1
|
Das A, Manna R, Chowdhury D, Sharma D, Bodakhe SH. Oxymatrine impedes Alzheimer's progression via the attenuation of hypercholesterolemia and fibrosis. Metab Brain Dis 2025; 40:187. [PMID: 40244482 DOI: 10.1007/s11011-025-01606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
This study highlights the potential therapeutic benefits of oxymatrine (OMT), a quinolizidine alkaloid found in Sophora flavescens, for Alzheimer's disease (AD). This study connects the dots between metabolic and neuronal origins by exploring the effects of oxymatrine in slowing down hypercholesterolemic and fibrotic changes that contribute to cognitive deficits. In our study, laboratory rats were fed a high-cholesterol diet for eight weeks. Cognitive abilities were assessed weekly using Hebb's Williams Maze and Radial arm mazes. Additionally, intraperitoneal doses of OMT were administered (20 mg/kg, 40 mg/kg, and 80 mg/kg) for 21 days. Furthermore, using ELISA, plasma and brain oxysterols, transforming growth factor β, amyloid β, matrix metalloproteinase- 9, claudin- 5, and ATP Binding Cassette Transporter A1 levels were measured biweekly. High-density lipoprotein, low-density lipoprotein, aspartate aminotransferase, and alanine transaminase levels were estimated using diagnostic kits. The findings demonstrate that The administration of oxymatrine to experimental animals resulted in a dose-dependent synergistic decline in several biomarkers, including oxysterols, transforming growth factor β, amyloid β, matrix metalloproteinase- 9, low-density lipoprotein, aspartate aminotransferase, and alanine transaminase levels. At the same time, a concomitant increase in the levels of Claudin- 5, ATP Binding Cassette transporter A1, high-density lipoprotein, and antioxidants in the same animals was observed, especially at a dose of 80 mg/kg. This study aims to establish a link between metabolic and neural origins by investigating the effects of oxymatrine in reducing the progression of hypercholesterolemia and fibrosis, which contribute to cognitive impairment in AD. The research explores how oxymatrine regulates mediators involved in oxysterol production and fibrotic alterations in AD. Preliminary results suggest that oxymatrine has the potential to significantly delay the development and progression of AD, offering a promising treatment alternative for those affected by the disease. The findings of the present study strongly suggest that OMT effectively retards the progression of AD, which is commonly associated with the intake of high-cholesterol diets. Subsequent investigations ought to examine the molecular mechanisms behind oxymatrine's interaction with oxysterols and lipid metabolism, including sophisticated imaging methodologies and metabolomics. Longitudinal studies are essential to evaluate the long-term efficacy and safety of oxymatrine in both animal models and people. Exploring its possible synergistic effects with current medications may yield more effective therapeutic techniques. Identifying biomarkers for personalised medication may also be beneficial. Clinical trials and research on oxymatrine's potential as a prophylactic medication may yield significant insights.
Collapse
Affiliation(s)
- Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Rahul Manna
- Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Dilip Sharma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India.
| |
Collapse
|
2
|
Fasano A, Iseki C, Yamada S, Miyajima M. What is idiopathic in normal pressure hydrocephalus? J Neurosurg Sci 2025; 69:20-36. [PMID: 40045802 DOI: 10.23736/s0390-5616.24.06363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
INTRODUCTION Normal pressure hydrocephalus (NPH) can be caused by acquired events - e.g. subarachnoid hemorrhage, meningitis, or trauma - or can be "idiopathic" (iNPH) when no clear cause is identifiable. The entity and nosology of iNPH has received renewed attention and has recently gone through scrutiny and academic debate. EVIDENCE ACQUISITION Authors searched PubMed using the following keywords: "adult hydrocephalus," "alfa synuclein," "Alzheimer's disease," "beta-amyloid," "cerebrospinal fluid," "cilia," "CSF," "genes," "hydrocephalus," "idiopathic," "Lewy Body Dementia," "phosphorylated tau," "shunt responsiveness". EVIDENCE SYNTHESIS During the past decades several studies have reshaped our view of iNPH, examples are the identification of monogenic forms of iNPH caused by genes involved in the structure and function of cilia or the discovery of the glymphatic system. This review will discuss the causes of iNPH and particularly the relationship with neurodegeneration in terms of: 1) coincidental association; 2) iNPH predisposing to neurodegeneration, 3. neurodegeneration predisposing to iNPH, and 4. independent processes (genetic and environmental) predisposing to both. Based on the gathered evidence, a unified model is then presented, characterized by three sequential events: impairment of CSF dynamic, occurrence of reversible signs, occurrence of irreversible signs. CONCLUSIONS Almost 70 years after its description, a growing literature on its basic mechanisms is clarifying that iNPH is a syndrome with pathogenetic mechanisms arising from different causes. The paradigm shift has been recognizing that iNPH is not just a CSF disorder but rather a brain disorder expressing with ventriculomegaly. Finally, the better understanding of what causes iNPH support the proposal of changing its name into "Hakim's disease."
