1
|
Donertas Ayaz B, Zubcevic J. Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide. Pharmacol Res 2020; 153:104677. [PMID: 32023431 PMCID: PMC7056572 DOI: 10.1016/j.phrs.2020.104677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Inflammation and gut dysbiosis are hallmarks of hypertension (HTN). Hydrogen sulfide (H2S) is an important freely diffusing molecule that modulates the function of neural, cardiovascular and immune systems, and circulating levels of H2S are reduced in animals and humans with HTN. While most research to date has focused on H₂S produced endogenously by the host, H2S is also produced by the gut bacteria and may affect the host homeostasis. Here, we review an association between neuroinflammation and gut dysbiosis in HTN, with special emphasis on a potential role of H2S in this interplay.
Collapse
Affiliation(s)
- Basak Donertas Ayaz
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States; Department of Pharmacology, College of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
2
|
Blockade of the renin-angiotensin system suppresses hydroxyl radical production in the rat striatum during carbon monoxide poisoning. Sci Rep 2020; 10:2602. [PMID: 32054947 PMCID: PMC7018774 DOI: 10.1038/s41598-020-59377-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/28/2020] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress has been suggested to play a role in brain damage during carbon monoxide (CO) poisoning. Severe poisoning induced by CO at 3000 ppm, but not 1000 ppm, enhances hydroxyl radical (˙OH) production in the rat striatum, which might be mediated by NADPH oxidase (NOX) activation associated with Ras-related C3 botulinum toxin substrate (Rac) via cAMP signaling pathway activation. CO-induced ˙OH production was suppressed by antagonists of angiotensin II (AngII) type 1 receptor (AT1R) and type 2 receptor (AT2R) but not an antagonist of the Mas receptor. Suppression by an AT1R antagonist was unrelated to peroxisome proliferator-activated receptor γ. Angiotensin-converting enzyme inhibitors also suppressed CO-induced ˙OH production. Intrastriatal AngII at high concentrations enhanced ˙OH production. However, the enhancement of ˙OH production was resistant to inhibitors selective for NOX and Rac and to AT1R and AT2R antagonists. This indicates a different mechanism for ˙OH production induced by AngII than for that induced by CO poisoning. AT1R and AT2R antagonists had no significant effects on CO-induced cAMP production or ˙OH production induced by forskolin, which stimulates cAMP production. These findings suggest that the renin-angiotensin system might be involved in CO-induced ˙OH production in a manner independent of cAMP signaling pathways.
Collapse
|
3
|
Zhou X, Yang H, Song X, Wang J, Shen L, Wang J. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension. Hypertens Res 2019; 42:1142-1151. [PMID: 30842613 DOI: 10.1038/s41440-019-0242-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Glutamatergic activity in the rostral ventrolateral medulla (RVLM), which is an important brain area where angiotensin II (Ang II) elicits its pressor effects, contributes to the onset of hypertension. The present study aimed to explore the effect of central Ang II type 1 receptor (AT1R) blockade on glutamatergic actions in the RVLM of stress-induced hypertensive rats (SIHR). The stress-induced hypertension (SIH) model was established by electric foot shocks combined with noises. Normotensive Sprague-Dawley rats (control) and SIHR were intracerebroventricularly infused with the AT1R antagonist candesartan or artificial cerebrospinal fluid for 14 days. Mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine (NE), glutamate, and the expression of N-methyl-D-aspartic acid (NMDA) receptor subunit NR1, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in the RVLM increased in the SIH group. These increases were blunted by candesartan. Bilateral microinjection of the ionotropic glutamate receptor antagonist kynurenic acid, the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate, or the AMPA/kainate receptors antagonist 6-cyano-7-nitroquinoxaline-2,3-dione into the RVLM caused a depressor response in the SIH group, but not in other groups. NR1 and AMPA receptors expressed in the glutamatergic neurons of the RVLM, and glutamate levels, increased in the intermediolateral column of the spinal cord of SIHR. Central Ang II elicits release of glutamate, which binds to the enhanced ionotropic NMDA and AMPA receptors via AT1R, resulting in activation of glutamatergic neurons in the RVLM, increasing sympathetic excitation in SIHR.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoshan Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Małkiewicz MA, Szarmach A, Sabisz A, Cubała WJ, Szurowska E, Winklewski PJ. Blood-brain barrier permeability and physical exercise. J Neuroinflammation 2019; 16:15. [PMID: 30678702 PMCID: PMC6345022 DOI: 10.1186/s12974-019-1403-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
In this narrative review, a theoretical framework on the crosstalk between physical exercise and blood-brain barrier (BBB) permeability is presented. We discuss the influence of physical activity on the factors affecting BBB permeability such as systemic inflammation, the brain renin-angiotensin and noradrenergic systems, central autonomic function and the kynurenine pathway. The positive role of exercise in multiple sclerosis and Alzheimer’s disease is described. Finally, the potential role of conditioning as well as the effect of exercise on BBB tight junctions is outlined. There is a body of evidence that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress and has anti-inflammatory effects. It improves endothelial function and might increase the density of brain capillaries. Thus, physical training can be emphasised as a component of prevention programs developed for patients to minimise the risk of the onset of neuroinflammatory diseases as well as an augmentation of existing treatment. Unfortunately, despite a sound theoretical background, it remains unclear as to whether exercise training is effective in modulating BBB permeability in several specific diseases. Further research is needed as the impact of exercise is yet to be fully elucidated.
