1
|
Takahashi K, Maeda‐Iino A, Oga Y, Osako Y, Fukushima M, Harada M, Nakagawa S, Hino S, Seong C, Kanmura S, Ido A, Miyawaki S. Changes Over Time in Masseter Muscle Activity, Symptoms of Discomfort, Stress Level and Salivary Flow Rate Following Intra-Oesophageal Acid Infusion. J Oral Rehabil 2025; 52:332-342. [PMID: 39558545 PMCID: PMC11788464 DOI: 10.1111/joor.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Intra-oesophageal acid stimulation increases masseter muscle activity. However, the infusion speeds used in previous studies are significantly slow, with minimal acid volume (30 mL over 30 min). Additionally, it is unclear how masseter muscle activity, symptoms of discomfort, stress levels and saliva quantity change over time. OBJECTIVES The time course of masseter muscle activity, heartburn and discomfort symptoms, salivary cortisol concentration to assess stress, autonomic nervous system (ANS) activity and saliva quantity under the influence of intra-oesophageal acid infusion were evaluated at a faster injection rate and larger volume than in previous studies. METHODS Ten healthy adults underwent polygraphic monitoring, consisting of electromyography of the masseter muscle and electrocardiography during intra-oesophageal acid infusion (10 mL/min, 10 min). Symptoms of heartburn and discomfort were assessed using the visual analogue scale (VAS), and saliva quantity was measured. Friedman's test was used for multiple comparisons. RESULTS Masseter muscle activity, VAS scores for heartburn and discomfort, as well as saliva quantity during the 10-min acid infusion, increased significantly compared with that before acid infusion (p < 0.001, 0.001, 0.019 and 0.047, respectively) and decreased 10 and 20 min after acid infusion (p = 0.004, 0.004 and 0.007, respectively). No significant changes were observed in the salivary cortisol concentration or ANS activity. CONCLUSION Intra-oesophageal acid infusion stimulated symptoms of heartburn and discomfort and increased masseter muscle activity and saliva production, which may not be related to psychological stress.
Collapse
Affiliation(s)
- Kotaro Takahashi
- Department of Orthodontics, Center of Developmental DentistryKagoshima University HospitalKagoshimaJapan
| | - Aya Maeda‐Iino
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Yasuhiko Oga
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Yuki Osako
- Department of Orthodontics, Center of Developmental DentistryKagoshima University HospitalKagoshimaJapan
| | - Mika Fukushima
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Marina Harada
- Department of Orthodontics, Center of Developmental DentistryKagoshima University HospitalKagoshimaJapan
| | - Shoko Nakagawa
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Sayaka Hino
- Department of Orthodontics, Center of Developmental DentistryKagoshima University HospitalKagoshimaJapan
| | - Changkeon Seong
- Department of Orthodontics, Center of Developmental DentistryKagoshima University HospitalKagoshimaJapan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
2
|
Polini F, Budai R. Multimodal transcutaneous auricular vagus nerve stimulation: An option in the treatment of sleep bruxism in a "polyvagal" context. Cranio 2024; 42:779-787. [PMID: 35322755 DOI: 10.1080/08869634.2022.2055866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To consider the possible role of the vagus nerve (VN) in the pathophysiology of sleep bruxism (SB) and introduce a multimodal protocol of transcutaneous auricular stimulation of the VN in the treatment of SB patients. METHODS Ten patients with SB underwent four sessions of electric transcutaneous auricular vagus nerve stimulation (ta-VNS) in specific auricular areas. The patients were advised to manually stimulate the same areas between sessions. Masticatory muscle activity and sleep parameters were measured by a polysomnography (PSG) before and after the treatment. Heart rate variability (HRV) parameters were measured during each stimulation. RESULTS PSG analysis revealed a statistically significant reduction in tonic SB index and tonic contraction time. HRV parameters showed a statistically significant increase in mean values of the vagal tone after each session of stimulation. No side effect was reported. CONCLUSION The stimulation of the VN might have a role in the treatment of SB.