Collapse
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, ON, Canada -
- Division of Neurology, University of Toronto, Toronto, ON, Canada -
- Krembil Brain Institute, Toronto, ON, Canada -
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy -
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy -
| | - Chifumi Iseki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Aichi, Japan
- Interfaculty Initiative in Information Studies, Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| |
Collapse
|
3
|
Wan Y, Holste KG, Ye F, Hua Y, Keep RF, Xi G. Minocycline attenuates hydrocephalus and inhibits iron accumulation, ependymal damage and epiplexus cell activation after intraventricular hemorrhage in aged rats. Exp Neurol 2023; 369:114523. [PMID: 37652293 PMCID: PMC10642526 DOI: 10.1016/j.expneurol.2023.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Intracerebral hemorrhage is primarily a disease of the elderly and it is frequently accompanied by intraventricular hemorrhage (IVH) which can lead to posthemorrhagic hydrocephalus and poor prognosis. Red blood cell iron has been implicated in brain injury after cerebral hemorrhage. The current study examined using T2* magnetic resonance imaging (MRI) to detect periventricular iron deposition after IVH and investigated the effects of minocycline on hydrocephalus in an aged rat IVH model. It had three parts. In part 1, male aged rats received a 200 μl injection of saline or autologous blood into the lateral ventricle and were euthanized at day 14. In parts 2 and 3, aged IVH rats were treated with vehicle or minocycline and euthanized at day 7 or 14. Rats underwent MRI to quantify hydrocephalus and iron deposition followed by brain histology and immunohistochemistry. Periventricular iron overload was found after IVH using T2* MRI and confirmed by histology. IVH also caused ventricular wall damage and increased the number of CD68(+) choroid plexus epiplexus cells. Minocycline administration reduced iron deposition and ventricular volume at days 7 and 14 after IVH, as well as ventricle wall damage and epiplexus cell activation. In summary, IVH-induced hydrocephalus is associated with periventricular iron deposition, ependymal damage and choroid plexus epiplexus cell activation in aged rats. Minocycline attenuated those effects and might be a potential treatment for posthemorrhagic hydrocephalus in the elderly.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Leary OP, Svokos KA, Klinge PM. Reappraisal of Pediatric Normal-Pressure Hydrocephalus. J Clin Med 2021; 10:jcm10092026. [PMID: 34065105 PMCID: PMC8125971 DOI: 10.3390/jcm10092026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
While normal-pressure hydrocephalus (NPH) is most commonly diagnosed in older adulthood, a significant body of literature has accumulated over half a century documenting the clinical phenomenon of an NPH-like syndrome in pediatric patients. As in adult NPH, it is likely that pediatric NPH occurs due to a heterogeneous array of developmental, structural, and neurodegenerative pathologies, ultimately resulting in aberrant cerebrospinal fluid (CSF) flow and distribution within and around the brain. In this review, we aimed to systematically survey the existing clinical evidence supporting the existence of a pediatric form of NPH, dating back to the original recognition of NPH as a clinically significant subtype of communicating hydrocephalus. Leveraging emergent trends from the old and more recent published literature, we then present a modern characterization of pediatric NPH as a disorder firmly within the same disease spectrum as adult NPH, likely with overlapping etiology and pathophysiological mechanisms. Exemplary cases consistent with the diagnosis of pediatric NPH selected from the senior author’s neurosurgical practice are then presented alongside the systematic review to aid in discussion of the typical clinical and radiographic manifestations of pediatric NPH. Common co-morbidities and modern surgical treatment options are also described.
Collapse
Affiliation(s)
- Owen P. Leary
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (O.P.L.); (K.A.S.)
| | - Konstantina A. Svokos
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (O.P.L.); (K.A.S.)
| | - Petra M. Klinge
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (O.P.L.); (K.A.S.)
- Rhode Island Hospital, APC Building 6th Floor, 593 Eddy Street, Providence, RI 02903, USA
- Correspondence:
| |
Collapse
|
5
|
Ciprés-Flores FJ, Segura-Uribe JJ, Orozco-Suárez S, Guerra-Araiza C, Guevara-Salazar JA, Castillo-García EL, Soriano-Ursúa MA, Farfán-García ED. Beta-blockers and salbutamol limited emotional memory disturbance and damage induced by orchiectomy in the rat hippocampus. Life Sci 2019; 224:128-137. [PMID: 30905783 DOI: 10.1016/j.lfs.2019.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
AIM To evaluate the therapeutic potential of ligands of beta-adrenoceptors in cognitive disorders. Testosterone and adrenergic pathways are involved in hippocampal and emotional memory. Moreover, is strongly suggested that androgen diminishing in aging is involved in cognitive deficit, as well as beta-adrenoceptors, particularly beta2-adrenoceptor, participate in the adrenergic modulation of memory. In this regard, some animal models of memory disruption have shown improved performance after beta-drug administration. MATERIAL AND METHODS In this work, we evaluated the effects of agonists (isoproterenol and salbutamol) and antagonists (propranolol and carvedilol) on beta-adrenoceptors in orchiectomized rats, as well as their effects in the performance on avoidance task and damage in hippocampal neurons by immunohistochemistry assays. KEY FINDINGS Surprisingly, we found that both antagonists and salbutamol (but not isoproterenol) modulate the effects of hormone deprivation, improving memory and decreasing neuronal death and amyloid-beta related changes in some regions (particularly CA1-3 and dentate gyrus) of rat hippocampus. SIGNIFICANCE Two β-antagonists and one β2-agonist modulated the effects of hormone deprivation on memory and damage in brain. The mechanisms of signaling of these drugs for beneficial effects remain unclear, even if used β-ARs ligands share a weak activity on β-arrestin/ERK-pathway activation which can be involved in these effects as we proposed in this manuscript. Our observations could be useful for understanding effects suggested of adrenergic drugs to modulate emotional memory. But also, our results could be related to other pathologies involving neuronal death and Aβ accumulation.
Collapse
Affiliation(s)
- Fabiola J Ciprés-Flores
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Julia J Segura-Uribe
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico; Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Juan A Guevara-Salazar
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Emily L Castillo-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico.
| | - Eunice D Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico.
| |
Collapse
|
6
|
Martín-Láez R, Valle-San Román N, Rodríguez-Rodríguez E, Marco-de Lucas E, Berciano Blanco J, Vázquez-Barquero A. Current concepts on the pathophysiology of idiopathic chronic adult hydrocephalus: Are we facing another neurodegenerative disease? NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
7
|
Santangelo R, Cecchetti G, Bernasconi MP, Cardamone R, Barbieri A, Pinto P, Passerini G, Scomazzoni F, Comi G, Magnani G. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease. J Alzheimers Dis 2018; 60:183-200. [PMID: 28826180 DOI: 10.3233/jad-170186] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.
Collapse
Affiliation(s)
- Roberto Santangelo
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giordano Cecchetti
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Maria Paola Bernasconi
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Rosalinda Cardamone
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Alessandra Barbieri
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Patrizia Pinto
- Department of Neurology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | - Francesco Scomazzoni
- Department of Neuroradiology, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| |
Collapse
|
8
|
Leinonen V, Vanninen R, Rauramaa T. Cerebrospinal fluid circulation and hydrocephalus. HANDBOOK OF CLINICAL NEUROLOGY 2018; 145:39-50. [PMID: 28987185 DOI: 10.1016/b978-0-12-802395-2.00005-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hydrocephalus (HC) is classically defined as dynamic imbalance between the production and absorption of cerebrospinal fluid (CSF) leading to enlarged ventricles. Potential causative factors include various brain disorders like tumors causing obstruction of CSF flow within the ventricular system or the subarachnoid space. Classification of HC is based on the site of CSF flow obstruction guiding optimal treatment, with endoscopic third ventriculostomy in intraventricular obstruction and CSF shunt in communicating HC. Another clinically relevant classification is acute and chronic; the most frequent chronic form is idiopathic normal-pressure hydrocephalus (iNPH). The reported incidence of HC varies according to the study population and classification used. The incidence of congenital HC is approximately 0.4-0.6/1,000 newborns and the annual incidence of iNPH varies from 0.5/100,000 to 5.5/100,000. Radiologically, ventricular dilatation may be nonspecific, and differentiation of iNPH from other neurodegenerative diseases may be ambiguous. There are no known specific microscopic findings of HC but a systematic neuropathologic examination is needed to detect comorbid diseases and possible etiologic factors of HC. Depending on the etiology of HC, there are several nonspecific signs potentially to be seen.