Collapse
Affiliation(s)
- Marta A Małkiewicz
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland.,Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Arkadiusz Szarmach
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Sabisz
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Edyta Szurowska
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Paweł J Winklewski
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland. .,2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland. .,Department of Clinical Anatomy and Physiology, Faculty of Health Sciences, Pomeranian University of Slupsk, Slupsk, Poland.
| |
Collapse
|
5
|
Importance of AT1 and AT2 receptors in the nucleus of the solitary tract in cardiovascular responses induced by a high-fat diet. Hypertens Res 2019; 42:439-449. [PMID: 30631157 PMCID: PMC7092339 DOI: 10.1038/s41440-018-0196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 02/01/2023]
Abstract
A high-fat diet (HFD) induces an increase in arterial pressure and a decrease in baroreflex function, which may be associated with increased expression of angiotensin type 1 receptor (AT1R) and pro-inflammatory cytokine genes and reduced expression of the angiotensin type 2 receptor (AT2R) gene within the nucleus of the solitary tract (NTS), a key area of the brainstem involved in cardiovascular control. Thus, in the present study, we evaluated the changes in arterial pressure and gene expression of components of the renin-angiotensin system (RAS) and neuroinflammatory markers in the NTS of rats fed a HFD and treated with either an AT1R blocker or with virus-mediated AT2R overexpression in the NTS. Male Holtzman rats (300-320 g) were fed either a standard rat chow diet (SD) or HFD for 6 weeks before commencing the tests. AT1R blockade in the NTS of HFD-fed rats attenuated the increase in arterial pressure and the impairment of reflex bradycardia, whereas AT2R overexpression in the NTS only improved the baroreflex function. The HFD also increased the hypertensive and decreased the protective axis of the RAS and was associated with neuroinflammation within the NTS. The expression of angiotensin-converting enzyme and neuroinflammatory components, but not AT1R, in the NTS was reduced by AT2R overexpression in this site. Based on these data, AT1R and AT2R in the NTS are differentially involved in the cardiovascular changes induced by a HFD. Chronic inflammation and changes in the RAS in the NTS may also account for the cardiovascular responses observed in HFD-fed rats.
Collapse
|
6
|
Zakrocka I, Targowska-Duda KM, Wnorowski A, Kocki T, Jóźwiak K, Turski WA. Angiotensin II Type 1 Receptor Blockers Inhibit KAT II Activity in the Brain-Its Possible Clinical Applications. Neurotox Res 2017; 32:639-648. [PMID: 28733707 PMCID: PMC5602025 DOI: 10.1007/s12640-017-9781-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 01/13/2023]
Abstract
Angiotensin II receptor blockers (ARBs) are one of the most frequently recommended antihypertensive drugs. Apart from their activity towards the circulatory system, ARBs also penetrate the blood-brain barrier and display neuroprotective effects. Kynurenic acid (KYNA) is an endogenous metabolite of tryptophan produced by kynurenine aminotransferase II (KAT II) in the brain. Antagonism towards all ionotropic glutamate (GLU) receptors is the main mechanism of KYNA action. An elevated brain level of KYNA is linked with memory impairment and psychotic symptoms. The aim of this study was to examine the influence of three ARBs: irbesartan, losartan, and telmisartan on KYNA production and KAT II activity in rat brain. The effect of ARBs on KYNA production was analyzed in rat brain cortical slices and on isolated KAT II enzyme. Irbesartan, losartan, and telmisartan decreased KYNA production and KAT II activity in a dose-dependent manner in rat brain cortex in vitro. Molecular docking suggested that the examined ARBs could bind to an active site of KAT II. In conclusion, ARBs decrease KYNA production in rat brain by direct inhibition of KAT II enzymatic activity. This novel mechanism of ARBs action may be advantageous in the treatment of cognitive impairment or the management of schizophrenia.
