1
|
Almohmadi NH, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Abdelaziz AM, Jabir MS, Alexiou A, Papadakis M, Batiha GES. Glutamatergic dysfunction in neurodegenerative diseases focusing on Parkinson's disease: Role of glutamate modulators. Brain Res Bull 2025; 225:111349. [PMID: 40252703 DOI: 10.1016/j.brainresbull.2025.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder resulting from the degeneration of dopamenergic neurons in the substantia nigra pars compacta (SNpc). Research has predominantly centered on understanding the dysfunction of dopaminergic neurotransmission in PD. Recently, more studies discussed the potential role of other neurotransmitters in PD neuropathology. One of the most important non-dopaminergic neurotransmitters involved in the pathogenesis of PD is glutamate, which is widely involved in glutamatergic neurotransmission in different brain regions, including SNpc. The development and progression of PD neuropathology and levodopa-induced dyskinesias (LID) are associated with glutamate neurotoxicity. Therefore, this review seeks to explore the possible involvement of glutamatergic signaling in PD development and assess the therapeutic potential of glutamate receptor antagonists in treating the disorder.
Collapse
Affiliation(s)
- Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu, Po. Box (13), Kufa, Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish 45511, Egypt.
| | - Majid S Jabir
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Saini S, Panchal SS. Role of Diabetes and its metabolic pathways in Epilepsy: An insight to various target approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04245-1. [PMID: 40347278 DOI: 10.1007/s00210-025-04245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025]
Abstract
The human brain acts as a crucial organ that requires a high glucose metabolic content. However, abnormal glucose levels act as a major factor for frequent epileptic foci. Thus, it has come to attention in the recent past that epilepsy is a metabolic problem in addition to a neurological condition. However, several studies have postulated a link between epilepsy and diabetes mellitus, but very few have emphasized the exact molecular mechanism behind it and its related specific targets. Hence, this article mainly outlines in-depth knowledge about the molecular mechanisms involved and its associated target approaches. Data from several publications, such as meta-analysis, systematic and narrative reviews, and research papers obtained from electronic databases, have been used for postulating a strong evidence in order to establish a comprehensive article addressing this problem in depth. The data discussed here have revealed how adiponectin levels and mitochondrial activity impact obesity, type 2 diabetes mellitus (T2DM), and epilepsy. We have also tried to give a brief idea about the possible theories that would also impact the severity of these two conditions, including adequate exercise and the impact of commonly used AEDs. Furthermore, one of the factors causing genetic predisposition to seizures due to glucose metabolism, such as GLUT-1 deficiency, has also been described briefly. It has to be mentioned that researchers and clinical practitioners might need to take these factors into account while discovering and evaluating a suitable novel therapeutic in the future.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G Highway, Ahmedabad, 382 481, Gujarat, India
| | - Shital S Panchal
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G Highway, Ahmedabad, 382 481, Gujarat, India.
| |
Collapse
|
3
|
Ren Y, Zhang M, Fu X, Zhang Y, Liu F, Wu C, Shi H, Tian F, Liu G, Lin Y, Su Y, Chen W. Ketogenic diet treatment for super-refractory status epilepticus in the intensive care unit: feasibility, safety and effectiveness. Front Neurol 2025; 15:1517850. [PMID: 39871989 PMCID: PMC11769800 DOI: 10.3389/fneur.2024.1517850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
Background and aims To investigate the feasibility, safety and effectiveness of the ketogenic diet (KD) for super-refractory status epilepticus (SRSE) in the intensive care unit (ICU). Methods We conducted a prospective investigation on patients with SRSE treated with the KD. The primary outcome measures were ketosis development as a biomarker of feasibility and resolution of SRSE as effectiveness. KD-related side effects were also investigated. Results Twelve patients (9 females and 3 males) with SRSE, with a median age of 34 years [range 16-69, interquartile range (IQR) 18-52], were treated with a KD. The median duration of SRSE prior to KD treatment was 21 days (range 4-46). SRSE resolved in 75% (9/12) of patients at a median of 3 days (range 1-18) after KD initiation. Among the nine KD responders, all were successfully weaned off anesthetic agents at a median of 16 days (range 4-32) after KD initiation, and all were also successfully weaned off ventilator. Side effects varied, and included gastrointestinal intolerances, malnutrition and metabolic abnormalities, electrolyte disturbance, and acute weight loss, although most of them could be corrected. No patient died due to KD, and neurofunctions continued to improve under KD therapy. Conclusion The KD may be feasible and effective for the treatment of SRSE in the ICU. Moreover, it is relatively safe. However, there are numerous adverse events that can be corrected under close monitoring.
Collapse
Affiliation(s)
- Yishu Ren
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Mengyao Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xinxiao Fu
- Department of Neurology, Qingyuan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Qingyuan, China
| | - Yan Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Fang Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Chenglin Wu
- Department of Neurology, Beijing Fengtai You’anmen Hospital, Beijing, China
| | - Haiyan Shi
- Department of Neurology, Beijing Fengtai You’anmen Hospital, Beijing, China
| | - Fei Tian
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yingying Su
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Weibi Chen
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ergul Erkec O, Yunusoglu O, Huyut Z. Evaluation of repeated ghrelin administration on seizures, oxidative stress and neurochemical parameters in pentyleneterazole induced kindling in rats. Int J Neurosci 2024; 134:420-428. [PMID: 35903909 DOI: 10.1080/00207454.2022.2107516] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Introduction: Epileptic seizures are thought to be caused by the impaired balance between excitatory (glutamate) and inhibitor [gamma amino butyric acid (GABA)] neurotransmitters in the brain. Neuropeptides have potent modulator properties on these neurotransmitters.Objective: Ghrelin exerts anticonvulsant effects in an acute pentylenetetrazole (PTZ) model. However, the effect of repeated ghrelin injections in chronic pentylenetetrazole kindling model is not known. In this study, the effects of repeated ghrelin administration on seizure scores, working memory, locomotor activity, oxidative biomarkers, and neurochemical parameters in PTZ kindling in rats was examined.Methods: For this purpose, 35 mg/kg of PTZ was administered intraperitoneally to the experimental groups. The rats also received physiological saline/diazepam or ghrelin before each PTZ injection. After behavioural analysis (Y-maze, rotarod, and locomotor activity tests), biochemical and neurochemical analyses were conducted using ELISA.Results: PTZ administration induced progression in the seizure scores and all of the rats in the PS + PTZ group were kindled with the 20th injection. Ghrelin treatment significantly reduced the seizure scores. The difference among the groups in terms of the Y-maze, locomotor activity, and rotarod tests was nonsignificant. PTZ administration significantly decreased the brain GABA, CAT, and AChE levels, and increased the MDA, NO, and protein carbonyl levels. Repeated ghrelin treatment ameliorated the GABA, AChE, CAT, MDA, NO, and protein carbonyl levels.Conclusion: Taken together, the results indicated that repeated ghrelin treatment had antioxidant, and anticonvulsant activity on PTZ kindling in rats.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Oruc Yunusoglu
- Department of Pharmacology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
5
|
Jahi H, Eslami M, Sayyah M, Karimzadeh F, Alesheikh M. Curcumin Lowers the Accelerated Speed of Epileptogenesis by Traumatic Brain Injury. IRANIAN BIOMEDICAL JOURNAL 2024; 28:113-9. [PMID: 38562043 PMCID: PMC11186616 DOI: 10.61186/ibj.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024]
Abstract
Background Traumatic brain injury or TBI can underlie epilepsy. Prevention of PTE has been of great interest to scientists. Given the antiepileptic, antioxidant and anti-inflammatory activities of curcumin, we examined whether this compound can affect epileptogenesis in rats after TBI. Methods Curcumin was injected once a day for two weeks. TBI was induced in the temporal cortex of anesthetized rats using a controlled cortical impact device. One day after TBI, pentylenetetrazole (PTZ), 35 mg/kg, was injected i.p. every other day until manifestation of generalized seizures. The number of PTZ injections was then recorded. Moreover, the extent of cortical and hippocampal IL-1β and glial fibrillary acidic protein (GFAP) expression in the epileptic rats were measured by Western blot analysis. Results Curcumin 50 and 150 mg/kg prevented the development of kindling, whereas TBI accelerated the rate of kindling. Curcumin 20 mg/kg prohibited kindling facilitation by TBI, and reduced the expression of IL-1β and GFAP induced by TBI. Conclusion Curcumin can stop the acceleration of epileptogenesis after TBI in rats. Inhibiting hippocampal and cortical overexpression of IL-1β and GFAP seems to be involved in this activity.