Collapse
Affiliation(s)
- Ville Leinonen
- Department of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland and Department of Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.
| | - Ritva Vanninen
- Department of Radiology, Institute of Clinical Medicine, University of Eastern Finland and Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Institute of Clinical Medicine, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
Korhonen VE, Solje E, Suhonen NM, Rauramaa T, Vanninen R, Remes AM, Leinonen V. Frontotemporal dementia as a comorbidity to idiopathic normal pressure hydrocephalus (iNPH): a short review of literature and an unusual case. Fluids Barriers CNS 2017; 14:10. [PMID: 28420385 PMCID: PMC5395836 DOI: 10.1186/s12987-017-0060-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Behavioural variant frontotemporal dementia (bvFTD) and idiopathic normal pressure hydrocephalus (iNPH) are neurodegenerative diseases that can present with similar symptoms. These include decline in executive functions, psychomotor slowness, and behavioural and personality changes. Ventricular enlargement is a key radiological finding in iNPH that may also be present in bvFTD caused by the C9ORF72 expansion mutation. Due to this, bvFTD has been hypothesized as a potential comorbidity to iNPH but bvFTD patients have never been identified in studies focusing in clinical comorbidities with iNPH. Here we describe a patient with the C9ORF72 expansion-associated bvFTD who also showed enlarged ventricles on brain imaging. The main clinical symptoms were severe gait disturbances and psychiatric problems with mild cognitive decline. Cerebrospinal fluid removal increased the patient's walking speed, so a ventriculoperitoneal shunt was placed. After insertion of the shunt, there was a significant improvement in walking speed as well as mild improvement in cognitive function but not in neuropsychiatric symptoms relating to bvFTD. Comorbid iNPH should be considered in bvFTD patients who have enlarged ventricles and severely impaired gait.
Collapse
Affiliation(s)
- V. E. Korhonen
- Department of Neurosurgery, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
- University of Eastern Finland, P.O. Box 100, 70029 KYS Kuopio, Finland
| | - E. Solje
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - N. M. Suhonen
- Medical Research Center, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland
- Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - T. Rauramaa
- Institute of Clinical Medicine-Pathology, School of Medicine, University of Eastern, Kuopio, Finland
- Department of Pathology, Kuopio University Hospital, P.O. Box 162, 70211 Kuopio, Finland
| | - R. Vanninen
- Department of Radiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| | - A. M. Remes
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Medical Research Center, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland
- Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - V. Leinonen
- Department of Neurosurgery, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
- University of Eastern Finland, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
10
|
Hao X, Junwen W, Jiaqing L, Ran L, Zhuo Z, Yimin H, Wei J, Wei S, Ting L. High fibrosis indices in cerebrospinal fluid of patients with shunt-dependent post-traumatic chronic hydrocephalus. Transl Neurosci 2016; 7:92-97. [PMID: 28123828 PMCID: PMC5234510 DOI: 10.1515/tnsci-2016-0015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 01/10/2023] Open
Abstract
Objective A possible relationship between fibrosis along the route of cerebrospinal fluid (CSF) flow and the subsequent development of hydrocephalus has been indicated in previous studies. These changes in the fibrosis index may reflect the severity of hydrocephalus and could potentially become a diagnostic tool. The object of this study was to analyze the levels of procollagen type I C-terminal propeptide (PICP), procollagen type III N-terminal propeptide (PIIINP), hyaluronic acid (HA), and laminin (LN) in the CSF of patients with post-traumatic hydrocephalus and determine the significance of their presence. Subjects and methods Forty-four patients were included in the study: 24 patients with shunt-dependent post-traumatic hydrocephalus (group A - hydrocephalus group); ten brain trauma patients without any sign of hydrocephalus (group B - trauma group); ten patients without brain trauma and hydrocephalus (group C - normal control group). CSF levels of PICP, PIIINP, HA, LN and transforming growth factor-β1(TGF-β1) were detected using enzyme-linked immunosorbent assay (ELISA). Results Levels of PICP, PIIINP, HA, and LN in the group of hydrocephalus patients were significantly higher than those in the post-trauma patients without hydrocephalus (p < 0.05) and normal control patients (p < 0.05). Moreover, the increased levels of PICP, PIIINP, HA, and LN were positively correlated with the level of TGF-β1 (p < 0.05). Conclusion We demonstrated an increase of fibrosis factors including PICP, PIIINP, HA, and LN, that was positively correlated with TGF-β1 levels. This indicates an important role for the process of fibrosis in the development of post-traumatic chronic hydrocephalus and shows the potential utility of PICP, PIIINP, HA, and LN as a diagnostic index in shunt-dependent post-traumatic chronic hydrocephalus.
Collapse
Affiliation(s)
- Xu Hao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Neurosurgery, Anhui Provincial Hospital, Hefei, P. R. China
| | - Wang Junwen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Li Jiaqing
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Li Ran
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhang Zhuo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Huang Yimin
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jiao Wei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Sun Wei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Lei Ting
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
11
|
Puy V, Zmudka-Attier J, Capel C, Bouzerar R, Serot JM, Bourgeois AM, Ausseil J, Balédent O. Interactions between Flow Oscillations and Biochemical Parameters in the Cerebrospinal Fluid. Front Aging Neurosci 2016; 8:154. [PMID: 27445797 PMCID: PMC4925673 DOI: 10.3389/fnagi.2016.00154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023] Open
Abstract
The equilibrium between the ventricular and lumbar cerebrospinal fluid (CSF) compartments may be disturbed (in terms of flow and biochemistry) in patients with chronic hydrocephalus (CH). Using flow magnetic resonance imaging (MRI) and CSF assays, we sought to determine whether changes in CSF were associated with biochemical alterations. Nine elderly patients with CH underwent phase-contrast MRI. An index of CSF dynamics (Idyn) was defined as the product of the lumbar and ventricular CSF flows. During surgery, samples of CSF were collected from the lumbar and ventricular compartments and assayed for chloride, glucose and total protein. The lumbar/ventricular (L/V) ratio was calculated for each analyte. The ratio between measured and expected levels (Ibioch) was calculated for each analyte and compared with Idyn. Idyn varied from 0 to 100.10(3)μl(2).s(2). In contrast to the L/V ratios for chloride and glucose, the L/V ratio for total protein varied markedly from one patient to another (mean ± standard deviation (SD): 2.63 ± 1.24). The Ibioch for total protein was strongly correlated with the corresponding Idyn (Spearman's R: 0.98; p < 5 × 10(-5)).We observed correlated alterations in CSF flow and biochemical parameters in patients with CH. Our findings also highlight the value of dynamic flow analysis in the interpretation of data on CSF biochemistry.
