1
|
Soleimanii A, Fallah F, Ghorbanzadeh B, Oroojan AA, Amirgholami N, Alboghobeish S. Simultaneous use of venlafaxine and calcium channel blockers on tolerance to morphine: The role of mitochondrial damage and oxidative stress in the brain. Pharmacol Biochem Behav 2024; 245:173864. [PMID: 39216833 DOI: 10.1016/j.pbb.2024.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND One of the reasons for tolerance to morphine is increased oxidative stress and dysfunction of cell mitochondria in the hippocampus. Venlafaxine and calcium channel blockers can protect mitochondrial function. The investigation of the role of mitochondrial damage and oxidative stress in the simultaneous use of venlafaxine and calcium channel blockers on the acute analgesic effects of morphine and the induction of tolerance to its effects in mice was assessed. METHOD In this experimental study, to induce tolerance to morphine, NMRI mice were treated with 50 mg/kg morphine for three consecutive days and 5 mg/kg morphine on the fourth day. Venlafaxine (20 mg/kg) alone or in combination with calcium channel blockers, nimodipine (10 mg/kg), and diltiazem (40 mg/kg) was administered 30 min before morphine, and the hot plate test was used. Then, hippocampal mitochondria were isolated by differential centrifugation method, and the levels of mitochondrial dehydrogenase activity, mitochondrial membrane potential, mitochondrial ROS production rate, as well as the content of glutathione and malondialdehyde in hippocampal mitochondria, were measured. RESULTS The administration of venlafaxine-nimodipine and venlafaxine-diltiazem increased morphine's acute analgesic effects (P < 0.05) and reduced the induction and expression of tolerance to the analgesic effects of morphine (P < 0.05). Morphine significantly decreased MTT and GSH and increased MDA, mitochondrial membrane damage, and ROS compared to the control group (P < 0.01). Injection of venlafaxine-nimodipine and also venlafaxine-diltiazem 30 min before morphine can improve these alterations (P < 0.05). DISCUSSION AND CONCLUSION Our data showed that the simultaneous use of venlafaxine with calcium channel blockers could increase the acute analgesic effects of morphine and reduce the induction and expression of tolerance to it. Also, the preventive and protective roles of simultaneous administration of venlafaxine and calcium channel blockers on morphine-induced mitochondrial oxidative stress and damage during the tolerance test were achieved.
Collapse
Affiliation(s)
- Asma Soleimanii
- School of medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Faezeh Fallah
- School of medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Ali Akbar Oroojan
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Neda Amirgholami
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
2
|
Ben Othman A, Ben Ali R, Ben Akacha A, El May MV. Evaluation of antinociceptive effect and pharmacological mechanisms of thiocyanoacetamide in rats. Pain Pract 2023; 23:704-712. [PMID: 37083025 DOI: 10.1111/papr.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Acute pain is the most common type of pain. The aim of the present work was carried out to study the antinociceptive effect and pharmacological mechanisms of thiocyanoacetamide (Thm) in rats exposed to thermal pain stimulus. MATERIALS AND METHODS The anti-nociceptive effect of the newly synthesized compound, Thm was studied in comparison to that of paracetamol (Para), dexamethasone (Dex), and morphine (Morph) at different doses using a hot plate test at a constant temperature of 48.0 ± 0.5°C. During this test, the latency time (LT) was measured when rats express pain behavior. Then, the pharmacological mechanisms were determined using receptor-antagonist drugs. RESULTS Firstly, the obtained result showed pain modulation of the pretreated rats with Thm at 10 mg/kg dose proved by the delay of latency time during the thermal test. This significant antinociceptive activity of the thiocyanoacetamide was more effective than that of paracetamol or dexamethasone and less than that of morphine. Second, the pretreatment with acebutolol or risperidone antagonist drugs of, respectively, adrenergic and serotonin receptors demonstrated the elimination of pain modulation with Thm 10 mg/kg dose proved by a short latency time of rat's response in hot plate test. In this case, the pharmacological mechanism of Thm was characterized by the involvement of adrenergic and serotoninergic systems. CONCLUSIONS It may be concluded that Thm constitutes a promising antinociceptive drug including beta-adrenergic and serotoninergic targets. The present study warrants further investigation to determine the side effects of this compound.