Collapse
Affiliation(s)
- Hanieh Jahi
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Basic Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Eslami
- Department of Basic Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Alesheikh
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Vázquez-González D, Corona JC. Pioglitazone enhances brain mitochondrial biogenesis and phase II detoxification capacity in neonatal rats with 6-OHDA-induced unilateral striatal lesions. Front Neurosci 2023; 17:1186520. [PMID: 37575308 PMCID: PMC10416244 DOI: 10.3389/fnins.2023.1186520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
The psychostimulant methylphenidate (MPH) is the first-line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), but has numerous adverse side effects. The PPARγ receptor agonist pioglitazone (PIO) is known to improve mitochondrial bioenergetics and antioxidant capacity, both of which may be deficient in ADHD, suggesting utility as an adjunct therapy. Here, we assessed the effects of PIO on ADHD-like symptoms, mitochondrial biogenesis and antioxidant pathways in multiple brain regions of neonate rats with unilateral striatal lesions induced by 6-hydroxydopamine (6-OHDA) as an experimental ADHD model. Unilateral striatal injection of 6-OHDA reduced ipsilateral dopaminergic innervation by 33% and increased locomotor activity. This locomotor hyperactivity was not altered by PIO treatment for 14 days. However, PIO increased the expression of proteins contributing to mitochondrial biogenesis in the striatum, hippocampus, cerebellum and prefrontal cortex of 6-OHDA-lesioned rats. In addition, PIO treatment enhanced the expression of the phase II transcription factor Nrf2 in the striatum, prefrontal cortex and cerebellum. In contrast, no change in the antioxidant enzyme catalase was observed in any of the brain regions analyzed. Thus, PIO may improve mitochondrial biogenesis and phase 2 detoxification in the ADHD brain. Further studies are required to determine if different dose regimens can exert more comprehensive therapeutic effects against ADHD neuropathology and behavior.
Collapse
Affiliation(s)
| | - Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
7
|
Li J, Chen S, Wang F, Zhang J, Zeyghami MA, Koohsar F, Ayatollahi AA, Amini A. Effect of Rosiglitazone, the Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, on Apoptosis, Inflammatory Cytokines and Oxidative Stress in pentylenetetrazole-Induced Seizures in Kindled Mice. Neurochem Res 2023:10.1007/s11064-023-03951-7. [PMID: 37204549 DOI: 10.1007/s11064-023-03951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
A growing body of evidence has shown that seizure can trigger inflammatory cascades through increasing the expression of several inflammatory cytokines. It has been proved that peroxisome proliferator-activated receptor-γ agonists have immunomodulatory, anti-inflammatory, and neuroprotective effects beyond the putative hypoglycemic effects. Thus, we investigated the inhibitory effect of rosiglitazone on the development of pentylenetetrazol (PTZ)-induced kindling via affecting the inflammatory pathway. Male C57BL/6 mice were randomly divided into vehicle group (0.1% DMSO), PTZ-group and rosiglitazone-PTZ-group. Kindling was induced by the administration of PTZ (40 mg/kg, i.p) every other day and mice were observed for 20 min after each PTZ injection. Twenty-four hours after the last dose, animals were euthanized and hippocampus was isolated. The level of Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase (CAT) activity were quantified in hippocampus by biochemical methods. The protein levels of IL-1β, IL-6, IL-10, IFN-γ, TNF-α, caspase-3, iNOS, PPAR-γ, Bcl-2, or Bax factors were measured with western blotting. Also, the quantitative real-time PCR were used to evaluate the mRNA expression of those factors. Pretreatment with rosiglitazone significantly prevented the progression of kindling in comparison with control group. The rosiglitazone significantly decreased the MDA level and increased the CAT, and SOD levels in the rosiglitazone treated mice compared to those in the PTZ group (P < 0.01). Using real-time PCR and Western blotting assay, similar results were obtained. The expression levels of IL-1β, IL-6, IL-10, IFN-γ, TNF-α, Bax or PPAR-γ were significantly changed in the brain. The results of this study suggest that effect of rosiglitazone may be crucial in its ability to protect against the neuronal damage caused by PTZ induced seizure.
Collapse
Affiliation(s)
- Jinliang Li
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Suping Chen
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Feilong Wang
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Jingyu Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China.
| | - Mohammad Ali Zeyghami
- Neuroscience Research Center, Department of Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Asghar Ayatollahi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Amini
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
8
|
Senn L, Costa AM, Avallone R, Socała K, Wlaź P, Biagini G. Is the peroxisome proliferator-activated receptor gamma a putative target for epilepsy treatment? Current evidence and future perspectives. Pharmacol Ther 2023; 241:108316. [PMID: 36436690 DOI: 10.1016/j.pharmthera.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.
Collapse
Affiliation(s)
- Lara Senn
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna-Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
9
|
Hu A, Yuan H, Qin Y, Zhu Y, Zhang L, Chen Q, Wu L. Lipopolysaccharide (LPS) increases susceptibility to epilepsy via interleukin-1 type 1 receptor signaling. Brain Res 2022; 1793:148052. [PMID: 35970265 DOI: 10.1016/j.brainres.2022.148052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Epilepsy is the most common disease of the nervous system, characterized by aberrant normal brain activity. Neuroinflammation is a prominent feature in the brain in epileptic humans and animal models of epilepsy. However, it remains elusive as to how peripheral inflammation affects epilepsy. Herein we demonstrated significantly greater seizure susceptibility and severity of epilepsy under kainic acid (KA) via intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in mouse model of epilepsy. Nissl staining was employed for assessment of the neuronal damage, immunofluorescence for staining of the microglial cells and astrocytes in the mouse brain slices, and ELISA for detection of the changes of inflammatory factors. We observed a smaller population of viable neurons in CA1 and CA3 regions, a greater population of IBA-1-positive and GFAP-positive cells, with a significant upregulation of IL-1β and IL-6 in hippocampus of epileptic mice when treated with LPS, indicating that LPS aggravates hippocampal neuron injury in epilepsy, and induces neuroinflammation in the hippocampus. In addition, we provide an evident increase in BrdU+/DCX+ and Nestin+ cell populations in dentate gyrus (DG) in LPS-treated group, versus saline group on epileptic mouse model, which demonstrated LPS treatment enhanced hippocampal neurogenesis. In order to investigate whether interleukin-1 type 1 (IL-1R1) signaling is involved in this process, we adopted IL-1R1 globally restored mice (IL-1R1GR/GR) as an IL-1R1 reporter to visualize labeling of IL-1R1 mRNA and protein by means of RFP staining. Strikingly, the RFP immunofluorescence revealed increased IL-1R1 expression in LPS-treated group, versus saline group. Further, blockage of central IL-1R1 alleviated seizure susceptibility and severity of epilepsy. In summary, our findings suggested that LPS could enhance central inflammatory response and aggravate the susceptibility to epileptic seizure, which we postulated to be mediated by IL-1R1.
