1
|
Atacan Yaşgüçlükal M, Ayça S, Demirbilek V, Saltık S, Yalçınkaya C, Erdoğan Döventaş Y, Çokar Ö. Serum Levels of Neuropeptides in Epileptic Encephalopathy With Spike-and-Wave Activation in Sleep. Pediatr Neurol 2023; 144:110-114. [PMID: 37229878 DOI: 10.1016/j.pediatrneurol.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Epileptic encephalopathy with spike-and-wave activation in sleep (EE-SWAS) is a syndrome of childhood, characterized by diffuse or generalized spike-wave activity in electroencephalography during non-rapid eye movement sleep. Neuropeptides have been demonstrated in several studies to function in the sleep-wake cycle and display convulsant and anticonvulsant features. In this study, we aimed to investigate the relationship between EE-SWAS and neuropeptides such as dynorphin, galanin, ghrelin, leptin, melatonin, and orexin. METHODS This multicenter study was conducted from July 2019 to January 2021. There were three groups: Group 1 contained patients with EE-SWAS. Group 2 consisted of patients with self-limited focal epilepsy of childhood (SeLFE), and group 3 was the control group. Levels of neuropeptides were compared in the sera of these three groups. RESULTS There were 59 children aged between four and 15 years. Group 1 contained 14 children, group 2 contained 24 children, and group 3 contained 21 children. The level of leptin is higher and the level of melatonin is lower in group 1 than in group 3 (P = 0.01 and P = 0.005, respectively). In group 3, the level of orexin was lower than in both groups 2 and 3 (P = 0.01 and P = 0.01). CONCLUSIONS These data show that the level of leptin was higher and the level of melatonin was lower in patients with EE-SWAS than in the control group. Furthermore, patients with EE-SWAS had lower orexin levels than both the control group and patients with SeLFE. Further research is required to understand the potential role of these neuropeptides in the pathophysiology of EE-SWAS.
Collapse
Affiliation(s)
- Miray Atacan Yaşgüçlükal
- Neurology Department, University of Health Sciences Haseki Education and Research Hospital, Istanbul, Turkey.
| | - Senem Ayça
- Department of Pediatric Neurology, University of Health Sciences Haseki Education and Research Hospital, Istanbul, Turkey
| | - Veysi Demirbilek
- Cerrahpaşa Medical Faculty, Neurology Department, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sema Saltık
- Cerrahpaşa Medical Faculty, Department of Pediatric Neurology, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Cengiz Yalçınkaya
- Cerrahpaşa Medical Faculty, Neurology Department, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Yasemin Erdoğan Döventaş
- Department of Medical Biochemistry, University of Health Sciences Haseki Education and Research Hospital, Istanbul, Turkey
| | - Özlem Çokar
- Neurology Department, University of Health Sciences Haseki Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Shan Y, Chen Y, Gu H, Wang Y, Sun Y. Regulatory Basis of Adipokines Leptin and Adiponectin in Epilepsy: from Signaling Pathways to Glucose Metabolism. Neurochem Res 2023; 48:2017-2028. [PMID: 36797447 PMCID: PMC10181973 DOI: 10.1007/s11064-023-03891-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Epilepsy is a common and severe neurological disorder in which impaired glucose metabolism leads to changes in neuronal excitability that slow or promote the development of epilepsy. Leptin and adiponectin are important mediators regulating glucose metabolism in the peripheral and central nervous systems. Many studies have reported a strong association between epilepsy and these two adipokines involved in multiple signaling cascades and glucose metabolism. Due to the complex regulatory mechanisms between them and various signal activation networks, their role in epilepsy involves many aspects, including the release of inflammatory mediators, oxidative damage, and neuronal apoptosis. This paper aims to summarize the signaling pathways involved in leptin and adiponectin and the regulation of glucose metabolism from the perspective of the pathogenesis of epilepsy. In particular, we discuss the dual effects of leptin in epilepsy and the relationship between antiepileptic drugs and changes in the levels of these two adipokines. Clinical practitioners may need to consider these factors in evaluating clinical drugs. Through this review, we can better understand the specific involvement of leptin and adiponectin in the pathogenesis of epilepsy, provide ideas for further exploration, and bring about practical significance for the treatment of epilepsy, especially for the development of personalized treatment according to individual metabolic characteristics.