Collapse
Affiliation(s)
- Amal Ben Othman
- Experimental Medicine Unit, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Histology, Embryology and Cell Biology Laboratory, Unit Research n° 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ridha Ben Ali
- Experimental Medicine Unit, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Histology, Embryology and Cell Biology Laboratory, Unit Research n° 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Azaiez Ben Akacha
- Laboratory of Organic Synthesis and Heterocyclic Chemistry Department, LR17ES01 Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Michèle Véronique El May
- Experimental Medicine Unit, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Histology, Embryology and Cell Biology Laboratory, Unit Research n° 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
On the Role of Peripheral Sensory and Gut Mu Opioid Receptors: Peripheral Analgesia and Tolerance. Molecules 2020; 25:molecules25112473. [PMID: 32466522 PMCID: PMC7321260 DOI: 10.3390/molecules25112473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence on the role of peripheral µ-opioid receptors (MORs) in analgesia and analgesic tolerance. Opioid analgesics are the mainstay in the management of moderate to severe pain, and their efficacy in the alleviation of pain is well recognized. Unfortunately, chronic treatment with opioid analgesics induces central analgesic tolerance, thus limiting their clinical usefulness. Numerous molecular mechanisms, including receptor desensitization, G-protein decoupling, β-arrestin recruitment, and alterations in the expression of peripheral MORs and microbiota have been postulated to contribute to the development of opioid analgesic tolerance. However, these studies are largely focused on central opioid analgesia and tolerance. Accumulated literature supports that peripheral MORs mediate analgesia, but controversial results on the development of peripheral opioid receptors-mediated analgesic tolerance are reported. In this review, we offer evidence on the consequence of the activation of peripheral MORs in analgesia and analgesic tolerance, as well as approaches that enhance analgesic efficacy and decrease the development of tolerance to opioids at the peripheral sites. We have also addressed the advantages and drawbacks of the activation of peripheral MORs on the sensory neurons and gut (leading to dysbiosis) on the development of central and peripheral analgesic tolerance.
Collapse
|
4
|
Mansouri MT, Khodayar MJ, Tabatabaee A, Ghorbanzadeh B, Naghizadeh B. Modulation of morphine antinociceptive tolerance and physical dependence by co-administration of simvastatin. Pharmacol Biochem Behav 2015; 137:38-43. [DOI: 10.1016/j.pbb.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
|
5
|
Rowan MP, Bierbower SM, Eskander MA, Szteyn K, Por ED, Gomez R, Veldhuis N, Bunnett NW, Jeske NA. Activation of mu opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1) via β-arrestin-2-mediated cross-talk. PLoS One 2014; 9:e93688. [PMID: 24695785 PMCID: PMC3973553 DOI: 10.1371/journal.pone.0093688] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
The transient receptor potential family V1 channel (TRPV1) is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C). Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that β-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity. In this study, we evaluated the effect of β-arrestin2 sequestration by G-protein coupled receptors (GPCRs) on thermal and chemical activation of TRPV1. Here we report that activation of mu opioid receptor by either morphine or DAMGO results in β-arrestin2 recruitment to mu opioid receptor in sensory neurons, while activation by herkinorin does not. Furthermore, treatment of sensory neurons with morphine or DAMGO stimulates β-arrestin2 dissociation from TRPV1 and increased sensitivity of the receptor. Conversely, herkinorin treatment has no effect on TRPV1 sensitivity. Additional behavioral studies indicate that GPCR-driven β-arrestin2 sequestration plays an important peripheral role in the development of thermal sensitivity. Taken together, the reported data identify a novel cross-talk mechanism between GPCRs and TRPV1 that may contribute to multiple clinical conditions.