Collapse
Affiliation(s)
- Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Honghua Yuan
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ying Qin
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yuhua Zhu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lingzhi Zhang
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Quangang Chen
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lianlian Wu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
10
|
El-Megiri N, Mostafa YM, Ahmed A, Mehanna ET, El-Azab MF, Alshehri F, Alahdal H, El-Sayed NM. Pioglitazone Ameliorates Hippocampal Neurodegeneration, Disturbances in Glucose Metabolism and AKT/mTOR Signaling Pathways in Pentyelenetetrazole-Kindled Mice. Pharmaceuticals (Basel) 2022; 15:ph15091113. [PMID: 36145334 PMCID: PMC9506442 DOI: 10.3390/ph15091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Disturbance of glucose metabolism, nerve growth factor (NGF) and m-TOR signaling have been associated with the pathophysiology of epilepsy. Pioglitazone (PGZ) is an anti-diabetic drug that shows a protective effect in neurodegenerative diseases including epilepsy; however, its exact mechanism is not fully elucidated. The present study aimed to investigate the potential neuroprotective effect of PGZ in pentylenetetrazole (PTZ) kindled seizure in mice. Swiss male albino mice were randomly distributed into four groups, each having six mice. Group 1 was considered the control. Epilepsy was induced by PTZ (35 mg/kg i.p.) thrice a week for a total of 15 injections in all other groups. Group 2 was considered the untreated PTZ group while Group 3 and Group 4 were treated by PGZ prior to PTZ injection at two dose levels (5 and 10 mg/kg p.o., respectively). Seizure activity was evaluated after each PTZ injection according to the Fischer and Kittner scoring system. At the end of the experiment, animals were sacrificed under deep anesthesia and the hippocampus was isolated for analysis of glucose transporters by RT-PCR, nerve growth factor (NGF) by ELISA and mTOR by western blotting, in addition to histopathological investigation. The PTZ-treated group showed a significant rise in seizure score, NGF and m-TOR hyperactivation, along with histological abnormalities compared to the control group. Treatment with PGZ demonstrated a significant decrease in NGF, seizure score, m-TOR, GLUT-1 and GLUT-3 in comparison to the PTZ group. In addition, improvement of histological features was observed in both PGZ treated groups. These findings suggest that PGZ provides its neuroprotective effect through modulating m-TOR signaling, glucose metabolism and NGF levels.
Collapse
Affiliation(s)
- Nada El-Megiri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser M. Mostafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Badr 11829, Egypt
| | - Amal Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.T.M.); (N.M.E.-S.)
| | - Mona F. El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Fatma Alshehri
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hadil Alahdal
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Norhan M. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (E.T.M.); (N.M.E.-S.)
| |
Collapse
|
11
|
Cicek E, Sanlier N. The place of a ketogenic diet in the treatment of resistant epilepsy: a comprehensive review. Nutr Neurosci 2022:1-14. [PMID: 35791085 DOI: 10.1080/1028415x.2022.2095819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Objective: The ketogenic diet (KD) is a high-fat, adequate-protein, and low-carb diet. Ketone bodies increase in the blood due to low carbohydrate content and high-fat content in the diet. The most important feature of the ketogenic diet is that it causes the production of ketone bodies in the liver. Ketone bodies are an alternative fuel to glucose for the brain and form the structure necessary for the cell membrane and biosynthesis of triglycerides. The ketogenic diet provides evidence on seizure control with anticonvulsant effects. In this review, the positive/negative effects of KD on seizure control, place, importance, quality of life, cognition, and behavior in the treatment of resistant epilepsy were examined.Methods: Scientific information on the subject was obtained from the literature accessed through databases such as MEDLINE, Embase, Web of Science, Cochrane Central, www.ClinicalTrials.gov, PubMed, Science Direct, and Google Scholar.Results: Although it has started to be used as a treatment method in many diseases today, the main area of effect of KD is drug-resistant epilepsy. In order for the ketogenic diet to be successful in these patients, it is necessary to choose the appropriate patient, medical treatment and diet plan, inform the patient sufficiently, and perform frequent monitoring in accordance with the follow-up criteria. It is argued that KD is one of the most effective treatments for epilepsy.Conclusion: The fact that KDs generally have a restricted diet pattern, the need for supplementation, biochemical findings and possible side effects raise the issue of diet sustainability. More clinical studies are needed to generalize.
Collapse
Affiliation(s)
- Ebru Cicek
- Ankara Medipol University, School of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Nevin Sanlier
- Ankara Medipol University, School of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| |
Collapse
|
12
|
Godlevsky LS, Poshyvak OB, Pervak MP, Latypov KA, Prybolovets KO, Yehorenko OS. Effects of a Combination of Transcranial DC Cerebellar Stimulation and Pioglitazone Administration on Pentylenetetrazole-Induced Seizures in Kindled Rats. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Singh S, Singh TG. Emerging perspectives on mitochondrial dysfunctioning and inflammation in epileptogenesis. Inflamm Res 2021; 70:1027-1042. [PMID: 34652489 DOI: 10.1007/s00011-021-01511-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflammation and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, mitochondrial dysfunction, and oxidative stress in epilepsy. MATERIALS AND METHODS A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflammatory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage promoting hyperexcitability. CONCLUSION The current review highlights the further opportunity for establishing therapeutic interventions underlying the apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroinflammation in epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | |
Collapse
|
14
|
Petrillo S, Pietrafusa N, Trivisano M, Calabrese C, Saura F, Gallo MG, Bertini ES, Vigevano F, Specchio N, Piemonte F. Imbalance of Systemic Redox Biomarkers in Children with Epilepsy: Role of Ferroptosis. Antioxidants (Basel) 2021; 10:antiox10081267. [PMID: 34439515 PMCID: PMC8389337 DOI: 10.3390/antiox10081267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
To assess if ferroptosis, a new type of programmed cell death accompanied by iron accumulation, lipid peroxidation, and glutathione depletion, occurs in children with epilepsy, and in order to identify a panel of biomarkers useful for patient stratification and innovative-targeted therapies, we measured ferroptosis biomarkers in blood from 83 unrelated children with a clinical diagnosis of epilepsy and 44 age-matched controls. We found a marked dysregulation of three ferroptosis key markers: a consistent increase of 4-hydroxy-2-nonenal (4-HNE), the main by-product of lipid peroxidation, a significant decrease of glutathione (GSH) levels, and a partial inactivation of the enzyme glutathione peroxidase 4 (GPX4), the mediator of lipid peroxides detoxification. Furthermore, we found a significant increase of NAPDH oxidase 2 (NOX2) in the blood of children, supporting this enzyme as a primary source of reactive oxygen species (ROS) in epilepsy. Additionally, since the nuclear factor erythroid 2-related factor 2 (NRF2) induction protects the brain from epileptic seizure damage, we also evaluated the NRF2 expression in the blood of children. The antioxidant and anti-inflammatory transcription factor was activated in patients, although not enough to re-establish a correct redox homeostasis for counteracting ferroptosis. Ferroptosis-mediated oxidative damage has been proposed as an emergent mechanism underlying the pathogenesis of epilepsy. Overall, our study confirms a crucial role for ferroptosis in epilepsy, leading to the identification of a panel of biomarkers useful to find new therapeutic targets. Developing innovative drugs, which act by inhibiting the ferroptosis signaling axis, may represent a promising strategy for new anti-seizure medications.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy; (S.P.); (M.G.G.); (E.S.B.)
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165 Rome, Italy; (N.P.); (M.T.); (C.C.)