Collapse
Affiliation(s)
- Vincent Puy
- Biochemistry Unit, CBH, Amiens University Medical CenterAmiens, France; INSERM U1088, Research GroupAmiens, France
| | - Jadwiga Zmudka-Attier
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Geriatric Unit, General HospitalSaint Quentin, France
| | - Cyrille Capel
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Neurosurgery Unit, Amiens University Medical CenterAmiens, France
| | - Roger Bouzerar
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Medical Imaging Unit, Amiens University Medical CenterAmiens, France
| | - Jean-Marie Serot
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Geriatric Unit, General HospitalSaint Quentin, France
| | | | - Jérome Ausseil
- Biochemistry Unit, CBH, Amiens University Medical CenterAmiens, France; INSERM U1088, Research GroupAmiens, France
| | - Olivier Balédent
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Medical Imaging Unit, Amiens University Medical CenterAmiens, France
| |
Collapse
|
12
|
Martín-Láez R, Valle-San Román N, Rodríguez-Rodríguez EM, Marco-de Lucas E, Berciano Blanco JA, Vázquez-Barquero A. Current concepts on the pathophysiology of idiopathic chronic adult hydrocephalus: Are we facing another neurodegenerative disease? Neurologia 2016; 33:449-458. [PMID: 27296497 DOI: 10.1016/j.nrl.2016.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Since its description five decades ago, the pathophysiology of idiopathic chronic adult hydrocephalus (iCAH) has been traditionally related to the effect that ventricular dilatation exerts on the structures surrounding the ventricular system. However, altered cerebral blood flow, especially a reduction in the CSF turnover rate, are starting to be considered the main pathophysiological elements of this disease. DEVELOPMENT Compression of the pyramidal tract, the frontostriatal and frontoreticular circuits, and the paraventricular fibres of the superior longitudinal fasciculus have all been reported in iCAH. At the level of the corpus callosum, gliosis replaces a number of commissural tracts. Cerebral blood flow is also altered, showing a periventricular watershed region limited by the subependymal arteries and the perforating branches of the major arteries of the anterior cerebral circulation. The CSF turnover rate is decreased by 75%, leading to the reduced clearance of neurotoxins and the interruption of neuroendocrine and paracrine signalling in the CSF. CONCLUSIONS iCAH presents as a complex nosological entity, in which the effects of subcortical microangiopathy and reduced CSF turnover play a key role. According to its pathophysiology, it is simpler to think of iCAH more as a neurodegenerative disease, such as Alzheimer disease or Binswanger disease than as the classical concept of hydrocephalus.
Collapse
Affiliation(s)
- R Martín-Láez
- Servicio de Neurocirugía, Hospital Universitario «Marqués de Valdecilla», Santander, Cantabria, España.
| | - N Valle-San Román
- Servicio de Radiología, Hospital Universitario «Marqués de Valdecilla», Santander, Cantabria, España
| | - E M Rodríguez-Rodríguez
- Servicio de Neurología, Hospital Universitario «Marqués de Valdecilla», Instituto de Investigación Sanitaria IDIVAL, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Cantabria, Santander, Cantabria, España
| | - E Marco-de Lucas
- Servicio de Radiología, Hospital Universitario «Marqués de Valdecilla», Santander, Cantabria, España
| | - J A Berciano Blanco
- Servicio de Neurología, Hospital Universitario «Marqués de Valdecilla», Instituto de Investigación Sanitaria IDIVAL, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Cantabria, Santander, Cantabria, España
| | - A Vázquez-Barquero
- Servicio de Neurocirugía, Hospital Universitario «Marqués de Valdecilla», Santander, Cantabria, España
| |
Collapse
|
13
|
Kamiya K, Kamagata K, Miyajima M, Nakajima M, Hori M, Tsuruta K, Mori H, Kunimatsu A, Arai H, Aoki S, Ohtomo K. Diffusional Kurtosis Imaging in Idiopathic Normal Pressure Hydrocephalus: Correlation with Severity of Cognitive Impairment. Magn Reson Med Sci 2016; 15:316-23. [PMID: 26841854 PMCID: PMC5608128 DOI: 10.2463/mrms.mp.2015-0093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Diffusional kurtosis imaging (DKI) is an emerging technique that describes diffusion of water molecules in terms of deviation from Gaussian distribution. This study investigated correlations between DKI metrics and cognitive function in patients with idiopathic normal pressure hydrocephalus (iNPH). MATERIALS AND METHODS DKI was performed in 29 iNPH patients and 14 age-matched controls. Mini-mental state examination (MMSE), frontal assessment battery (FAB), and trail making test A (TMT-A) were used as cognitive measures. Tract-based spatial statistics (TBSS) analyses were performed to investigate the between-group differences and correlations with the cognitive measures of the diffusion metrics, including mean kurtosis (MK), fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD). RESULTS In iNPH patients, FA and MK identified positive correlations with cognitive function in similar regions, predominantly in the frontal lobes (P < 0.05, corrected for multiple comparisons). The frontoparietal subcortical white matter showed significant correlations with FAB and TMT-A across more extensive areas in MK analyses than in FA. ADC, AD, and RD analyses showed no significant correlations with MMSE and FAB, while negative correlation with TMT-A was observed in the limited portion of the frontal deep white matter. CONCLUSION Both FA and MK correlated well with cognitive impairment in iNPH. The observed differences between FA and MK results suggest DKI may play a complementary role to conventional FA and ADC analyses, especially for evaluation of the subcortical white matter.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Levy Nogueira M, Epelbaum S, Steyaert JM, Dubois B, Schwartz L. Mechanical stress models of Alzheimer's disease pathology. Alzheimers Dement 2015; 12:324-33. [PMID: 26718585 DOI: 10.1016/j.jalz.2015.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Extracellular accumulation of amyloid-β protein and intracellular accumulation of tau in brain tissues have been described in animal models of Alzheimer's disease (AD) and mechanical stress-based diseases of different mechanisms, such as traumatic brain injury (TBI), arterial hypertension (HTN), and normal pressure hydrocephalus (NPH). METHODS We provide a brief overview of experimental models of TBI, HTN, and NPH showing features of tau-amyloid pathology, neuroinflammation, and neuronal loss. RESULTS "Alzheimer-like" hallmarks found in these mechanical stress-based models were compared with AD features found in transgenic models. DISCUSSION The goal of this review is, therefore, to build on current concepts of onset and progression of AD lesions. We point to the importance of accumulated mechanical stress in brain as an environmental and endogenous factor that pushes protein deposition and neuronal injury over the disease threshold. We further encourage the development of preventing strategies and drug screening based on mechanical stress models.