Collapse
Affiliation(s)
- Francesco Polini
- Maxillofacial Surgery Clinic, University Hospital of Udine, Udine, Italy
| | - Riccardo Budai
- Neurophysiopathology Operative Unit, University Hospital of Udine, Udine, Italy
| |
Collapse
|
3
|
Okada Y, Sato T, Islam ST, Ohke H, Saitoh M, Ishii H. Site-specific autonomic vasomotor responses and their interactions in rat gingiva. Microvasc Res 2024; 152:104646. [PMID: 38092222 DOI: 10.1016/j.mvr.2023.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Blood flow in the gingiva, comprising the interdental papilla as well as attached and marginal gingiva, is important for maintaining of gingival function and is modulated by risk factors such as stress that may lead to periodontal disease. Marked blood flow changes mediated by the autonomic (parasympathetic and sympathetic) nervous system may be essential for gingival hemodynamics. However, differences in autonomic vasomotor responses and their functional significance in different parts of the gingiva are unclear. We examined the differences in autonomic vasomotor responses and their interactions in the gingiva of anesthetized rats. Parasympathetic vasodilation evoked by the trigeminal (lingual nerve)-mediated reflex elicited frequency-dependent blood flow increases in gingivae, with the increases being greatest in the interdental papilla. Parasympathetic blood flow increases were significantly reduced by intravenous administration of the atropine and VIP antagonist. The blood flow increase evoked by acetylcholine administration was higher in the interdental papilla than in the attached gingiva, whereas that evoked by VIP agonist administration was greater in the attached gingiva than in the interdental papilla. Activation of the cervical sympathetic nerves decreased gingival blood flow and inhibited parasympathetically induced blood flow increases. Our results suggest that trigeminal-parasympathetic reflex vasodilation 1) is more involved in the regulation of blood flow in the interdental papilla than in the other parts of the gingiva, 2) is mediated by cholinergic (interdental papilla) and VIPergic systems (attached gingiva), and 3) is inhibited by excess sympathetic activity. These results suggest a role in the etiology of periodontal diseases during mental stress.
Collapse
Affiliation(s)
- Yunosuke Okada
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Syed Taufiqul Islam
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hanako Ohke
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Masato Saitoh
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
4
|
Differences in the regulatory mechanism of blood flow in the orofacial area mediated by neural and humoral systems. J Comp Physiol B 2023; 193:109-124. [PMID: 36436073 DOI: 10.1007/s00360-022-01470-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Marked blood flow (BF) changes mediated by the autonomic neural and humoral systems may be important for orofacial hemodynamics and functions. However, it remains questionable whether differences in the autonomic vasomotor responses mediated by neural and humoral systems exist in the orofacial area. This study examined whether there are differences in changes in the BF and vascular conductance (VC) between the masseter muscle and lower lip mediated by autonomic neural and humoral systems in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve elicited BF increases in the masseter (mainly cholinergic) and lower lip (mainly non-cholinergic), accompanied by an increase in arterial blood pressure (ABP), while cervical sympathetic trunk stimulation consistently decreased BF at both sites. The lingual nerve stimulation induced a biphasic change in the VC in the masseter, consisting of an initial decrease and a successive increase. This decrease in VC was positively correlated with changes in ABP and diminished by guanethidine. Cervical vagus nerve stimulation also induced BF increases at both sites; the increases were greater in the masseter than in the lower lip. Adrenal nerve stimulation and isoproterenol administration induced BF increases in the masseter but not in the lower lip. These results indicate that cholinergic parasympathetic-mediated hemodynamics evoked by trigeminal somatosensory inputs are closely related to ABP changes. The sympathetic nervous system, including the sympathoadrenal system and visceral inputs, may be more involved in hemodynamics in the muscles than in epithelial tissues in the orofacial area.