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165 Rome, Italy; (N.P.); (M.T.); (C.C.)
| | - Costanza Calabrese
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165 Rome, Italy; (N.P.); (M.T.); (C.C.)
| | - Francesca Saura
- Department of Laboratory Medicine, Children’s Hospital Bambino Gesù, Piazza S. Onofrio 4, 00165 Rome, Italy;
| | - Maria Giovanna Gallo
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy; (S.P.); (M.G.G.); (E.S.B.)
| | - Enrico Silvio Bertini
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy; (S.P.); (M.G.G.); (E.S.B.)
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesu Children’s Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Piazza S. Onforio 4, 00165 Rome, Italy; (F.V.); (N.S.)
| | - Nicola Specchio
- Department of Neuroscience, Bambino Gesu Children’s Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Piazza S. Onforio 4, 00165 Rome, Italy; (F.V.); (N.S.)
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy; (S.P.); (M.G.G.); (E.S.B.)
- Correspondence: ; Tel.: +39-06-6859-2102
| |
Collapse
|
15
|
Etemad L, Zamani M, Iranshahi M, Roohbakhsh A. The Protective Effect of Auraptene Against Oxidative Stress and Pentylenetetrazol-Induced Chemical Kindling in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1395-1402. [PMID: 32641949 PMCID: PMC6934955 DOI: 10.22037/ijpr.2019.1100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is believed that some pitfalls in the treatment of epilepsy such as serious side effects of medications and drug resistance may be resolved by natural compounds. Auraptene belongs to coumarins and is found in citrus peel. We hypothesized that auraptene might have anticonvulsant properties. Kindling was induced by repeated intraperitoneal (IP) injections of pentylenetetrazol (PTZ, 35 mg/kg) with two-day intervals for 24 days in male albino mice. Three groups received IP injections of auraptene (12.5, 25, and 50 mg/kg). Three control groups received vehicle, diazepam (3 mg/kg, IP), and vitamin E (150 mg/kg, IP). Seizure-related behaviors were recorded for 30 min after PTZ injection. Moreover, malondialdehyde and reduced glutathione (GSH) were measured in the brain. The results indicated that auraptene at the dose of 12.5 mg/kg and vitamin E significantly prolonged the latency to stage 2 of seizures (P < 0.01). Auraptene at the doses of 25 mg/kg and 50 mg/kg, prolonged the latency to stage 4 (P < 0.01) and reduced stage 5 duration of seizures (P < 0.01). All doses of auraptene reduced median of seizure scores (P < 0.01). The kindled control group had MDA levels similar to intact animals but had a lower concentration of GSH (P < 0.001). None of the tested compounds changed the malondialdehyde concentration significantly. However, auraptene at the dose of 50 mg/kg and vitamin E increased GSH levels (P < 0.05). The results suggest that auraptene had anticonvulsant effects in PTZ-induced chemical kindling that was mediated by mechanisms other than the antioxidant effect of auraptene.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Zamani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg Chem 2019; 92:103216. [DOI: 10.1016/j.bioorg.2019.103216] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022]
|
17
|
Jin M, Zhang B, Sun Y, Zhang S, Li X, Sik A, Bai Y, Zheng X, Liu K. Involvement of peroxisome proliferator-activated receptor γ in anticonvulsant activity of α-asaronol against pentylenetetrazole-induced seizures in zebrafish. Neuropharmacology 2019; 162:107760. [PMID: 31493468 DOI: 10.1016/j.neuropharm.2019.107760] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/06/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
In mammals, peroxisome proliferators activated receptors (PPARs), the nuclear hormone receptors, have been reported to be involved in seizure control. Selective agonists and antagonists of PPARs raise seizure thresholds and suppress seizures, respectively. In this study, we evaluated the anticonvulsant effects of α-asaronol, a metabolic product of α-asarone, on pentylenetetrazole (PTZ)-induced seizures in zebrafish and investigated the underlying mechanisms. As a result, α-asaronol ameliorated seizures with increase of seizure latency, as well as decrease of seizure-like behavior, c-fos expression, and abnormal neuronal discharge in a concentration dependent manner. By comparing gene expression profiles of zebrafish undergoing seizures and α-asaronol pretreated zebrafish, we found that α-asaronol attenuate seizures through increase of PPAR γ expression, while PPAR γ antagonist GW9662 inhibit the anti-seizures actions of α-asaronol. Moreover, molecular docking simulation implied the physical interaction between α-asaronol and PPAR γ. The overall results indicated that the anticonvulsant effects of α-asaronol are regulated through PPAR γ-mediated pathway, which shed light on development of α-asaronol as a potential antiepileptic drug. In addition, it is for first time to report that PPAR γ is associated with seizures in zebrafish, supporting previous evidence that zebrafish is a suitable alternative for studying seizures.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Baoyue Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ying Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, NO.44 West Culture Road, Ji'nan, 250012, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
18
|
Mao XY, Zhou HH, Jin WL. Redox-Related Neuronal Death and Crosstalk as Drug Targets: Focus on Epilepsy. Front Neurosci 2019; 13:512. [PMID: 31191222 PMCID: PMC6541114 DOI: 10.3389/fnins.2019.00512] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Cell death has a vital role in embryonic development and organismal homeostasis. Biochemical, pharmacological, behavioral, and electrophysiological evidences support the idea that dysregulation of cell death programs are involved in neuropathological conditions like epilepsy. The brain is particularly vulnerable to oxidative damage due to higher oxygen consumption and lower endogenous antioxidant defense than other bodily organ. Thus, in this review, we focused on the comprehensive summarization of evidence for redox-associated cell death pathways including apoptosis, autophagy, necroptosis, and pyroptosis in epilepsy and the oxidative stress-related signaling in this process. We specially proposed that the molecular crosstalk of various redox-linked neuronal cell death modalities might occur in seizure onset and/or epileptic conditions according to the published data. Additionally, abundance of polyunsaturated fatty acids in neuronal membrane makes the brain susceptible to lipid peroxidation. This presumption was then formalized in the proposal that ferroptosis, a novel type of lipid reactive oxygen species (ROS)-dependent regulatory cell death, is likely to be a critical mechanism for the emergence of epileptic phenotype. Targeting ferroptosis process or combination treatment with multiple cell death pathway inhibitors may shed new light on the therapy of epilepsy.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Lin Jin
- Center for Translational Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China.,Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Godlevsky LS, Pervak MP. Peroxisomal Proliferator-Activated γ-Receptors: Participation in the Anti-Seizure Effects of Transcranial DC Stimulation of the Cerebellum. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09786-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Goswami JN, Sharma S. Current Perspectives On The Role Of The Ketogenic Diet In Epilepsy Management. Neuropsychiatr Dis Treat 2019; 15:3273-3285. [PMID: 31819454 PMCID: PMC6883945 DOI: 10.2147/ndt.s201862] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
Drug-refractory epilepsy is a commonly prevalent pediatric neurological illness of global significance. Ketogenic diet (KD) is a time-tested therapeutic modality for refractory epilepsy, which has reemerged as a robust alternative to anti-epileptic pharmacotherapy. There is a growing body of evidence which supports the anti-seizure efficacy, safety profile and feasibility of KD use in childhood epilepsy. In addition, this modality has been recognized to reduce anti-epileptic exposure, improve cognition and behavioral profile of patients as well as improve the quality-of-life of care-givers. Current indications of KD include refractory epilepsy syndromes, selected metabolic disorders (such as pyruvate dehydrogenase deficiency) and a host of varied neurological entities. KD research has broadened the knowledge-base about its mechanisms of action. Four types of KD are in vogue currently with varying nutritional constitution, palatability, administration protocols and comparable efficacy. KD initiation and maintenance are the result of concerted effort of a team of pediatric neurologist/epileptologist, nutritionist and patient's primary care-giver. Consensus is being formulated about various practical aspects of KD such as patient-selection, parental counseling, baseline work-up, dietary prescription, nutritional supplementation, concurrent anti-epileptic drug administration, follow-up and treatment-duration. Novel applications of KD include its use in neonatal epilepsy and super-refractory status epilepticus and tailor-made formulations such as cooking oil-based KD in predominantly rice-fed populations. Increasing body of clinical experience, improved nutritional designs and translational research are promoting KD as a major therapeutic modality. Currently, KD forms a core essence in the armamentarium against refractory epilepsy. In this review, we summarize the recent advances and current perspectives in the use of KD in refractory epilepsy.