Collapse
Affiliation(s)
- Marcel Levy Nogueira
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France; Institut des Neurosciences Translationnelles de Paris (IHU-A-ICM), Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France; Laboratoire d'informatique (LIX), UMR 7161, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France.
| | - Stéphane Epelbaum
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France; INSERM, CNRS, UMR-S975, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jean-Marc Steyaert
- Laboratoire d'informatique (LIX), UMR 7161, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France; Institut des Neurosciences Translationnelles de Paris (IHU-A-ICM), Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France; INSERM, CNRS, UMR-S975, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Laurent Schwartz
- Laboratoire d'informatique (LIX), UMR 7161, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
15
|
Levy Nogueira M, da Veiga Moreira J, Baronzio GF, Dubois B, Steyaert JM, Schwartz L. Mechanical Stress as the Common Denominator between Chronic Inflammation, Cancer, and Alzheimer's Disease. Front Oncol 2015; 5:197. [PMID: 26442209 PMCID: PMC4585184 DOI: 10.3389/fonc.2015.00197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
The pathogenesis of common diseases, such as Alzheimer's disease (AD) and cancer, are currently poorly understood. Inflammation is a common risk factor for cancer and AD. Recent data, provided by our group and from others, demonstrate that increased pressure and inflammation are synonymous. There is a continuous increase in pressure from inflammation to fibrosis and then cancer. This is in line with the numerous papers reporting high interstitial pressure in cancer. But most authors focus on the role of pressure in the lack of delivery of chemotherapy in the center of the tumor. Pressure may also be a key factor in carcinogenesis. Increased pressure is responsible for oncogene activation and cytokine secretion. Accumulation of mechanical stress plays a key role in the development of diseases of old age, such as cardiomyopathy, atherosclerosis, and osteoarthritis. Growing evidence suggest also a possible link between mechanical stress in the pathogenesis of AD. The aim of this review is to describe environmental and endogenous mechanical factors possibly playing a pivotal role in the mechanism of chronic inflammation, AD, and cancer.
Collapse
Affiliation(s)
- Marcel Levy Nogueira
- Département de Neurologie, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Hôpital de la Pitié-Salpêtrière, AP-HP , Paris , France ; Institut des Neurosciences Translationnelles de Paris (IHU-A-ICM), Institut du Cerveau et de la Moelle Epinière (ICM) , Paris , France ; UMR 7161, Laboratoire d'informatique (LIX), Ecole Polytechnique, Université Paris-Saclay , Palaiseau , France
| | - Jorgelindo da Veiga Moreira
- UMR 7161, Laboratoire d'informatique (LIX), Ecole Polytechnique, Université Paris-Saclay , Palaiseau , France
| | | | - Bruno Dubois
- Département de Neurologie, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Hôpital de la Pitié-Salpêtrière, AP-HP , Paris , France ; Institut des Neurosciences Translationnelles de Paris (IHU-A-ICM), Institut du Cerveau et de la Moelle Epinière (ICM) , Paris , France ; UMR-S975, CNRS, INSERM, Institut du Cerveau et de la Moelle Epinière (ICM) , Paris , France
| | - Jean-Marc Steyaert
- UMR 7161, Laboratoire d'informatique (LIX), Ecole Polytechnique, Université Paris-Saclay , Palaiseau , France
| | - Laurent Schwartz
- UMR 7161, Laboratoire d'informatique (LIX), Ecole Polytechnique, Université Paris-Saclay , Palaiseau , France
| |
Collapse
|
16
|
Silverberg GD, Miller MC, Pascale CL, Caralopoulos IN, Agca Y, Agca C, Stopa EG. Kaolin-induced chronic hydrocephalus accelerates amyloid deposition and vascular disease in transgenic rats expressing high levels of human APP. Fluids Barriers CNS 2015; 12:2. [PMID: 25685319 PMCID: PMC4328504 DOI: 10.1186/2045-8118-12-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/14/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Normal pressure hydrocephalus (NPH) is most common in the elderly and has a high co-morbidity with Alzheimer's disease (AD) and cerebrovascular disease (CVD). To understand the relationship between NPH, AD and CVD, we investigated how chronic hydrocephalus impacts brain amyloid-beta peptide (Aβ) accumulation and vascular pathology in an AD transgenic rodent model. Previously we showed that the altered CSF physiology produced by kaolin-hydrocephalus in older wild-type Sprague-Dawley rats increased Aβ and hyperphosphorylated Tau (Silverberg et. al. Brain Res. 2010, 1317:286-296). We postulated that hydrocephalus would similarly affect an AD rat model. METHODS Thirty-five transgenic rats (tgAPP21) that express high levels of human APP and naturally overproduce Aβ40 were used. Six- (n = 7) and twelve-month-old (n = 9) rats had hydrocephalus induced by cisternal kaolin injection. We analyzed Aβ burden (Aβ40, Aβ42 and oligomeric Aβ) and vascular integrity (Masson trichrome and Verhoeff-Van Gieson) by immunohistochemistry and chemical staining at 10 weeks (n = 8) and 6 months (n = 5) post hydrocephalus induction. We also analyzed whether the vascular pathology seen in tgAPP21 rats, which develop amyloid angiopathy, was accelerated by hydrocephalus. Age-matched naïve and sham-operated tgAPP21 rats served as controls (n = 19). RESULTS In hydrocephalic tgAPP21 rats, compared to naïve and sham-operated controls, there was increased Aβ 40 and oligomeric Aβ in hippocampal and cortical neurons at 10 weeks and 6 months post-hydrocephalus induction. No dense-core amyloid plaques were seen, but diffuse Aβ immunoreactivity was evident in neurons. Vascular pathology was accelerated by the induction of hydrocephalus compared to controls. In the six-month-old rats, subtle degenerative changes were noted in vessel walls at 10 weeks post-kaolin, whereas at six months post-kaolin and in the 12-month-old hydrocephalic rats more pronounced amyloid angiopathic changes were seen, with frequent large areas of infarction noted. CONCLUSIONS Kaolin-hydrocephalus can accelerate intraneuronal Aβ40 accumulation and vascular pathology in tgAPP21 rats. In addition, disrupted CSF production and reduced CSF turnover results in impaired Aβ clearance and accelerated vascular pathology in chronic hydrocephalus. The high co-morbidity seen in NPH, AD and CVD is likely not to be an age-related coincidence, but rather a convergence of pathologies related to diminished CSF clearance.