Collapse
Affiliation(s)
- Matthew P. Rowan
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Sonya M. Bierbower
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael A. Eskander
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kalina Szteyn
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Elaine D. Por
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nicholas Veldhuis
- Departments of Pharmacology and Medicine, Monash Institute of Pharmacological Sciences, Parkville, Victoria, Australia
| | - Nigel W. Bunnett
- Departments of Pharmacology and Medicine, Monash Institute of Pharmacological Sciences, Parkville, Victoria, Australia
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bu H, Liu X, Tian X, Yang H, Gao F. Enhancement of morphine analgesia and prevention of morphine tolerance by downregulation of β-arrestin 2 with antigene RNAs in mice. Int J Neurosci 2014; 125:56-65. [DOI: 10.3109/00207454.2014.896913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Unal M, Gursoy S, Altun A, Duger C, Kol IO, Kaygusuz K, Bagcivan I, Mimaroglu C. Ineffective doses of dexmedetomidine potentiates the antinociception induced by morphine and fentanyl in acute pain model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:417-22. [PMID: 24227942 PMCID: PMC3823954 DOI: 10.4196/kjpp.2013.17.5.417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/02/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the synergistic potentiation effect of ineffective doses of dexmedetomidine on antinociception induced by morphine and fentanyl in acute pain model in rats. Seventy albino Wistar rats were separated into 7 groups. Data for the control and sham groups were recorded. The ineffective dose of dexmedetomidine was investigated and found to be 3 µ g/kg. Each group was administered the following medications: 3 mg/kg morphine (intraperitoneal) to Group 3, 5 µg/kg fentanyl (intraperitoneal) to Group 4, dexmedetomidine 3 µ g/kg (subcutaneously) to Group 5, dexmedetomidine 3 µg/kg (subcutaneous)+3 mg/kg morphine (intraperitoneal) to Group 6 and finally 3 µg/kg dexmedetomidine (subcutaneous)+5 µg/kg fentanyl (intraperitoneal) to Group 7. Just before the application and 15, 30, 60, 90 and 120 min after the administration of medication, two measurements of tail flick (TF) and hot plate (HP) tests were performed. The averages of the measurements were recorded. TF and HP latencies were the main outcomes. The analgesic effect of the combinations with dexmedetomidine+morphine (Group 6) and dexmedetomidine+fentanyl (Group 7), compared to the analgesic effect of morphine alone and fentanyl alone was significantly higher at 15, 30, 60 and 90 minutes after administration. In this study, dexmedetomidine in ineffective doses, when combined with morphine and fentanyl, potentiates the effects of both morphine and fentanyl.
Collapse
Affiliation(s)
- Mumin Unal
- Department of Anesthesiology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
8
|
He SQ, Yang F, Perez FM, Xu Q, Shechter R, Cheong YK, Carteret AF, Dong X, Sweitzer SM, Raja SN, Guan Y. Tolerance develops to the antiallodynic effects of the peripherally acting opioid loperamide hydrochloride in nerve-injured rats. Pain 2013; 154:2477-2486. [PMID: 23880055 DOI: 10.1016/j.pain.2013.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/28/2013] [Accepted: 07/17/2013] [Indexed: 11/26/2022]
Abstract