Collapse
Affiliation(s)
- Yisi Shan
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China.,Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yeting Chen
- Department of Acupuncture, Zhangjiagang Second People's Hospital, Zhangjiagang, 215600, China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yadong Wang
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yaming Sun
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China.
| |
Collapse
|
3
|
Coenzyme Q10 increases absence seizures in WAG/Rij rats: The role of the nitric oxide pathway. Epilepsy Res 2019; 154:69-73. [DOI: 10.1016/j.eplepsyres.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 01/11/2023]
|
4
|
Mora-Muñoz L, Guerrero-Naranjo A, Rodríguez-Jimenez EA, Mastronardi CA, Velez-van-Meerbeke A. Leptin: role over central nervous system in epilepsy. BMC Neurosci 2018; 19:51. [PMID: 30185147 PMCID: PMC6126011 DOI: 10.1186/s12868-018-0453-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/29/2018] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue is a dynamic organ with different effects on the body. Many of these effects are mediated by leptin, a hormone strongly involved in regulation of feeding and energy metabolism. It has an important role as a mediator of neuronal excitatory activity and higher brain functions. The aim of this study was to review the association between leptin and cerebral neuronal function, in particular its anticonvulsant or convulsant effects and the possible therapeutic role for treating epilepsy. For this purpose, the databases Pubmed, Science Direct, Elsevier, ResearchGate and Scielo were searched to identify experimental studies, reviews and systematic review articles, published in English, Spanish or Portuguese. Experimental studies and the presence of leptin receptors in nervous system sites other than the hypothalamus suggest an influence on higher brain functions. Indeed several animal studies have demonstrated a role of these channels in epileptiform activity as both anticonvulsive and convulsive effects have been found. The reason for these discrepancies is unclear but provides clear evidence of a potential role of leptin and leptin therapy in epileptiform activity. The association between leptin and brain function demonstrates the importance of peripheral metabolic hormones on central nervous system and opens a new way for the development of novel therapeutic interventions in diseases like epilepsy. Nevertheless further investigations are important to clarify the dynamics and diverse actions of leptin on excitatory regulation in the brain.
Collapse
Affiliation(s)
- Laura Mora-Muñoz
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Cra 24 No 63C-69, Bogotá, Colombia
| | | | | | | | - Alberto Velez-van-Meerbeke
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Cra 24 No 63C-69, Bogotá, Colombia.
| |
Collapse
|
5
|
Arslan G, Alici SK, Ayyildiz M, Agar E. Interaction between urethane and cannabinoid CB1 receptor agonist and antagonist in penicillin-induced epileptiform activity. Acta Neurobiol Exp (Wars) 2018; 77:128-136. [PMID: 28691717 DOI: 10.21307/ane-2017-045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous experimental studies have shown that various anesthetics alter the effects of cannabinoid agonists and antagonists on the cardiac response to different stimuli. Since no data have shown an interaction between urethane and cannabinoid signaling in epilepsy, we examined the suitability of urethane with regard to testing the effects of a cannabinoid CB1 receptor agonist and an antagonist on penicillin-induced epileptiform activity in rats. Permanent screw electrodes for electrocorticographic (ECoG) recordings, and a permanent cannula for administration of the substances to the brain ventricles, were placed into the cranium of rats. Epileptiform activity was induced by injection of penicillin through the cannula in conscious animal. The CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA; 7.5 μg) and the CB1 receptor antagonist [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide] (AM-251; 0.25 μg) were administered intracerebroventricularly 30 minutes after the penicillin application in urethane-anesthetized and conscious animals. Urethane completely eliminated spontaneous ictal events in ECoG recordings and reduced the frequency and total amount of epileptiform activity. It did not alter either the proconvulsant effects of AM-251 or the anticonvulsant effects of ACEA on penicillin-induced epileptiform activity. The electrophysiological evidence suggests that there is no possible interaction between urethane and cannabinoid CB1 receptors in this experimental model of epilepsy.