Collapse
Affiliation(s)
- Gerald D Silverberg
- />Department of Neurosurgery, The Warren Alpert Medical School of Brown University and the Aldrich Laboratories at Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
- />Stanford University, 710 Frenchmans Rd, Stanford, CA 94305 USA
| | - Miles C Miller
- />Department of Neurosurgery, The Warren Alpert Medical School of Brown University and the Aldrich Laboratories at Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
| | - Crissey L Pascale
- />Department of Neurosurgery, The Warren Alpert Medical School of Brown University and the Aldrich Laboratories at Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
| | - Ilias N Caralopoulos
- />Department of Neurosurgery, The Warren Alpert Medical School of Brown University and the Aldrich Laboratories at Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
| | - Yuksel Agca
- />Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO 65211 USA
| | - Cansu Agca
- />Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO 65211 USA
| | - Edward G Stopa
- />Department of Neurosurgery, The Warren Alpert Medical School of Brown University and the Aldrich Laboratories at Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
- />Department of Pathology (Neuropathology), Warren Alpert Medical School of Brown University and the Aldrich Laboratories at Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 USA
| |
Collapse
|
17
|
Köktürk S, Ceylan S, Etus V, Yasa N, Ceylan S. Morinda citrifolia L. (noni) and memantine attenuate periventricular tissue injury of the fourth ventricle in hydrocephalic rabbits. Neural Regen Res 2014; 8:773-82. [PMID: 25206724 PMCID: PMC4146082 DOI: 10.3969/j.issn.1673-5374.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/24/2013] [Indexed: 11/22/2022] Open
Abstract
This study was designed to evaluate the neuroprotective effects of Morinda citrifolia L. (Rubiaceae), commonly known as noni, and memantine (a N-methy-D-aspartate receptor inhibitor) on hydrocephalus-induced neurodegenerative disorders. Kaolin was injected into the cistern magna of male adult New Zealand rabbits to establish a hydrocephalus animal model. Memantine (20 mg/kg, intraperitoneally; memantine-treated group) or noni (5 mL/kg, intragastrically; noni-treated group) was administered daily for 2 weeks. Microtubule-associated protein-2 and caspase-3 immunohistochemistry were performed to detect neuronal degeneration and apoptosis in the periventricular tissue of the fourth ventricle of rabbits. Microtubule-associated protein-2 staining density was significantly decreased in the hydrocephalic group, while the staining density was significantly increased in the memantine- and noni-treated groups, especially in the noni-treated group. Noni treatment decreased the number of caspase-3-positive cells in rabbits with hydrocephalus, while memantine had no effect. These findings suggest that noni exhibits more obvious inhibitory effects on hydrocephalus-induced neurodegenerative disorders than memantine in periventricular tissue of the fourth ventricle.
Collapse
Affiliation(s)
- Sibel Köktürk
- Department of Histology and Embriyology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Süreyya Ceylan
- Department of Histology and Embriyology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Volkan Etus
- Department of Neurosurgery, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Nezih Yasa
- Department of Neurosurgery, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Savaş Ceylan
- Department of Neurosurgery, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
18
|
Profile of cognitive dysfunction and relation with gait disturbance in Normal Pressure Hydrocephalus. Clin Neurol Neurosurg 2014; 118:83-8. [DOI: 10.1016/j.clineuro.2014.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 11/05/2013] [Accepted: 01/04/2014] [Indexed: 11/20/2022]
|
19
|
Abstract
Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit (NVU), including neuronal interactions with glia and blood vessels at the blood-brain barrier (BBB). Post-traumatic changes in cerebral blood-flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.
Collapse
Affiliation(s)
- V Pop
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354 USA
| | | |
Collapse
|
20
|
Badaut J, Bix GJ. Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae. Transl Stroke Res 2013; 5:394-406. [PMID: 24323723 DOI: 10.1007/s12975-013-0304-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/11/2023]
Abstract
The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes, and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up- and downstream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders (Zhang et al., Nat Rev Neurol 8(12):711-716, 2012). This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood flow, smooth muscle cells, matrix, blood-brain barrier structures and function, and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN, as this may yield meaningful therapeutic targets to resolve posttraumatic dysfunction.
Collapse
Affiliation(s)
- J Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Coleman Pavilion, Room A1120, 11175 Campus Street, Loma Linda, CA, 92354, USA,
| | | |
Collapse
|
21
|
Magdalinou NK, Ling H, Smith JDS, Schott JM, Watkins LD, Lees AJ. Normal pressure hydrocephalus or progressive supranuclear palsy? A clinicopathological case series. J Neurol 2012. [PMID: 23180179 DOI: 10.1007/s00415-012-6745-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a poorly understood condition, which typically presents with the triad of balance impairment, urinary incontinence and subacute cognitive decline, while brain imaging shows a marked enlargement of the cerebral ventricles. Few patients with iNPH have come to post-mortem. We identified four patients from the Queen Square Brain Bank archival collection, who had received a diagnosis of iNPH during life, and reviewed their clinical, radiological and pathological characteristics. At post mortem examination, one patient had Parkinson's disease (PD) while the other three had progressive supranuclear palsy (PSP). All four had presented with pure akinesia with gait freezing, accompanied by unsteadiness and falls. An awareness that PSP or PD can mimic the clinical symptoms of iNPH may help to avoid invasive and futile cerebrospinal fluid shunting procedures.