Collapse
Affiliation(s)
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi 110001, India
| |
Collapse
|
21
|
Paciello F, Fetoni AR, Rolesi R, Wright MB, Grassi C, Troiani D, Paludetti G. Pioglitazone Represents an Effective Therapeutic Target in Preventing Oxidative/Inflammatory Cochlear Damage Induced by Noise Exposure. Front Pharmacol 2018; 9:1103. [PMID: 30349478 PMCID: PMC6187064 DOI: 10.3389/fphar.2018.01103] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Recent progress in hearing loss research has provided strong evidence for the imbalance of cellular redox status and inflammation as common predominant mechanisms of damage affecting the organ of Corti including noise induced hearing loss. The discovery of a protective molecule acting on both mechanisms is challenging. The thiazolidinediones, a class of antidiabetic drugs including pioglitazone and rosiglitazone, have demonstrated diverse pleiotrophic effects in many tissues where they exhibit anti-inflammatory, anti-proliferative, tissue protective effects and regulators of redox balance acting as agonist of peroxisome proliferator-activated receptors (PPARs). They are members of the family of ligand regulated nuclear hormone receptors that are also expressed in several cochlear cell types, including the outer hair cells. In this study, we investigated the protective capacity of pioglitazone in a model of noise-induced hearing loss in Wistar rats and the molecular mechanisms underlying this protective effects. Specifically, we employed a formulation of pioglitazone in a biocompatible thermogel providing rapid, uniform and sustained inner ear drug delivery via transtympanic injection. Following noise exposure (120 dB, 10 kHz, 1 h), different time schedules of treatment were employed: we explored the efficacy of pioglitazone given immediately (1 h) or at delayed time points (24 and 48 h) after noise exposure and the time course and extent of hearing recovery were assessed. We found that pioglitazone was able to protect auditory function at the mid-high frequencies and to limit cell death in the cochlear basal/middle turn, damaged by noise exposure. Immunofluorescence and western blot analysis provided evidence that pioglitazone mediates both anti-inflammatory and anti-oxidant effects by decreasing NF-κB and IL-1β expression in the cochlea and opposing the oxidative damage induced by noise insult. These results suggest that intratympanic pioglitazone can be considered a valid therapeutic strategy for attenuating noise-induced hearing loss and cochlear damage, reducing inflammatory signaling and restoring cochlear redox balance.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
22
|
Gavzan H, Hashemi F, Babaei J, Sayyah M. A role for peroxisome proliferator-activated receptor α in anticonvulsant activity of docosahexaenoic acid against seizures induced by pentylenetetrazole. Neurosci Lett 2018; 681:83-86. [DOI: 10.1016/j.neulet.2018.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
|
23
|
Elsayed AA, Menze ET, Tadros MG, Ibrahim BMM, Sabri NA, Khalifa AE. Effects of genistein on pentylenetetrazole-induced behavioral and neurochemical deficits in ovariectomized rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:27-36. [PMID: 29067514 DOI: 10.1007/s00210-017-1435-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Estrogenic compounds have been documented in literature to exert neuroprotective effects. This study investigated the potential neuroprotective effect of genistein; a phytoestrogen at doses of 5, 10, 20, and 40 mg/kg p.o. in ovariectomized rats challenged with pentylenetetrazole (PTZ) 90 mg/kg i.p. Systemic acute administration of PTZ induced seizures, increased oxidative stress, and caused apoptosis and histological abnormalities. Pretreatment with genistein delayed seizure onset, reduced the seizure duration, improved oxidative stress profile, decreased estrogen receptor expression, reduced apoptosis, and improved the histopathological pattern. Overall, the genistein doses (10 and 20 mg/kg) showed the strongest protective effects. In conclusion, the current study suggests that genistein exhibits neuroprotective effects against PTZ-induced seizures. Such effects might be attributed to its estrogenic, antioxidant, and/or anti-apoptotic properties.
Collapse
Affiliation(s)
- Amr A Elsayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Nagwa A Sabri
- Department of Clinical pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Manual acupuncture improves parameters associated with oxidative stress and inflammation in PTZ-induced kindling in mice. Neurosci Lett 2017; 661:33-40. [PMID: 28947384 DOI: 10.1016/j.neulet.2017.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/25/2023]
Abstract
The use of acupuncture in the treatment of central nervous system (CNS) disorders is an age-old practice. Although only a few studies have proved its efficacy, evidence has indicated the use of acupuncture to treat different types of seizures. Therefore, the present study aimed to evaluate the effect of manual acupuncture (MAC) using the chemical kindling model. The role of MAC in oxidative stress and inflammation after pentylenetetrazole (PTZ)-induced kindling was investigated by measuring reactive oxygen species (ROS) production, superoxide dismutase (SOD), and catalase (CAT) activities, nitrite content, and deoxyribonucleic acid (DNA) damage in cerebral cortex. Mice received PTZ (60mg/kgs.c.) once every three days for 16days, totaling six treatments. MAC was applied at acupoint GV20 daily during the entire experimental protocol. Diazepam (DZP) (2mg/kg) was used as positive control. Also, we evaluated the MAC effect associated with DZP (MAC/DZP) at a low dose (0.15mg/kg). The results demonstrated that MAC or MAC/DZP were not able to reduce significantly seizure occurrence or to increase the latency to the first seizure during treatment. MAC/DZP promoted a difference in the first latency to seizure only on the third day. PTZ-induced kindling caused significant neuronal injury, oxidative stress, increased DNA damage, nitric oxide production, and expression of the pro-inflammatory Tumor Necrosis Factor-α (TNF-α). These effects were reversed by treatment with MAC or MAC/DZP. These results indicated that the stimulation of acupoint GV20 by MAC showed no potential antiepileptogenic effect in the model used, although it greatly promoted neuronal protection, which may result from antioxidant and anti-inflammatory effects observed here.