Collapse
Affiliation(s)
- Gokhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Sabiha Kubra Alici
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Mustafa Ayyildiz
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Erdal Agar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey;
| |
Collapse
|
6
|
Ni H, Chen SH, Li LL, Jin MF. Leptin treatment prevents long-term abnormalities in cognition, seizure threshold, hippocampal mossy fiber sprouting and ZnT3/CB-D28k expression in a rat developmental "twist" seizure model. Epilepsy Res 2017; 139:164-170. [PMID: 29287786 DOI: 10.1016/j.eplepsyres.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
The mechanism of linking neonatal seizures with long-term brain damage is unclear, and there is no effective drug to block this long-term pathological process. Recently, the fat-derived hormone leptin has been appreciated for its neuroprotective function in neurodegenerative processes, although less is known about the effects of leptin on neonatal seizure-induced brain damage. Here, we developed a "twist" seizure model by coupling pilocarpine-induced neonatal status epilepticus (SE) with later exposure to penicillin to test whether leptin treatment immediately after neonatal SE would exert neuroprotective effects on cognition, seizure threshold and hippocampal mossy fiber sprouting, as well if leptin had any influence on the expression of zinc transporter 3 (ZnT3) and calcium homeostasis-related CB-D28k in the hippocampus. Fifty Sprague-Dawley rats (postnatal day 6, P6) were randomly assigned to four groups: control (n = 10), control with intraperitoneal (i.p.) injection of leptin (Leptin, n = 10), pilocarpine-induced neonatal SE (RS), and RS i.p. leptin injection (RS+Leptin). At P6, all the rats in the RS group and RS+Leptin group were injected with lithium chloride i.p. (5 mEq/kg). Pilocarpine (320 mg/kg, i.p.) was administered 30 min after scopolamine methyl chloride (1 mg/kg) injection at P7 to block the peripheral effect of pilocarpine. From P8 to P14, the animals in the Leptin group and RS+Leptin group were given leptin (4 mg/kg, i.p.). The Morris water maze test was performed during P28-P33. Following routine seizure threshold detection and Timm staining procedures, Western blot analysis was performed for each group. Pilocarpine-induced neonatal SE severely impaired learning and memory abilities, reduced seizure threshold, and induced aberrant hippocampal CA3 mossy fiber sprouting. In parallel, there was a significantly down-regulated protein level of CB-D28k and an up-regulated protein level of ZnT3 in the hippocampus of the RS group. Furthermore, leptin treatment soon after neonatal SE for seven consecutive days counteracted these hyperexcitability-related alterations. These novel findings established that leptin has a neuroprotective role in the model of cholinergic neonatal SE and highlights ZnT3/CB-D28k associated-Zn (2+)/Ca (2+) signaling as a promising therapeutic target.
Collapse
Affiliation(s)
- Hong Ni
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No. 303, Jingde Road, 215003, Suzhou, PR China.
| | - Su-Hong Chen
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No. 303, Jingde Road, 215003, Suzhou, PR China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No. 303, Jingde Road, 215003, Suzhou, PR China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No. 303, Jingde Road, 215003, Suzhou, PR China
| |
Collapse
|
7
|
Agar E. The role of cannabinoids and leptin in neurological diseases. Acta Neurol Scand 2015; 132:371-80. [PMID: 25880465 DOI: 10.1111/ane.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 01/14/2023]
Abstract
Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.
Collapse
Affiliation(s)
- E. Agar
- Department of Physiology; Faculty of Medicine; University of Ondokuz Mayis; Samsun Turkey
| |
Collapse
|
8
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|
9
|
Er K, Yildirim M, Taşdemir T, Akca M, Abidin I. Electrophysiological evidence on epileptiform activity enhanced by electrical stimulation of teeth in rats. Neurol Res 2014; 36:673-8. [PMID: 24620974 DOI: 10.1179/1743132813y.0000000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The aim of this study was to evaluate the possible effects of electrical stimulation (ES) of tooth on penicillin-induced epileptiform activity in rats. Experiment was realized on 24 adult male Sprague Dawley rats. Rats were assigned three groups [stimulation group (SG), penicillin group (PG), and penicillin+stimulation group (PSG)]. In SG, ES was only applied. Ten pulses of electrical current were delivered to the teeth for a duration of 2 milliseconds at 1-second intervals from a stimulator. Currents were applied in the range of 40-240 μA with 40 μA steps. Electrocorticography (ECoG) recordings were taken before and after ES. In PG, ECoG recordings were taken before and during the injection of penicillin. In PSG, after epileptiform activity was induced, ES was applied and ECoG recordings were taken as in SG. All the data were analyzed with Student's t test. Applied currents did not cause any epileptiform activity in SG. When the PSG was compared with the PG it was seen that the spike frequency of epileptiform activity increased in a statistically significant way after application of 240 μA (P < 0·05). On the other hand current application caused an increase in the spike amplitude of the PSG compared with the amplitude of the PG, but it was not statistically significant. We concluded that ES of tooth with high current can trigger epileptiform activity in rats. For this reason, further research is required to evaluate the effects of ES of tooth for pulp testing on epileptic human subjects and antiepileptic drug users.
