproduction of MDA. The SCI induced upregulation of caspase-3/9 activity was completely alleviated by HMPB at 2 mg/kg dose. The HMPB treatment of SCI rats promoted peroxisome proliferator-activated receptor γ (PPAR-γ) expression, reduced cyclooxygenase (COX)-2 production and increased expression of p-Akt and phosphoinositide 3-kinase (p-PI3K). The study demonstrated that HMPB suppressed apoptosis, raised BBB score and inhibited inflammation in SCI rats. Moreover, activation of PI3K/Akt in the spinal cord tissues of SCI rats was promoted by HMPB. Therefore, HMPB has protective effect on SCI in the rat model.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Spinal surgery, The People's Hospital of Longhua, Shenzhen, China
| | - Ming Gong
- Department of Spinal surgery, The People's Hospital of Longhua, Shenzhen, China
| | - Xinle Luo
- Department of Spinal surgery, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|