Collapse
|
25
|
Zhu X, Dong J, Xia Z, Zhang A, Chao J, Yao H. Repeated restraint stress increases seizure susceptibility by activation of hippocampal endoplasmic reticulum stress. Neurochem Int 2017; 110:25-37. [PMID: 28887093 DOI: 10.1016/j.neuint.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/02/2017] [Accepted: 09/01/2017] [Indexed: 01/09/2023]
Abstract
A growing body of evidence suggests that stress triggers a variety of pathophysiological responses. Recent studies show that stress produces enduring effects on structure and function of hippocampus, which is one of the most important structures involved in epilepsy. In the present study, we determined the effect of repeated restraint stress exposure on the susceptibility of pentylenetetrazole (PTZ)-induced seizures and the possible mechanisms involved using a rodent model. Our results show that mice subjected to repeated restraint stress exhibited shorter latency to PTZ-induced tonic-clonic seizures and higher seizure severity, suggesting chronic restraint stress increases seizure susceptibility. Following repeated restraint stress, we observed an increased level of endoplasmic reticulum (ER) stress as well as oxidative stress in the hippocampus. Moreover, our results show that chronic restraint stress exposure causes neuron loss in the hippocampus. Inhibition of ER stress with chemical chaperone, tauroursodeoxycholic acid (TUDCA), however, protects against chronic restraint stress-induced neuron loss, suggesting repeated restraint stress-induced neuronal degeneration is dependent on ER stress activation. On the other hand, inhibition of ER stress with TUDCA suppresses restraint stress-induced seizure susceptibility. Taken together, these results indicate that repeated restraint stress increases seizure susceptibility by activation of hippocampal ER stress and ER stress mediated oxidative stress and neurodegeneration. Thus, attenuating ER stress may serve as a potential therapeutic strategy targeted to block stress-induced seizure activities.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center of Nanjing Medical University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
26
|
Cyclooxygenase-2 inhibitors differentially attenuate pentylenetetrazol-induced seizures and increase of pro- and anti-inflammatory cytokine levels in the cerebral cortex and hippocampus of mice. Eur J Pharmacol 2017; 810:15-25. [PMID: 28583427 DOI: 10.1016/j.ejphar.2017.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Seizures increase prostaglandin and cytokine levels in the brain. However, it remains to be determined whether cyclooxygenase-2 (COX-2) derived metabolites play a role in seizure-induced cytokine increase in the brain and whether anticonvulsant activity is shared by all COX-2 inhibitors. In this study we investigated whether three different COX-2 inhibitors alter pentylenetetrazol (PTZ)-induced seizures and increase of interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) levels in the hippocampus and cerebral cortex of mice. Adult male albino Swiss mice received nimesulide, celecoxib or etoricoxib (0.2, 2 or 20mg/kg in 0.1% carboxymethylcellulose (CMC) in 5% Tween 80, p.o.). Sixty minutes thereafter the animals were injected with PTZ (50mg/kg, i.p.) and the latency to myoclonic jerks and to generalized tonic-clonic seizures were recorded. Twenty minutes after PTZ injection animals were killed and cytokine levels were measured. PTZ increased cytokine levels in the cerebral cortex and hippocampus. While celecoxib and nimesulide attenuated PTZ -induced increase of proinflammatory cytokines in the cerebral cortex, etoricoxib did not. Nimesulide was the only COX-2 inhibitors that attenuated PTZ-induced seizures. This effect coincided with an increase of IL-10 levels in the cerebral cortex and hippocampus, constituting circumstantial evidence that IL-10 increase may be involved in the anticonvulsant effect of nimesulide.
Collapse
|
27
|
Epigallocatechin Gallate Attenuates β-Amyloid Generation and Oxidative Stress Involvement of PPARγ in N2a/APP695 Cells. Neurochem Res 2016; 42:468-480. [PMID: 27889855 DOI: 10.1007/s11064-016-2093-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/24/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
The accumulation of β-amyloid (Aβ) peptide plaques is a major pathogenic event in Alzheimer's disease (AD). Aβ is a cleaved fragment of APP via BACE1, which is the rate-limiting enzyme in APP processing and Aβ generation. Nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is considered to be a potential target for AD treatment, because of its potent antioxidant and inhibitory effects on Aβ production by negatively regulating BACE1. Epigallocatechin gallate (EGCG), a highly active catechin found in green tea, is known to enhance metabolic activity and cognitive ability in the mice model of AD. To investigate whether the therapeutic effect of EGCG is related to the PPARγ pathway, we analysed the alterations in the intracellular molecular expression of PPARγ after EGCG treatment in the N2a/APP695 cell line. In this study, we observed that EGCG attenuated Aβ generation in N2a/APP695 cells, such as the PPARγ agonist, pioglitazone, by suppressing the transcription and translation of BACE1 and that its effect was attenuated by the PPARγ inhibitor, GW9662. Intriguingly, EGCG significantly reinforced the activity of PPARγ by promoting its mRNA and protein expressions in N2a/APP695 cells. Moreover, EGCG also decreased the expression of pro-apoptotic proteins (Bax, caspase-3), reduced the activity of the anti-inflammatory agent NF-κB and inhibited the oxidative stress by decreasing the levels of ROS and MDA and increasing the expression of MnSOD. Co-administration of GW9662 also significantly decreased the EGCG-mediated neuroprotective effect evidenced by the increase in oxidative stress and inflammatory markers. The therapeutic efficacy of EGCG in AD may be derived from the up-regulation of PPARγ mRNA and protein expressions.
Collapse
|
28
|
Octreotide ameliorates inflammation and apoptosis in acute and kindled murine PTZ paradigms. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:61-68. [PMID: 27695956 DOI: 10.1007/s00210-016-1303-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
In the present study, the role of octreotide (OCT) in pentylenetetrazole (PTZ) kindling as well as in acute convulsion models was evaluated. Mice were allocated in groups as (1) control saline; (2) acute PTZ (PTZ-a; 60 mg/kg, i.p.), as a single convulsive dose; and (3) kindled (PTZ-k) receiving nine subconvulsive doses of PTZ (40 mg/kg, i.p.) for 17 days. Groups 4-7 received either valproic acid (VPA) 50 mg/kg or OCT (50 μg/kg, Sandostatin®) 30 min by oral gavage before PTZ-a or PTZ-k. The median seizure stage, latency onset of first stage 4/5 seizures, and incidence of convulsing animals were recorded. Cortical dopamine (DA), tumor necrosis factor (TNF)-α, interleukin (IL)-10, caspase (Casp)-3, myeloperoxidase (MPO), and nitric oxide (NO) were assessed in addition to inducible nitric oxide synthase (iNOS) that was evaluated immunohistochemically in a different set of groups. OCT halted PTZ-induced epilepsy delaying convulsion latency via modulating MPO and TNF-α and normalizing IL-10 with both treatment regimens. In PTZ-k, it decreased Casp-3 activity, NO level, and iNOS immunoreactivity. OCT in both paradigms decreased DA concentration. The current investigation implicates a crucial role for OCT in modulating PTZ-induced kindling by regulating inflammatory and apoptotic effects.