Collapse
Affiliation(s)
- Nadia K Magdalinou
- Reta Lila Weston Institute of Neurological Studies, UCL, 1 Wakefield Street, London, WC1N 1PJ, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Sutela A, Vanninen R, Jääskeläinen JE, Soininen H, Alafuzoff I. Post-mortem findings in 10 patients with presumed normal-pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol 2012; 38:72-86. [PMID: 21696417 DOI: 10.1111/j.1365-2990.2011.01195.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Neuropathological features of idiopathic normal-pressure hydrocephalus (iNPH) are poorly characterized. Brain biopsy during life may help in the differential diagnosis of dementia, but post-mortem validation of biopsy findings is scarce. Here we review and report brain biopsy and post-mortem neuropathological findings in patients with presumed NPH. METHODS We evaluated 10 patients initially investigated by intraventricular pressure monitoring and a frontal cortical biopsy for histological and immunohistochemical assessment as a diagnostic procedure for presumed NPH. RESULTS Out of the 10 patients, eight were shunted and seven benefited. Until death, six had developed severe and two mild cognitive impairment. One was cognitively unimpaired, and one was mentally retarded. Three subjects displayed amyloid-β (Aβ) aggregates in their frontal cortical biopsy obtained at the initial procedure. One of these patients developed Alzheimer's disease during a follow-up time of nearly 10 years. One patient with cognitive impairment and NPH suffered from corticobasal degeneration. In six patients various vascular lesions were seen at the final neuropathological investigation. Five of them were cognitively impaired, and in four vascular lesions were seen sufficient in extent to be considered as causative regarding their symptoms. CONCLUSIONS The frequent finding of vascular pathology in NPH is intriguing, suggesting that vascular alterations might be causative of cognitive impairment in a notable number of patients with NPH and dementia. Brain biopsy can be used to detect Aβ aggregates, but neuropathological characteristics of iNPH as a distinct disease still need to be discovered.
Collapse
Affiliation(s)
- V Leinonen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, Johanson CE, Silverberg GD. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS 2012; 9:3. [PMID: 22269091 PMCID: PMC3274479 DOI: 10.1186/2045-8118-9-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/23/2012] [Indexed: 11/29/2022] Open
Abstract
Background Amyloid accumulation in the brain parenchyma is a hallmark of Alzheimer's disease (AD) and is seen in normal aging. Alterations in cerebrospinal fluid (CSF) dynamics are also associated with normal aging and AD. This study analyzed CSF volume, production and turnover rate in relation to amyloid-beta peptide (Aβ) accumulation in the aging rat brain. Methods Aging Fischer 344/Brown-Norway hybrid rats at 3, 12, 20, and 30 months were studied. CSF production was measured by ventriculo-cisternal perfusion with blue dextran in artificial CSF; CSF volume by MRI; and CSF turnover rate by dividing the CSF production rate by the volume of the CSF space. Aβ40 and Aβ42 concentrations in the cortex and hippocampus were measured by ELISA. Results There was a significant linear increase in total cranial CSF volume with age: 3-20 months (p < 0.01); 3-30 months (p < 0.001). CSF production rate increased from 3-12 months (p < 0.01) and decreased from 12-30 months (p < 0.05). CSF turnover showed an initial increase from 3 months (9.40 day-1) to 12 months (11.30 day-1) and then a decrease to 20 months (10.23 day-1) and 30 months (6.62 day-1). Aβ40 and Aβ42 concentrations in brain increased from 3-30 months (p < 0.001). Both Aβ42 and Aβ40 concentrations approached a steady state level by 30 months. Conclusions In young rats there is no correlation between CSF turnover and Aβ brain concentrations. After 12 months, CSF turnover decreases as brain Aβ continues to accumulate. This decrease in CSF turnover rate may be one of several clearance pathway alterations that influence age-related accumulation of brain amyloid.
Collapse
Affiliation(s)
- Catherine Chiu
- Department of Neurosurgery, Warren Alpert Medical School, Brown University and Aldrich Neurosurgery Research Laboratories, Rhode Island Hospital, Providence, RI, 02903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wostyn P, van Dam D, Audenaert K, de Deyn PP. Genes involved in cerebrospinal fluid production as candidate genes for late-onset Alzheimer's disease: a hypothesis. J Neurogenet 2011; 25:195-200. [PMID: 22023247 DOI: 10.3109/01677063.2011.620191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In rare patients with autosomal dominant, early-onset Alzheimer's disease (AD), pathogenic mutations in the genes encoding β-amyloid precursor protein, and the γ-secretase-complex components presenilin-1 and presenilin-2 appear to result in β-amyloid (Aβ) overproduction. The pathological accumulation of Aβ in the far more common late-onset AD is more likely to be the result of deficient clearance of Aβ. There is evidence that production and turnover of cerebrospinal fluid (CSF) help to clear toxic molecules such as Aβ from the interstitial fluid space of the brain to the bloodstream. CSF production and turnover have been shown to be decreased in aging and in pathological conditions, such as normal pressure hydrocephalus and AD. Reduced formation of CSF, with diminished clearance of Aβ, may play an important role in the onset and progression of AD. If reduced CSF turnover is a risk factor for AD, then its incidence ought to be increased under conditions of CSF circulatory failure. In this paper, the authors hypothesize that genes and variations of genes involved in the CSF production and absorption may contribute to the pathogenesis of late-onset AD.
Collapse
Affiliation(s)
- Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Beernem, Belgium.
| | | | | | | |
Collapse
|
25
|
Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS 2011; 8:21. [PMID: 21740544 PMCID: PMC3162580 DOI: 10.1186/2045-8118-8-21] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/08/2011] [Indexed: 02/08/2023] Open
Abstract
Background Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's disease (AD). There is an accumulation of amyloid-beta peptides (Aβ) in both the AD brain and the normal aging brain. Clearance of Aβ from the brain occurs via active transport at the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). With increasing age, the expression of the Aβ efflux transporters is decreased and the Aβ influx transporter expression is increased at the BBB, adding to the amyloid burden in the brain. Expression of the Aβ transporters at the choroid plexus (CP) epithelium as a function of aging was the subject of this study. Methods This project investigated the changes in expression of the Aβ transporters, the low density lipoprotein receptor-related protein-1 (LRP-1), P-glycoprotein (P-gp), LRP-2 (megalin) and the receptor for advanced glycation end-products (RAGE) at the BCSFB in Brown-Norway/Fischer rats at ages 3, 6, 9, 12, 20, 30 and 36 months, using real time RT-PCR to measure transporter mRNA expression, and immunohistochemistry (IHC) to measure transporter protein in isolated rat CP. Results There was an increase in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE expression and a decrease in LRP-2, the CP epithelium influx transporter, at the BCSFB with aging. Decreased Aβ42 concentration in the CP, as measured by quantitative IHC, was associated with these Aβ transporter alterations. Conclusions Age-dependent alterations in the CP Aβ transporters are associated with a decrease in Aβ42 accumulation in the CP, and are reciprocal to the changes seen in these transporters at the BBB, suggesting a possible compensatory role for the BCSFB in Aβ clearance in aging.