Collapse
Affiliation(s)
- Izabela Zakrocka
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland.
| | | | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
7
|
Barros MAV, De Brito Alves JL, Nogueira VO, Wanderley AG, Costa-Silva JH. Maternal low-protein diet induces changes in the cardiovascular autonomic modulation in male rat offspring. Nutr Metab Cardiovasc Dis 2015; 25:123-130. [PMID: 25287449 DOI: 10.1016/j.numecd.2014.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Maternal undernutrition induces development of the arterial hypertension. We investigated the effects of a maternal low-protein diet on cardiovascular autonomic control in the offspring. METHODS AND RESULTS Male Wistar rats were divided into two groups according to the diets of their mothers during gestation and lactation: the control (normal protein, NP, 17% casein; n = 14) and low-protein (LP, 8% casein; n = 14) groups. Direct measurements of arterial pressure (AP) were recorded from wakeful 90-day-old male offspring. The LP offspring presented higher mean AP than did the NP rats (NP: 93 ± 4 vs. LP: 113 ± 2 mmHg; p < 0.05), whereas the heart rate (HR) was similar in the two groups. In the spectral analysis, the LP group showed higher power at low (NP: 1.98 ± 0.25 vs. LP: 3.7 ± 0.3 mmHg²; p < 0.05) and high (NP: 1.28 ± 0.18 vs. LP: 2.13 ± 0.42 mmHg²; p < 0.05) frequencies of systolic arterial pressure (SAP). In the pulse interval, the LP group presented an increase in the LF/HF ratio (NP: 0.32 vs. LP: 0.56; p < 0.05). After propranolol (4 mg/kg, intravenous (iv)), the bradycardia was higher in the LP group (NP: -36 ± 8 vs. LP: -94 ± 12 bpm; p < 0.05), after methylatropine (2 mg/kg, iv), the tachycardia was similar to NP group. After administration of the ganglionic blocker (hexamethonium; 25 mg/kg, iv), the LP animals showed larger delta variation in the AP (NP: -33.7 ± 5 vs. LP: -53.6 ± 4 mmHg; p < 0.05). CONCLUSION The rats subjected to protein malnutrition presented an increase in the cardiovascular sympathetic tone, which contributed to the elevated AP observed in these animals.
Collapse
Affiliation(s)
- M A V Barros
- Department of Physical Education and Sport Sciences, Academic Center of Vitoria (CAV), Federal University of Pernambuco, 55608-680, Brazil
| | - J L De Brito Alves
- Department of Physical Education and Sport Sciences, Academic Center of Vitoria (CAV), Federal University of Pernambuco, 55608-680, Brazil
| | - V O Nogueira
- Department of Physical Education and Sport Sciences, Academic Center of Vitoria (CAV), Federal University of Pernambuco, 55608-680, Brazil
| | - A G Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Brazil
| | - J H Costa-Silva
- Department of Physical Education and Sport Sciences, Academic Center of Vitoria (CAV), Federal University of Pernambuco, 55608-680, Brazil.
| |
Collapse
|
8
|
Vieira AA, Colombari E, De Luca LA, Colombari DSA, De Paula PM, Menani JV. Cardiovascular responses to injections of angiotensin II or carbachol into the rostral ventrolateral medulla in rats with AV3V lesions. Neurosci Lett 2013; 556:32-6. [PMID: 24095671 DOI: 10.1016/j.neulet.2013.09.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/25/2022]
Abstract
Injection of l-glutamate (GLU) into the rostral ventrolateral medulla (RVLM) produces sympathetically-mediated pressor responses that depend on the integrity of the tissue surrounding the anteroventral third ventricle (AV3V region). The injection of angiotensin II (ANG II) or the cholinergic agonist carbachol into the RVLM also produces pressor responses. In the present study, we investigated if the lesion of the AV3V region affects the pressor responses to ANG II or carbachol injected into the RVLM in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the RVLM were used. The pressor responses to ANG II (200ng/100nl) injected into the RVLM were reduced by acute (1 day) (12±3 vs. sham lesions: 26±4mmHg) or chronic (15 days) AV3V lesions (12±5 vs. sham lesions: 27±4mmHg), whereas acute or chronic AV3V lesions did not affect the pressor responses to carbachol (1nmol/100nl) injected into the RVLM. The present results suggest that the AV3V region modulates the excitability of the RVLM neurons involved with the pressor response produced by the activation of angiotensinergic mechanisms in this area.
Collapse
Affiliation(s)
- Alexandre Antonio Vieira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP 14801-903, Brazil.
| | | | | | | | | | | |
Collapse
|
9
|
Valenti VE, Abreu LCD, Fonseca FLA, Adami F, Sato MA, Vanderlei LCM, Ferreira LL, Rodrigues LM, Ferreira C. Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. Clinics (Sao Paulo) 2013; 68:851-7. [PMID: 23778493 PMCID: PMC3674281 DOI: 10.6061/clinics/2013(06)21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/13/2013] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. METHODS Male Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SH) (16 weeks old) were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4th V). The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm). The baroreflex was tested using a pressor dose of phenylephrine (8 μg/kg, bolus) and a depressor dose of sodium nitroprusside (50 μg/kg, bolus). Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 μL) into the 4th V. RESULTS Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (p<0.05) to a greater extent in WKY rats exposed to sidestream cigarette smoke than in WKY rats exposed to fresh air. However, in spontaneously hypertensive rats, the effect of the catalase inhibitor treatment was stronger in the fresh air condition (p<0.05). CONCLUSION Administration of a catalase inhibitor into the 4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.