Collapse
|
29
|
de Carvalho CR, Hoeller AA, Franco PLC, Martini APS, Soares FMS, Lin K, Prediger RD, Whalley BJ, Walz R. The cannabinoid CB2 receptor-specific agonist AM1241 increases pentylenetetrazole-induced seizure severity in Wistar rats. Epilepsy Res 2016; 127:160-167. [PMID: 27608434 DOI: 10.1016/j.eplepsyres.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/02/2016] [Accepted: 08/12/2016] [Indexed: 11/25/2022]
Abstract
The potential efficacy of cannabinoid receptor ligands for the treatment of epilepsy remains controversial; cannabis components that act via cannabinoid type 1 (CB1) receptors produce anticonvulsant effects in animal models despite treatment with the CB receptor agonist reliably inducing convulsions in various species. Moreover, the potential role of cannabinoid receptor type 2 (CB2) to modulate seizures remains under-investigated. This study assessed the effects of the selective CB2 receptor agonist, AM1241, on pentylenetetrazole (PTZ)-induced seizures in rats. A stereotactically placed guide cannula was surgically implanted into the right lateral ventricle in adult Wistar rats which, 5-6days later, received an acute intracerebroventricular (i.c.v.) microinfusion of AM1241 (0.01, 1 or 10μg/2μl or vehicle) 5min before intraperitoneal (i.p.) injection of PTZ (70mg/kg). Rats were observed for 30min and the seizure severity behavior measured using a modified Racine's scale. Additional groups of rats were pretreated with a single low dose of the selective CB2 receptor antagonist, AM630 (dose 1mg/kg; i.p.), or vehicle, 30min prior to i.c.v. microinfusion of AM1241 (1μg/2μl). AM1241 administration significantly increased tonic-clonic seizure incidence and severity while also decreasing the onset of generalized seizures (AM1241 1 and 10μg/2μl). Pretreatment with AM630 prevented the proconvulsant effects of AM1241. This study shows, for the first time, that selective activation of CB2 receptors can increase generalized seizure susceptibility and suggests that pathological hyperexcitability phenomena can be differentially regulated by targeting CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Cristiane R de Carvalho
- Programa de Pós- graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Neurociências Aplicadas, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Alexandre A Hoeller
- Centro de Neurociências Aplicadas, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós- graduação em Ciências Médicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Pedro L C Franco
- Centro de Neurociências Aplicadas, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Athos P S Martini
- Centro de Neurociências Aplicadas, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Flávia M S Soares
- Centro de Neurociências Aplicadas, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós- graduação em Ciências Médicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Katia Lin
- Centro de Neurociências Aplicadas, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós- graduação em Ciências Médicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Serviço de Neurologia, Departamento de Clínica Médica, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rui D Prediger
- Centro de Neurociências Aplicadas, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Benjamin J Whalley
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, The University of Reading, Reading, Berkshire RG6 6AP, UK
| | - Roger Walz
- Programa de Pós- graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Neurociências Aplicadas, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós- graduação em Ciências Médicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Serviço de Neurologia, Departamento de Clínica Médica, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
30
|
Simeone TA, Matthews SA, Samson KK, Simeone KA. Regulation of brain PPARgamma2 contributes to ketogenic diet anti-seizure efficacy. Exp Neurol 2016; 287:54-64. [PMID: 27527983 DOI: 10.1016/j.expneurol.2016.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022]
Abstract
The ketogenic diet (KD) is an effective therapy primarily used in pediatric patients whom are refractory to current anti-seizure medications. The mechanism of the KD is not completely understood, but is thought to involve anti-inflammatory and anti-oxidant processes. The nutritionally-regulated transcription factor peroxisome proliferator activated receptor gamma, PPARγ, regulates genes involved in anti-inflammatory and anti-oxidant pathways. Moreover, endogenous ligands of PPARγ include fatty acids suggesting a potential role in the effects of the KD. Here, we tested the hypothesis that PPARγ contributes to the anti-seizure efficacy of the KD. We found that the KD increased nuclear protein content of the PPARγ2 splice variant by 2-4 fold (P<0.05) in brain homogenates from wild-type (WT) and epileptic Kv1.1 knockout (KO) mice, while not affecting PPARγ1. The KD reduced the frequency of seizures in Kv1.1KO mice by ~70% (P<0.01). GW9662, a PPARγ antagonist, prevented KD-mediated changes in PPARγ2 expression and prevented the anti-seizure efficacy of the KD in Kv1.1KO mice. Further supporting the association of PPARγ2 in mediating KD actions, the KD significantly prolonged the latency to flurothyl-induced seizure in WT mice by ~20-35% (P<0.01), but was ineffective in PPARγ2KO mice and neuron-specific PPARγKO mice. Finally, administering the PPARγ agonist pioglitazone increased PPARγ2 expression by 2-fold (P<0.01) and reduced seizures in Kv1.1KO mice by ~80% (P<0.01). Our findings implicate brain PPARγ2 among the mechanisms by which the KD reduces seizures and strongly support the development of PPARγ2 as a therapeutic target for severe, refractory epilepsy.
Collapse
Affiliation(s)
- Timothy A Simeone
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68174, USA.
| | - Stephanie A Matthews
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68174, USA
| | - Kaeli K Samson
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68174, USA
| | - Kristina A Simeone
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68174, USA
| |
Collapse
|
31
|
Azab SF, Abdalhady MA, Almalky MAA, Amin EK, Sarhan DT, Elhindawy EM, Allah MAN, Elhewala AA, Salam MMA, Hashem MIA, Soliman AA, Akeel NE, Abdellatif SH, Elsamad NA, Rass AA, Arafat MS. Serum and CSF adiponectin, leptin, and interleukin 6 levels as adipocytokines in Egyptian children with febrile seizures: a cross-sectional study. Ital J Pediatr 2016; 42:38. [PMID: 27068222 PMCID: PMC4828849 DOI: 10.1186/s13052-016-0250-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Background A febrile seizure (FS) is the most common convulsive disorder in children. Activation of cytokine network is involved in FS pathogenesis. Adiponectin, leptin and IL-6 are the major adipocytokines secreted by fat cells. To date, only a few studies concerned the association of adipocytokines with febrile seizures. In this study, we tried to investigate serum and CSF levels of adiponectin, leptin, and interleukin-6 (IL-6); as adipocytokines, for the first time in Egyptian children with febrile seizures. Methods This was a prospective cross-sectional study included one hundred patients with febrile seizure, and matched with age, gender, 100 children with febrile illness without seizures (febrile control, FC) and 100 healthy control group (HC). Serum and cerebrospinal fluid (CSF) levels of adiponectin, leptin, and (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA) method. Results Serum adiponectin was significantly higher in children with FS (16.8 ± 3.7 ug/ml) and the FC group (18.3 ± 4.3 ug/ml) compared to the HC group (9.5 ± 2.2 ug/ml); P < 0.05, respectively. Serum leptin was significantly lower in children with FS (0.9 ± 0.3 ng/ml) compared to both the FC group (4.7 ± 1.2 ng/ml) and the HC group (1.8 ± 0.4 ng/ml); P < 0.01, respectively. Children with FS had significantly higher serum IL-6 levels (43.7 ± 11.7 ng/ml) than the FC group (21.9 ± 4.5 ng/ml) and the HC group (6.5 ± 1.8 ng/ml); P < 0.01, respectively. Patients with simple febrile seizures (SFS) had serum and CSF adiponectin levels similar to those with complex febrile seizures (CFS); (P > 0.05). Serum and CSF leptin levels were significantly lower in patients with CFS compared to the SFS group (P < 0.05). Serum and CSF IL-6 levels were significantly higher in patients with CFS compared to the SFS group (P < 0.01). On multivariate logistic regression analysis, the high serum IL-6 levels was the most significant risk factor associated with febrile seizures among studied children (OR: 6.2; 95 % CI: 3.58 –10.57; P = 0.0001). Conclusion Our data brought a novel observation that some adipocytokines like leptin and IL-6 could be, at least in part, an aetiopathogenetic factor in the manifestation of febrile seizures in susceptible Egyptian children. Moreover, we observed a significant association between high CSF IL-6 levels and susceptibility to complex febrile seizures as did the low CSF leptin levels.
Collapse
Affiliation(s)
- Seham F Azab
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt.
| | - Mohamed A Abdalhady
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Mohamed A A Almalky
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Ezzat K Amin
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Dina T Sarhan
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Eman M Elhindawy
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Mayy A N Allah
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Ahmed A Elhewala
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Mohamed M A Salam
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Mustafa I A Hashem
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Attia A Soliman
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Nagwa E Akeel
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Sawsan H Abdellatif
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Nahla A Elsamad
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Anwar A Rass
- Faculty of Medicine, Zagazig University, 18 Omar Bin Elkhattab St, Al Qawmia, Zagazig City, AlSharqia Governorate, Egypt
| | - Manal S Arafat
- M.D. Clinical Pathology, Mansoura Student Hospital, Mansoura, Egypt
| |
Collapse
|
32
|
Eslami M, Sayyah M, Soleimani M, Alizadeh L, Hadjighassem M. Lipopolysaccharide preconditioning prevents acceleration of kindling epileptogenesis induced by traumatic brain injury. J Neuroimmunol 2015; 289:143-151. [PMID: 26616884 DOI: 10.1016/j.jneuroim.2015.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023]
Abstract
10-20% of symptomatic epilepsies are post-traumatic. We examined effect of LPS preconditioning on epileptogenesis after controlled cortical impact (CCI). LPS (0.01, 0.1 and 0.5 mg/kg) was injected i.p. to rats 5 days before induction of CCI to parieto-temporal cortex. Kindling started 24h after CCI by i.p. injection of 30 mg/kg of pentylenetetrazole every other day until manifestation of 3 consecutive generalized seizures. CCI injury accelerated the rate of kindled seizures acquisition. LPS (0.1 and 0.5 mg/kg) prevented the acceleration of kindling. LPS preconditioning significantly decreased IL-1β and TNF-α over-expression and the number of damaged neurons in the hippocampus of traumatic rats.