Peripherally acting opioids are potentially attractive drugs for the clinical management of certain chronic pain states due to the lack of centrally mediated adverse effects. However, it remains unclear whether tolerance develops to peripheral opioid analgesic effects under neuropathic pain conditions. We subjected rats to L5 spinal nerve ligation (SNL) and examined the analgesic effects of repetitive systemic and local administration of loperamide hydrochloride, a peripherally acting opioid agonist. We found that the inhibition of mechanical hypersensitivity, an important manifestation of neuropathic pain, by systemic loperamide (1.5mg/kg subcutaneously) decreased after repetitive drug treatment (tolerance-inducing dose: 0.75 to 6.0mg/kg subcutaneously). Similarly, repeated intraplantar injection of loperamide (150 μg/50 μL intraplantarly) and D-Ala(2)-MePhe(4)-Glyol(5) enkephalin (300 μg/50 μL), a highly selective mu-opioid receptor (MOR) agonist, also resulted in decreased inhibition of mechanical hypersensitivity. Pretreatment with naltrexone hydrochloride (5mg/kg intraperitoneally) and MK-801 (0.2mg/kg intraperitoneally) attenuated systemic loperamide tolerance. Western blot analysis showed that repetitive systemic administration of morphine (3mg/kg subcutaneously), but not loperamide (3mg/kg subcutaneously) or saline, significantly increased MOR phosphorylation in the spinal cord of SNL rats. In cultured rat dorsal root ganglion neurons, loperamide dose-dependently inhibited KCl-induced increases in [Ca(2+)]i. However, this drug effect significantly decreased in cells pretreated with loperamide (3 μM, 72 hours). Intriguingly, in loperamide-tolerant cells, the delta-opioid receptor antagonist naltrindole restored loperamide's inhibition of KCl-elicited [Ca(2+)]i increase. Our findings indicate that animals with neuropathic pain may develop acute tolerance to the antiallodynic effects of peripherally acting opioids after repetitive systemic and local drug administration.
Collapse
Affiliation(s)
- Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA Department of Clinical Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China Department of Anesthesiology and Pain Medicine, School of Medicine, Wonkwang University, Ikscan, South Korea Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nockemann D, Rouault M, Labuz D, Hublitz P, McKnelly K, Reis FC, Stein C, Heppenstall PA. The K(+) channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. EMBO Mol Med 2013; 5:1263-77. [PMID: 23818182 PMCID: PMC3944465 DOI: 10.1002/emmm.201201980] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 01/25/2023] Open
Abstract
The use of opioid agonists acting outside the central nervous system (CNS) is a promising therapeutic strategy for pain control that avoids deleterious central side effects such as apnea and addiction. In human clinical trials and rat models of inflammatory pain, peripherally restricted opioids have repeatedly shown powerful analgesic effects; in some mouse models however, their actions remain unclear. Here, we investigated opioid receptor coupling to K+ channels as a mechanism to explain such discrepancies. We found that GIRK channels, major effectors for opioid signalling in the CNS, are absent from mouse peripheral sensory neurons but present in human and rat. In vivo transgenic expression of GIRK channels in mouse nociceptors established peripheral opioid signalling and local analgesia. We further identified a regulatory element in the rat GIRK2 gene that accounts for differential expression in rodents. Thus, GIRK channels are indispensable for peripheral opioid analgesia, and their absence in mice has profound consequences for GPCR signalling in peripheral sensory neurons. GIRK channels are indispensable for peripheral opioid analgesia. The absence of GIRK channels from mouse dorsal root ganglion neurons questions the predictive validity of mice as a model organism for investigating peripheral GPCRmediated analgesia.