Collapse
Affiliation(s)
- Crissey L Pascale
- Warren Alpert Medical School Brown University, RI Hospital Department of Neurosurgery 593 Eddy St, Providence, RI 02903 USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Serot JM, Peltier J, Fichten A, Ledeme N, Bourgeois AM, Jouanny P, Toussaint P, Legars D, Godefroy O, Mazière JC. Reduced CSF turnover and decreased ventricular Aβ42 levels are related. BMC Neurosci 2011; 12:42. [PMID: 21569454 PMCID: PMC3117747 DOI: 10.1186/1471-2202-12-42] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 05/13/2011] [Indexed: 11/29/2022] Open
Abstract
Background The appearance of Aβ42 peptide deposits is admitted to be a key event in the pathogenesis of Alzheimer's disease, although amyloid deposits also occur in aged non-demented subjects. Aβ42 is a degradation product of the amyloid protein precursor (APP). It can be catabolized by several enzymes, reabsorbed by capillaries or cleared into cerebrospinal fluid (CSF). The possible involvement of a decrease in CSF turnover in A4β2 deposit formation is up to now poorly known. We therefore investigated a possible relationship between a reduced CSF turnover and the CSF levels of the A4β2 peptide. To this aim, CSF of 31 patients with decreased CSF turnover were studied. These patients presented chronic hydrocephalus communicating or obstructive, which required surgery (ventriculostomy or ventriculo-peritoneal shunt). Nine subjects had idiopathic normal pressure hydrocephalus (iNPH), and the other 22 chronic hydrocephalus from other origins (oCH). The Aβ42 peptide concentration was measured by an ELISA test in 31 ventricular CSF samples and in 5 lumbar CSF samples from patients with communicating hydrocephalus. Results The 5 patients with lumbar CSF analysis had similar levels of lumbar and ventricular Aβ42. A significant reduction in Aβ42 ventricular levels was observed in 24 / 31 patients with hydrocephalus. The values were lower than 300 pg/ml in 5 out of 9 subjects with iNPH, and in 15 out of 22 subjects with oCH. Conclusion The decrease of CSF Aβ42 seems to occur independently of the surgical hydrocephalus aetiology. This suggests that a CSF reduced turnover may play an important role in the decrease of CSF Aβ42 concentration.
Collapse
|
27
|
Skjolding AD, Rowland IJ, Søgaard LV, Praetorius J, Penkowa M, Juhler M. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Res 2010; 7:20. [PMID: 21054845 PMCID: PMC2987763 DOI: 10.1186/1743-8454-7-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/05/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The water channel protein aquaporin-4 (AQP4) is reported to be of possible major importance for accessory cerebrospinal fluid (CSF) circulation pathways. We hypothesized that changes in AQP4 expression in specific brain regions correspond to the severity and duration of hydrocephalus. METHODS Hydrocephalus was induced in adult rats (~8 weeks) by intracisternal kaolin injection and evaluated after two days, one week and two weeks. Using magnetic resonance imaging (MRI) we quantified lateral ventricular volume, water diffusion and blood-brain barrier properties in hydrocephalic and control animals. The brains were analysed for AQP4 density by western blotting and localisation by immunohistochemistry. Double fluorescence labelling was used to study cell specific origin of AQP4. RESULTS Lateral ventricular volume was significantly increased over control at all time points after induction and the periventricular apparent diffusion coefficient (ADC) value significantly increased after one and two weeks of hydrocephalus. Relative AQP4 density was significantly decreased in both cortex and periventricular region after two days and normalized after one week. After two weeks, periventricular AQP4 expression was significantly increased. Relative periventricular AQP4 density was significantly correlated to lateral ventricular volume. AQP4 immunohistochemical analysis demonstrated the morphological expression pattern of AQP4 in hydrocephalus in astrocytes and ventricular ependyma. AQP4 co-localized with astrocytic glial fibrillary acidic protein (GFAP) in glia limitans. In vascular structures, AQP4 co-localized to astroglia but not to microglia or endothelial cells. CONCLUSIONS AQP4 levels are significantly altered in a time and region dependent manner in kaolin-induced hydrocephalus. The presented data suggest that AQP4 could play an important neurodefensive role, and may be a promising future pharmaceutical target in hydrocephalus and CSF disorders.
Collapse
Affiliation(s)
- Anders D Skjolding
- University Clinic of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian J Rowland
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Dept. of Radiology, University of Wisconsin-Madison, Madison, USA
| | - Lise V Søgaard
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jeppe Praetorius
- The Water and Salt Research Center, Department of Anatomy, Aarhus University, Aarhus, Denmark
| | - Milena Penkowa
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- University Clinic of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging. J Neuropathol Exp Neurol 2010; 69:1034-43. [PMID: 20838242 DOI: 10.1097/nen.0b013e3181f46e25] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reduced clearance of amyloid β peptides (Aβ) across the blood-brain barrier contributes to amyloid accumulation in Alzheimer disease. Amyloid β efflux transport is via the endothelial low-density lipoprotein receptor-related protein 1 (LRP-1) and P-glycoprotein (P-gp), whereas Aβ influx transport is via the receptor for advanced glycation end products. Because age is the major risk factor for developing Alzheimer disease, we measured LRP-1 and P-gp expression and associated transporter expression with Aβ accumulation in aging rats. Quantitative LRP-1 and P-gp microvessel expression was measured by immunohistochemistry (IHC); LRP-1 and P-gp expression were assessed in microvessel isolates by Western blotting. There was an age-dependent loss of capillary LRP-1 across all ages (3-36 months) by IHC (linear trend p = 0.0004) and between 3 and 20 months by Western blotting (linear trend p < 0.0001). There was a late (30-36 months) P-gp expression loss by IHC (p < 0.05) and Western blotting (p = 0.0112). Loss of LRP-1 correlated with Aβ42 accumulation (p = 0.0121) and very nearly with Aβ40 (p = 0.0599) across all ages. Expression of LRP-1 correlated negatively with the expression of receptor for advanced glycation end products (p < 0.0004). These data indicate that alterations in LRP-1 and P-gp expression seem to contribute progressively to Aβ accumulation in aging.
Collapse
|