Collapse
|
10
|
Lee EB, Mattson MP. The neuropathology of obesity: insights from human disease. Acta Neuropathol 2014; 127:3-28. [PMID: 24096619 DOI: 10.1007/s00401-013-1190-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 02/06/2023]
Abstract
Obesity, a pathologic state defined by excess adipose tissue, is a significant public health problem as it affects a large proportion of individuals and is linked with increased risk for numerous chronic diseases. Obesity is the result of fundamental changes associated with modern society including overnutrition and sedentary lifestyles. Proper energy homeostasis is dependent on normal brain function as the master metabolic regulator, which integrates peripheral signals, modulates autonomic outflow and controls feeding behavior. Therefore, many human brain diseases are associated with obesity. This review explores the neuropathology of obesity by examining brain diseases which either cause or are influenced by obesity. First, several genetic and acquired brain diseases are discussed as a means to understand the central regulation of peripheral metabolism. These diseases range from monogenetic causes of obesity (leptin deficiency, MC4R deficiency, Bardet-Biedl syndrome and others) to complex neurodevelopmental disorders (Prader-Willi syndrome and Sim1 deficiency) and neurodegenerative conditions (frontotemporal dementia and Gourmand's syndrome) and serve to highlight the central regulatory mechanisms which have evolved to maintain energy homeostasis. Next, to examine the effect of obesity on the brain, chronic neuropathologic conditions (epilepsy, multiple sclerosis and Alzheimer's disease) are discussed as examples of obesity leading to maladaptive processes which exacerbate chronic disease. Thus, obesity is associated with multiple pathways including abnormal metabolism, altered hormonal signaling and increased inflammation which act in concert to promote downstream neuropathology. Finally, the effect of anti-obesity interventions is discussed in terms of brain structure and function. Together, understanding human diseases and anti-obesity interventions leads to insights into the bidirectional interaction between peripheral metabolism and central brain function, highlighting the need for continued clinicopathologic and mechanistic studies of the neuropathology of obesity.
Collapse
|
11
|
Arslan G, Alici SK, Ayyildiz M, Agar E. The role of CB1-receptors in the proconvulsant effect of leptin on penicillin-induced epileptiform activity in rats. CNS Neurosci Ther 2013; 19:222-8. [PMID: 23521910 DOI: 10.1111/cns.12075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/31/2012] [Accepted: 01/22/2013] [Indexed: 01/09/2023] Open
Abstract
AIMS Prior studies have demonstrated the involvement of leptin and cannabinoids in food intake and metabolism. However, the interaction between leptin and cannabinoids in epilepsy has not been studied. This study elucidated the relationship between leptin and cannabinoids in penicillin-induced epileptiform activity in rats. METHODS The CB1 receptor agonist, arachidonyl-2-chloroethylamide (ACEA), at doses of 2.5 and 7.5 μg, the CB1 receptor antagonist, [N-(piperidine-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide] (AM-251), at doses of 0.125 and 0.25 μg, and leptin, at the dose of 1 μg, were administered intracerebroventricularly (i.c.v.) 30 min after intracortical penicillin (i.c.) application. RESULTS Leptin caused proconvulsant activity in all groups. The administration of AM-251, at a dose of 0.25 μg, increased the frequency of penicillin-induced epileptiform activity by producing status epilepticus-like activity, whereas AM-251, at a dose of 0.125 μg, was not effective when applied alone. ACEA, at a dose of 7.5 μg, decreased the frequency of epileptiform activity. Leptin reversed the anticonvulsant activity of ACEA and enhanced the proconvulsant activity of AM-251. CONCLUSIONS This study provides electrophysiological evidence that the proconvulsant activity of leptin is mediated, at least in part, by inhibition of cannabinoids in the experimental model of epilepsy.
Collapse
Affiliation(s)
- Gokhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | | | | | | |
Collapse
|
12
|
Per S, Tasdemir A, Yildirim M, Ayyildiz M, Ayyildiz N, Agar E. The involvement of iNOS activity in the anticonvulsant effect of grape seed extract on the penicillin-induced epileptiform activity in rats. ACTA ACUST UNITED AC 2013; 100:224-36. [DOI: 10.1556/aphysiol.100.2013.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Hypothalamic hormones and metabolism. Epilepsy Res 2012; 100:245-51. [PMID: 21856125 DOI: 10.1016/j.eplepsyres.2011.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/14/2022]
Abstract
The ketogenic diet is an effective treatment for medically intractable epilepsy and may have antiepileptogenic, neuroprotective, and antitumor properties. While on a ketogenic diet, the body obtains most of its calories from fat rather than carbohydrates. This dramatic change in caloric composition results in a unique metabolic state. In turn, these changes in caloric composition and metabolism alter some of the neurohormones that participate in the complex neuronal network regulating energy homeostasis. Two observed changes are an increase in serum leptin and a decrease in serum insulin. These opposing changes in leptin and insulin are unique compared to other metabolic stimuli and may modify the activity of several cell signaling cascades including phosphoinositidyl-3 kinase (PI3K), adenosine monophosphate activated protein kinase (AMPK), and mammalian target of rapamycin (mTOR). These cell signaling pathways may mediate the anticonvulsant and other beneficial effects of the diet, though the neurohormonal changes induced by the ketogenic diet and the physiological consequences of these changes remain poorly characterized.
Collapse
|