Collapse
|
5
|
Mito K, Sato T, Ishikawa R, Ramadhani R, Okada Y, Hirohata Y, Saito T, Ishii H. Age-related decrease of cholinergic parasympathetic reflex vasodilation in the rat masseter muscle. Microvasc Res 2021; 138:104214. [PMID: 34217740 DOI: 10.1016/j.mvr.2021.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Skeletal muscle hemodynamics, including that in jaw muscles, is an important in their functions and is modulated by aging. Marked blood flow increases mediated by parasympathetic vasodilation may be important for blood flow in the masseter muscle (MBF); however, the relationship between parasympathetic vasodilation and aging is unclear. We examined the effect of aging on parasympathetic vasodilation evoked by trigeminal afferent inputs and their mechanisms by investigating the MBF during stimulation of the lingual nerve (LN) in young and old urethane-anesthetized and vago-sympathectomized rats. Electrical stimulation of the central cut end of the LN elicited intensity- and frequency-dependent increases in MBF in young rats, while these increases were significantly reduced in old rats. Increases in the MBF evoked by LN stimulation in the young rats were greatly reduced by hexamethonium and atropine administration. Increases in MBF in young rats were produced by exogenous acetylcholine in a dose-dependent manner, whereas acetylcholine did not influence the MBF in old rats. Significant levels of muscarinic acetylcholine receptor type 1 (MR1) and type 3 (MR3) mRNA were observed in the masseter muscle in young rats, but not in old rats. Our results indicate that cholinergic parasympathetic reflex vasodilation evoked by trigeminal afferent inputs to the masseter muscle is reduced by aging and that this reduction may be mediated by suppression of the expression of MR1 and MR3 in the masseter muscle with age.
Collapse
Affiliation(s)
- Kohei Mito
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Rina Ishikawa
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Ratna Ramadhani
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yunosuke Okada
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yuri Hirohata
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tetsuro Saito
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
6
|
Ishii H, Sato T. Interactions between β-adrenergic vasodilation and cervical sympathetic nerves are mediated by α 2-adrenoceptors in the rat masseter muscle. J Physiol Sci 2017; 67:699-709. [PMID: 27826897 PMCID: PMC5910521 DOI: 10.1007/s12576-016-0499-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022]
Abstract
Neural and humoral autonomic mechanisms may be important in the maintenance of blood flow in the masseter muscle (MBF). However, their interactions remain unclear. In this study, we examined interactions between neural and humoral regulation of MBF and investigated the mechanisms mediating these interactions in urethane-anesthetized rats. Stimulation of the adrenal nerve (AN) projecting to the adrenal medulla increased MBF, and this increase was mediated by β-adrenoceptors. Sectioning of the superior cervical sympathetic trunk (CST) significantly inhibited increases in MBF induced by AN stimulation during high activity in the CST, but not during low activity. AN stimulation with clonidine after CST sectioning induced a significant increased in MBF, however phenylephrine had no observable effect. Pretreatment with yohimbine or propranolol significantly inhibited the increase in the MBF. Our results suggest an interaction between β-adrenergic vasodilation evoked by circulating adrenaline and the cervical sympathetic nerves that is mediated by α2-adrenoceptors in the masseter muscle.
Collapse
Affiliation(s)
- Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| |
Collapse
|
7
|
|
8
|
Li C, Fitzgerald MEC, Del Mar N, Cuthbertson-Coates S, LeDoux MS, Gong S, Ryan JP, Reiner A. The identification and neurochemical characterization of central neurons that target parasympathetic preganglionic neurons involved in the regulation of choroidal blood flow in the rat eye using pseudorabies virus, immunolabeling and conventional pathway tracing methods. Front Neuroanat 2015; 9:65. [PMID: 26082687 PMCID: PMC4451581 DOI: 10.3389/fnana.2015.00065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 11/13/2022] Open
Abstract
The choroidal blood vessels of the eye provide the main vascular support to the outer retina. These blood vessels are under parasympathetic vasodilatory control via input from the pterygopalatine ganglion (PPG), which in turn receives its preganglionic input from the superior salivatory nucleus (SSN) of the hindbrain. The present study characterized the central neurons projecting to the SSN neurons innervating choroidal PPG neurons, using pathway tracing and immunolabeling. In the initial set of studies, minute injections of the Bartha strain of the retrograde transneuronal tracer pseudorabies virus (PRV) were made into choroid in rats in which the superior cervical ganglia had been excised (to prevent labeling of sympathetic circuitry). Diverse neuronal