Collapse
Affiliation(s)
- Vitor E Valenti
- Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia, Programa de Pós-Graduação em Fisioterapia, Presidente Prudente/SP, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nunes FC, Braga VA. Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats. J Renin Angiotensin Aldosterone Syst 2011; 12:440-5. [PMID: 21393361 DOI: 10.1177/1470320310394891] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Blood-borne angiotensin II (Ang II) has profound effects on the central nervous system, including regulation of vasopressin secretion and modulation of sympathetic outflow. However, the mechanism by which circulating Ang II affects the central nervous system remains largely unknown. We tested the hypothesis that increased circulating levels of Ang II activate angiotensin type I (AT1) receptors in the subfornical organ (SFO), increasing the Ang II signalling in the rostral ventrolateral medulla (RVLM). Male Wistar rats were subcutaneously implanted with two 14-day osmotic minipumps filled with Ang II (150 ng/kg/minute), Losartan (10mg/kg/day), or saline. In addition, AT1 receptor mRNA levels in the SFO and RVLM were detected by reverse transcription polymerase chain reaction (RT-PCR). Infusion of Ang II-induced hypertension (134 ± 10 mmHg vs 98 ± 9 mmHg, n = 9, p < 0.05), which was blunted by concomitant infusion of Losartan (105 ± 8 vs 134 ± 10 mmHg, n = 9, p < 0.05). In addition, hexamethonium produced a greater decrease in blood pressure in Ang II-infused rats. Real time PCR revealed that chronic Ang II infusion induced an increase in AT1 receptor mRNA levels in the RVLM and a decrease in the SFO. Taken together, using combined in vivo and molecular biology approaches, our data suggest that Ang II-induced hypertension is mediated by an increase in sympathetic nerve activity, which seems to involve up-regulation of AT1 receptors in the RVLM and down-regulation of AT1 receptors in the SFO.
Collapse
Affiliation(s)
- Fabíola C Nunes
- Veterinary Sciences Department, Center for Agrarian Sciences, Federal University of Paraíba, Areia, PB, Brazil
| | | |
Collapse
|
11
|
Vieira AA, Nahey DB, Collister JP. Role of the organum vasculosum of the lamina terminalis for the chronic cardiovascular effects produced by endogenous and exogenous ANG II in conscious rats. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1564-71. [DOI: 10.1152/ajpregu.00034.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous and exogenous circulating ANG II acts at one of the central circumventricular organs (CVOs), the subfornical organ (SFO), to modulate chronic blood pressure regulation. However, at the forebrain, another important CVO is the organum vasculosum of the lamina terminalis (OVLT). In the present study, we tested the hypothesis that the OVLT mediates the hypertension or the hypotension produced by chronic infusion of ANG II or losartan (AT1 antagonist), respectively. Six days after sham or OVLT electrolytic lesion, male Sprague-Dawley rats (280–320 g, n = 6 per group) were instrumented with intravenous catheters and radiotelemetric blood pressure transducers. Following another week of recovery, rats were given 3 days of saline control infusion (7 ml/day) and were then infused with ANG II (10 ng·kg−1·min−1) or losartan (10 mg·kg−1·day−1) for 10 days, followed by 3 recovery days. Twenty-four hour average measurements of mean arterial pressure (MAP) and heart rate (HR) were made during this protocol. Hydromineral balance (HB) responses were measured during the experimental protocol. By day 9 of ANG II treatment, MAP had increased 16 ± 4 mmHg in sham rats but only 4 ± 1 mmHg in OVLT lesioned rats without changes in HR or HB. However, the hypotension produced by 10 days of losartan infusion was not modified in OVLT lesioned rats. These results suggest that the OVLT might play an important role during elevation of plasma ANG II, facilitating increases of blood pressure but is not involved with baseline effects of endogenous ANG II.
Collapse
Affiliation(s)
- Alexandre A. Vieira
- Department of Veterinary and Biomedical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - David B. Nahey
- Department of Veterinary and Biomedical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - John P. Collister
- Department of Veterinary and Biomedical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
12
|
Nunes FC, Ribeiro TP, França-Silva MS, Medeiros IA, Braga VA. Superoxide scavenging in the rostral ventrolateral medulla blunts the pressor response to peripheral chemoreflex activation. Brain Res 2010; 1351:141-149. [DOI: 10.1016/j.brainres.2010.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 06/26/2010] [Accepted: 07/01/2010] [Indexed: 02/07/2023]
|