Collapse
Affiliation(s)
- Dinah Nockemann
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Freie Universität Berlin, Charité Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ozdemir E, Gursoy S, Bagcivan I, Durmus N, Altun A. Zimelidine attenuates the development of tolerance to morphine-induced antinociception. Indian J Pharmacol 2012; 44:215-8. [PMID: 22529478 PMCID: PMC3326915 DOI: 10.4103/0253-7613.93851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 10/20/2011] [Accepted: 12/14/2011] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate effect of zimelidine (a serotonin reuptake inhibitor) on morphine-induced tolerance in rats. MATERIALS AND METHODS Male Wistar albino rats weighing 160-180 g were used in these experiments (n=72). A 3-day cumulative dosing regimen was used for the induction of morphine tolerance. To constitute of morphine tolerance, animals received morphine twice daily for 3 days. After the last dose morphine was injected on the fourth day, morphine tolerance was evaluated. The analgesic effects of zimelidine (15 mg/kg; i.p.) and morphine (5 mg/kg) were considered at 30-min time intervals (0, 30, 60, 90 and 120 min) by tail-flick and hot-plate analgesiometer (n=6 in each experimental group). RESULTS The results showed that zimelidine significantly attenuated the development and expression of morphine tolerance. The maximal antinociceptive effect of zimelidine was obtained at the 60 minutes measurements in the zimelidine group and at the 30 minutes measurements in the morphine tolerant group by the tail-flick and hot-plate tests. Administration of zimelidine with morphine showed additive analgesic effect. CONCLUSION In conclusion, our results show that zimelidine reduces the development of tolerance to morphine-induced antinociception in rats.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Cumhuriyet University School of Medicine, 58140 Sivas, Turkey
| | | | | | | | | |
Collapse
|
11
|
Karami R, Hosseini M, Khodabandehloo F, Khatami L, Taiarani Z. Different effects of L-arginine on morphine tolerance in sham and ovariectomized female mice. J Zhejiang Univ Sci B 2011; 12:1016-1023. [PMID: 22135151 PMCID: PMC3232435 DOI: 10.1631/jzus.b1100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 04/29/2011] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The roles of gonadal hormones and nitric oxide (NO) on the analgesic effects of morphine, tolerance to morphine, and their interactions have been widely investigated. In the present study, the effect of L-arginine (an NO precursor) on morphine tolerance in sham and ovariectomized (OVX) female mice was investigated. METHODS Forty mice were divided into sham and OVX groups. On the first day, a hot plate test ((55±0.2) °C; cut-off 30 s) was carried out as a base record 15 min before injection of morphine (10 mg/kg, subcutaneously (s.c.)) and was repeated every 15 min after injection. The sham group was then divided into two subgroups: sham-tolerance-L-arginine (Sham-Tol-LA) and sham-tolerance-saline (Sham-Tol-Sal) which received either L-arginine 50 mg/kg (intraperitoneally (i.p.)) or saline 10 ml/kg (i.p.), respectively, three times in a day for three consecutive days. Morphine tolerance was induced in animals by injecting 30 mg/kg morphine (s.c.) three times/day for three days. This treatment was also used for OVX subgroups. On the fifth day, the hot plate test was repeated. The analgesic effect of morphine was calculated as the maximal percent effect (MPE). The results were compared using repeated measure analysis of variance (ANOVA). RESULTS There was no significant difference in MPE between the OVX and sham groups. The MPEs in both the Sham-Tol-Sal and OVX-Tol-Sal groups were lower than those in both the sham and OVX groups (P<0.01). The MPE in the OVX-Tol-Sal group was greater than that in the Sham-Tol-Sal group (P<0.01). The MPE in the Sham-Tol-LA group was higher than that in the Sham-Tol-Sal group (P<0.01). However, there was no significant difference between the Sham-Tol-LA and sham groups or between the OVX-Tol-LA and OVX-Tol-Sal groups. CONCLUSIONS The results of the present study showed that repeated administration of morphine causes tolerance to the analgesic effect of morphine. L-arginine could prevent tolerance to morphine but its effect was different in the presence of ovarian hormones.
Collapse
Affiliation(s)
- Reza Karami
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatimeh Khodabandehloo
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Khatami
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Taiarani
- Pharmacological Research Center of Medicinal Plants, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
13
|
Váradi A, Gergely A, Béni S, Jankovics P, Noszál B, Hosztafi S. Sulfate esters of morphine derivatives: synthesis and characterization. Eur J Pharm Sci 2010; 42:65-72. [PMID: 21034820 DOI: 10.1016/j.ejps.2010.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/13/2010] [Accepted: 10/20/2010] [Indexed: 11/25/2022]
Abstract
Sixteen 3-O- and 6-O-sulfate esters of morphine, codeine and some of their N-methyl quaternary derivatives were synthesized by means of sulfation with pyridine-SO(3) complex and sulfuric acid/N,N'-dicyclohexylcarbodiimide. Complete (1)H- and (13)C-NMR assignments are given for each of the synthesized compounds based on one- and two-dimensional homo- and heteronuclear measurements. Comparative analysis of chiral properties by circular dichroism and optical rotatory dispersion revealed characteristic differences in the spectra due to changes in charge, polarity and intramolecular association by strong hydrogen bonds in aqueous solution. The synthesized sulfate esters are prospective peripheral analgesics lacking central side effects and are also useful as reference substances for various analytical studies involving sulfate ester metabolites.