populations beyond the choroidal part of ipsilateral SSN showed transneuronal labeling, which notably included the parvocellular part of the paraventricular nucleus of the hypothalamus (PVN), the periaqueductal gray, the raphe magnus (RaM), the B3 region of the pons, A5, the nucleus of the solitary tract (NTS), the rostral ventrolateral medulla (RVLM), and the intermediate reticular nucleus of the medulla. The PRV+ neurons were located in the parts of these cell groups that are responsive to systemic blood pressure signals and involved in systemic blood pressure regulation by the sympathetic nervous system. In a second set of studies using PRV labeling, conventional pathway tracing, and immunolabeling, we found that PVN neurons projecting to SSN tended to be oxytocinergic and glutamatergic, RaM neurons projecting to SSN were serotonergic, and NTS neurons projecting to SSN were glutamatergic. Our results suggest that blood pressure and volume signals that drive sympathetic constriction of the systemic vasculature may also drive parasympathetic vasodilation of the choroidal vasculature, and may thereby contribute to choroidal baroregulation during low blood pressure.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Malinda E C Fitzgerald
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA ; Department of Biology, Christian Brothers University Memphis, TN, USA ; Department of Ophthalmology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Sherry Cuthbertson-Coates
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Mark S LeDoux
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA ; Department of Neurology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Suzhen Gong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - James P Ryan
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA ; Department of Ophthalmology, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
9
|
Ohnuki Y, Umeki D, Mototani Y, Jin H, Cai W, Shiozawa K, Suita K, Saeki Y, Fujita T, Ishikawa Y, Okumura S. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation. J Physiol 2014; 592:5461-75. [PMID: 25344550 DOI: 10.1113/jphysiol.2014.282996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling.
Collapse
Affiliation(s)
- Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| |
Collapse
|
10
|
Ohmure H, Sakoguchi Y, Nagayama K, Numata M, Tsubouchi H, Miyawaki S. Influence of experimental oesophageal acidification on masseter muscle activity, cervicofacial behaviour and autonomic nervous activity in wakefulness. J Oral Rehabil 2014; 41:423-31. [DOI: 10.1111/joor.12159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2014] [Indexed: 12/14/2022]
Affiliation(s)
- H. Ohmure
- Department of Orthodontics; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Y. Sakoguchi
- Department of Orthodontics; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - K. Nagayama
- Department of Orthodontics; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - M. Numata
- Division of Endoscopy; Kagoshima University Medical and Dental Hospital; Kagoshima Japan
| | | | - S. Miyawaki
- Department of Orthodontics; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| |
Collapse
|
11
|
Parasympathetic reflex vasodilation in the cerebral hemodynamics of rats. J Comp Physiol B 2014; 184:385-99. [PMID: 24504265 DOI: 10.1007/s00360-014-0807-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
We investigated the role of parasympathetic reflex vasodilation in the regulation of the cerebral hemodynamics, and whether GABAA receptors modulate the response. We examined the effects of activation of the parasympathetic fibers through trigeminal afferent inputs on blood flow in the internal carotid artery (ICABF) and the cerebral blood vessels (rCBF) in parietal cortex in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited intensity- and frequency-dependent increases in ICABF that were independent of changes in external carotid artery blood flow. Increases in ICABF were elicited by LN stimulation regardless of the presence or absence of sympathetic innervation. The ICABF increases evoked by LN stimulation were almost abolished by the intravenous administration of hexamethonium (10 mg kg(-1)) and were reduced significantly by atropine administration (0.1 mg kg(-1)). Although the LN stimulation alone had no significant effect on rCBF, LN stimulation in combination with a blocker of the GABAA receptor pentylenetetrazole increased the rCBF markedly. This increase in rCBF was reduced significantly by the administration of hexamethonium and atropine. These observations indicate that the increases in both ICABF and rCBF are evoked by parasympathetic activation via the trigeminal-mediated reflex. The rCBF increase evoked by LN stimulation is thought to be limited by the GABAA receptors in the central nervous system. These results suggest that the parasympathetic reflex vasodilation and its modulation mediated by GABA receptors within synaptic transmission in the brainstem are involved in the regulation of the cerebral hemodynamics during trigeminal afferent inputs.
Collapse
|
12
|
Ohnuki Y, Umeki D, Cai W, Kawai N, Mototani Y, Shiozawa K, Jin HL, Fujita T, Tanaka E, Saeki Y, Okumura S. Role of Masseter Muscle β2-Adrenergic Signaling in Regulation of Muscle Activity, Myosin Heavy Chain Transition, and Hypertrophy. J Pharmacol Sci 2013; 123:36-46. [DOI: 10.1254/jphs.12271fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
13
|
He JF, Yan J, Li JS, Liu JH, Wang C, Chang XR, Qu YT. Neuron discharge and c-Fos expression in the nucleus of the solitary tract following electroacupuncture at acupoints of the Yangming Stomach Meridian of Foot. J Acupunct Meridian Stud 2012; 6:82-8. [PMID: 23591003 DOI: 10.1016/j.jams.2012.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/05/2012] [Accepted: 12/06/2012] [Indexed: 12/16/2022] Open
Abstract
The nucleus of the solitary tract (nucleus tractus solitarii; NTS) is a primary center for both visceral afferents and somatic afferents. Previous experiments have demonstrated that the NTS is closely connected to the stomach and acupoints in the Yangming Stomach Meridian of Foot (ST Meridian). In this study, extracellular recording and immunochemistry methods were used to analyze the discharge of neurons and c-Fos protein expression in the NTS following acupuncture at different acupoints and a nonacupoint. A total of 104 discharging neurons were detected in the NTS of 52 rats, of which 86 provided complete data. After acupuncture at Sibai (ST 2), Zusanli (ST 36), Neiting (ST 44), Quanliao (SI 18), and the nonacupoint, the neuron response rate in the NTS was 65.12%, 51.16%, 46.51%, 34.88% and 31.40% respectively. For neuron response rate, there was a significant difference among Sibai (ST 2), Zusanli (ST 36), Neiting (ST 44), Quanliao (SI 18), and the nonacupoint (p < 0.01 or p < 0.05). In the other 48 rats, the number of c-Fos immunoreactive neurons in the NTS by electroacupuncture (EA) at Sibai (ST 2) group was significantly higher than that EA at other acupoints and the nonacupoint (p < 0.05 or p < 0.01). EA at both Zusanli (ST 36) and Neiting (ST 44) increased c-Fos immunoreactive neurons significantly over EA at Quanliao (SI 18) and the nonacupoint (p < 0.05 or p < 0.01), while there was no difference between EA at Quanliao (SI 18) and the nonacupoint group (p > 0.05). The experiments demonstrated that the afferent convergence in NTS are different by body surface points stimulus, which suggests that the NTS might be a primary center in the central nervous system receiving acupoints stimulus from the ST Meridian.
Collapse
Affiliation(s)
- Jun-Feng He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Ishii H, Izumi H. GABAB receptors in the NTS mediate the inhibitory effect of trigeminal nociceptive inputs on parasympathetic reflex vasodilation in the rat masseter muscle. Am J Physiol Regul Integr Comp Physiol 2012; 302:R776-84. [DOI: 10.1152/ajpregu.00569.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to examine whether trigeminal nociceptive inputs are involved in the modulation of parasympathetic reflex vasodilation in the jaw muscles. This was accomplished by investigating the effects of noxious stimulation to the orofacial area with capsaicin, and by microinjecting GABAA and GABAB receptor agonists or antagonists into the nucleus of the solitary tract (NTS), on masseter hemodynamics in urethane-anesthetized rats. Electrical stimulation of the central cut end of the cervical vagus nerve (cVN) in sympathectomized animals bilaterally increased blood flow in the masseter muscle (MBF). Increases in MBF evoked by cVN stimulation were markedly reduced following injection of capsaicin into the anterior tongue in the distribution of the lingual nerve or lower lip, but not when injected into the skin of the dorsum of the foot. Intravenous administration of either phentolamine or propranolol had no effect on the inhibitory effects of capsaicin injection on the increases of MBF evoked by cVN stimulation, which were largely abolished by microinjecting the GABAB receptor agonist baclofen into the NTS. Microinjection of the GABAB receptor antagonist CGP-35348 into the NTS markedly attenuated the capsaicin-induced inhibition of MBF increase evoked by cVN stimulation, while microinjection of the GABAA receptor antagonist bicuculline did not. Our results indicate that trigeminal nociceptive inputs inhibit vagal-parasympathetic reflex vasodilation in the masseter muscle and suggest that the activation of GABAB rather than GABAA receptors underlies the observed inhibition in the NTS.