Collapse
Affiliation(s)
- András Váradi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
14
|
Fernández-Dueñas V, Ciruela F, Gandía J, Sánchez S, Planas E, Poveda R. Histamine H3 receptor activation potentiates peripheral opioid-mediated antinociception: Substance P role in peripheral inflammation in mice. Eur J Pharmacol 2010; 638:72-7. [DOI: 10.1016/j.ejphar.2010.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/24/2010] [Accepted: 04/15/2010] [Indexed: 11/17/2022]
|
15
|
Romero A, Hernández L, García-Nogales P, Puig MM. Deletion of the inducible nitric oxide synthase gene reduces peripheral morphine tolerance in a mouse model of chronic inflammation. Fundam Clin Pharmacol 2009; 24:317-23. [DOI: 10.1111/j.1472-8206.2009.00775.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Saberi M, Chavooshi B. Suppressive effects of lamotrigine on the development and expression of tolerance to morphine-induced antinociception in the male mouse. Brain Res 2009; 1291:32-9. [DOI: 10.1016/j.brainres.2009.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
|
17
|
Beaudry H, Proteau-Gagné A, Li S, Dory Y, Chavkin C, Gendron L. Differential noxious and motor tolerance of chronic delta opioid receptor agonists in rodents. Neuroscience 2009; 161:381-91. [PMID: 19328839 PMCID: PMC3727641 DOI: 10.1016/j.neuroscience.2009.03.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 01/28/2023]
Abstract
In the present study, we asked whether multiple intrathecal injections of deltorphin II, a selective delta opioid receptor (DOPR) agonist, induced DOPR tolerance in three behavioral assays. Unilateral inflammation caused by complete Freund's adjuvant (CFA) injection into the rat or mouse hind paw (CFA model) induced thermal hyperalgesic response that was transiently and dose-dependently reduced by intrathecal administration of deltorphin II or morphine. In both rodent species, the effect of deltorphin II was not modified by a single prior administration of deltorphin II, suggesting an absence of acute tolerance in this paradigm. Repeated administration of intrathecal deltorphin II or s.c. SB-235863 (five consecutive injections over 60 h) also failed to impair the antihyperalgesic response to delta opioid receptor agonist, whereas repeated intrathecal or s.c. injections of morphine induced a significant decrease in the subsequent thermal antihyperalgesic response to morphine. In mice, deltorphin II also induced a rapid, transient motor incoordination/ataxia-like behavior as tested with the accelerating rotarod. In contrast to the antihyperalgesic responses, tolerance to the motoric effect of deltorphin II was evident in mice previously exposed to multiple intrathecal agonist injections, but not multiple saline administrations. Using the tail flick antinociceptive test, we found that DOPR-mediated analgesia was significantly reduced by repeated exposure to deltorphin II. Altogether, these observations suggest that repeated injections of DOPR agonists induce differential tolerance effects on antihyperalgesic, antinociceptive, and motor incoordination/ataxia-like behaviors related to DOPR activation by deltorphin II.
Collapse
Affiliation(s)
- H. Beaudry
- Department of Physiology and Biophysics, Université de Sherbrooke, Faculty of Medicine, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada
| | - A. Proteau-Gagné
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Shuang Li
- Department of Pharmacology, University of Washington, Seattle, WA 98195–7280, USA
| | - Y. Dory
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C. Chavkin
- Department of Pharmacology, University of Washington, Seattle, WA 98195–7280, USA
| | - L. Gendron
- Department of Physiology and Biophysics, Université de Sherbrooke, Faculty of Medicine, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada
| |
Collapse
|