Collapse
Affiliation(s)
- Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroshi Izumi
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
15
|
Kawakami S, Izumi H, Masaki E, Kuchiiwa S, Mizuta K. Role of medullary GABA signal transduction on parasympathetic reflex vasodilatation in the lower lip. Brain Res 2012; 1437:26-37. [DOI: 10.1016/j.brainres.2011.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 12/02/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022]
|
16
|
Dean RL, Eyerman D, Todtenkopf MS, Turncliff RZ, Bidlack JM, Deaver DR. Effects of oral loperamide on efficacy of naltrexone, baclofen and AM-251 in blocking ethanol self-administration in rats. Pharmacol Biochem Behav 2011; 100:530-7. [PMID: 22056608 DOI: 10.1016/j.pbb.2011.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022]
Abstract
Naltrexone is a μ-opioid receptor antagonist that has been extensively studied for its ability to block the rewarding effects of ethanol. Opioid receptors are widely distributed within the gastrointestinal tract (GIT). Typically, naltrexone is administered by parenteral routes in nonclinical studies. We initially tested if opioid receptors within the GIT would influence the ability of oral naltrexone to inhibit ethanol oral self-administration in rats using the co-administration of oral loperamide, a peripherally restricted opioid agonist. As expected, oral naltrexone only had modest effects on ethanol intake, and the response was not dose-dependent. However in rats, treatment with loperamide prior to the administration of naltrexone resulted in a suppression of ethanol intake which approached that observed with naltrexone given by the subcutaneous (SC) route. Importantly, administration of loperamide prior to administration of naltrexone did not alter blood concentrations of naltrexone. We then evaluated if oral loperamide would enhance effects of baclofen (a GABA(B) receptor agonist) and AM-251 (a CB-1 receptor antagonist) and found that pre-treatment with loperamide did potentiate the action of both drugs to reduce ethanol self-administration. Finally, the specific opioid receptor type involved was investigated using selective μ- and κ-receptor antagonists to determine if these would affect the ability of the AM-251 and loperamide combination to block ethanol drinking behavior. The effect of loperamide was blocked by ALKS 37, a peripherally restricted μ-receptor antagonist. These data suggest an important role for opioid receptors within the GIT in modulating central reward pathways and may provide new insights into strategies for treating reward disorders, including drug dependency.
Collapse
MESH Headings
- Administration, Oral
- Alcohol Deterrents/administration & dosage
- Alcohol Deterrents/blood
- Alcohol Deterrents/pharmacokinetics
- Alcohol Deterrents/therapeutic use
- Alcohol Drinking/prevention & control
- Animals
- Animals, Outbred Strains
- Baclofen/administration & dosage
- Baclofen/therapeutic use
- Behavior, Animal/drug effects
- Drug Synergism
- Drug Therapy, Combination
- GABA-B Receptor Agonists/administration & dosage
- GABA-B Receptor Agonists/therapeutic use
- Loperamide/administration & dosage
- Loperamide/antagonists & inhibitors
- Loperamide/therapeutic use
- Male
- Naltrexone/administration & dosage
- Naltrexone/blood
- Naltrexone/pharmacokinetics
- Naltrexone/therapeutic use
- Narcotic Antagonists/blood
- Narcotic Antagonists/pharmacokinetics
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/therapeutic use
- Piperidines/administration & dosage
- Piperidines/therapeutic use
- Pyrazoles/administration & dosage
- Pyrazoles/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
Collapse
Affiliation(s)
- Reginald L Dean
- Life Sciences and Toxicology, Alkermes, Inc., Waltham, MA 02451, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
18
|
Ishii H, Niioka T, Izumi H. Parasympathetic reflex vasodilatation in the masseter muscle compensates for carotid hypoperfusion during the vagus-mediated depressor response. Brain Res 2011; 1370:145-53. [DOI: 10.1016/j.brainres.2010.11.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
|