Collapse
Affiliation(s)
- Mansoureh Eslami
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran; Department of Basic Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahmoudreza Hadjighassem
- Brain and Spinal cord injury Research Center, Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Wong SB, Cheng SJ, Hung WC, Lee WT, Min MY. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy. PLoS One 2015; 10:e0144806. [PMID: 26659605 PMCID: PMC4685987 DOI: 10.1371/journal.pone.0144806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Peroxisomal proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA) receptor-mediated temporal lobe epilepsy (TLE). We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC) analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.
Collapse
MESH Headings
- Action Potentials/drug effects
- Anilides/pharmacology
- Animals
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- Culture Media/chemistry
- Culture Media/pharmacology
- Epilepsy, Temporal Lobe/drug therapy
- Epilepsy, Temporal Lobe/genetics
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/pathology
- Excitatory Postsynaptic Potentials/drug effects
- Gene Expression Regulation
- Glutamic Acid/metabolism
- Magnesium/pharmacology
- Microtomy
- Models, Biological
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neuroprotective Agents/antagonists & inhibitors
- Neuroprotective Agents/pharmacology
- PPAR gamma/antagonists & inhibitors
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Rosiglitazone
- Seizures/drug therapy
- Seizures/genetics
- Seizures/metabolism
- Seizures/pathology
- Synaptic Transmission/drug effects
- Thiazolidinediones/antagonists & inhibitors
- Thiazolidinediones/pharmacology
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Shi-Bing Wong
- Department of Pediatrics, Taipei Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Sin-Jhong Cheng
- Neuroscience Program in Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences; Academia Sinica, Taipei, Taiwan
| | - Wei-Chen Hung
- Department of Pediatrics, Taipei Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (WTL); (MYM)
| | - Ming-Yuan Min
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail: (WTL); (MYM)
| |
Collapse
|
34
|
The influence of ovariectomy on anti-convulsant effect of pioglitazone in mice. PATHOPHYSIOLOGY 2015; 22:159-63. [DOI: 10.1016/j.pathophys.2015.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022] Open
|
35
|
Pilipović K, Župan Ž, Dolenec P, Mršić-Pelčić J, Župan G. A single dose of PPARγ agonist pioglitazone reduces cortical oxidative damage and microglial reaction following lateral fluid percussion brain injury in rats. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:8-20. [PMID: 25579788 DOI: 10.1016/j.pnpbp.2015.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023]
Abstract
Neuroprotective actions of the peroxisome proliferator-activated receptor-γ (PPARγ) agonists have been observed in various animal models of the brain injuries. In this study we examined the effects of a single dose of pioglitazone on oxidative and inflammatory parameters as well as on neurodegeneration and the edema formation in the rat parietal cortex following traumatic brain injury (TBI) induced by the lateral fluid percussion injury (LFPI) method. Pioglitazone was administered in a dose of 1mg/kg at 10min after the brain trauma. The animals of the control group were sham-operated and injected by vehicle. The rats were decapitated 24h after LFPI and their parietal cortices were analyzed by biochemical and histological methods. Cortical edema was evaluated in rats sacrificed 48h following TBI. Brain trauma caused statistically significant oxidative damage of lipids and proteins, an increase of glutathione peroxidase (GSH-Px) activity, the cyclooxygenase-2 (COX-2) overexpression, reactive astrocytosis, the microglia activation, neurodegeneration, and edema, but it did not influence the superoxide dismutase activity and the expressions of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha in the rat parietal cortex. Pioglitazone significantly decreased the cortical lipid and protein oxidative damage, increased the GSH-Px activity and reduced microglial reaction. Although a certain degree of the TBI-induced COX-2 overexpression, neurodegeneration and edema decrease was detected in pioglitazone treated rats, it was not significant. In the injured animals, cortical reactive astrocytosis was unchanged by the tested PPARγ agonist. These findings demonstrate that pioglitazone, administered only in a single dose, early following LFPI, reduced cortical oxidative damage, increased antioxidant defense and had limited anti-inflammatory effect, suggesting the need for further studies of this drug in the treatment of TBI.
Collapse
Affiliation(s)
- Kristina Pilipović
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Željko Župan
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, School of Medicine, University of Rijeka, Rijeka, Croatia; Clinics of Anesthesiology and Intensive Care Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Petra Dolenec
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Župan
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
36
|
Yorulmaz H, Kaptan E, Seker FB, Oztas B. Type 1 diabetes exacerbates blood-brain barrier alterations during experimental epileptic seizures in an animal model. Cell Biochem Funct 2015; 33:285-92. [PMID: 26011758 DOI: 10.1002/cbf.3113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Abstract
The aim of this study was to perform the effects of diabetes on the permeability of the blood-brain barrier (BBB) during pentylenetetrazole (PTZ)-induced epileptic attacks. For this propose, the animals were divided into four groups. These groups contained were intact, PTZ-treated, diabetic and PTZ-treated diabetic individuals, respectively. To evaluate the functioning of the BBB, Evans blue was used as a BBB permeability indicator, and the expressions of zonula occludens-1 and glial fibrillary acidic protein involving the functioning of the BBB were determined immunohistochemically. Also, the changes in the release of serum tumour necrosis factor-alpha and interleukin-10 and interleukin-12 were studied by using enzyme-linked immunosorbent assay method. BBB permeability in the seizures under diabetic conditions showed a considerable increase (p < 0·01) in all of the brain we studied. The immunoreactive staining intensity of zonula occludens-1 and glial fibrillary acidic protein was found reduced in the brain regions of diabetic rats (p < 0·01). However, the serum level of tumour necrosis factor-alpha increased in diabetes and diabetes + PTZ groups, and the serum level of interleukin-12 increased significantly in all experimental groups (p < 0·05). In conclusion, diabetes dramatically increases BBB damage during epileptic seizures, and it may be derived from an elevation of paracellular passage.
Collapse
Affiliation(s)
- Hatice Yorulmaz
- Department of Physiology, Faculty of Medicine, Halic University, Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - F Burcu Seker
- Department of Physiology, Medical School, Yeditepe University, Istanbul, Turkey
| | - Baria Oztas
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
37
|
Cheng H, Shang Y, Jiang L, Shi TL, Wang L. The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis. Int J Neurosci 2015; 126:299-307. [PMID: 26001206 DOI: 10.3109/00207454.2015.1015722] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease and there is no effective therapy for it. Peroxisome proliferators activated receptor-gamma (PPAR-γ) agonists is a promising therapeutic approach for AD and has been widely studied recently, but no consensus was available up to now. To clarify this point, a meta-analysis was performed. We searched MEDLINE, EMBASE, Cochrane Central database, PUBMED, Springer Link database, SDOS database, CBM, CNKI and Wan fang database by December 2014. Standardized mean difference (SMD), relative risk (RR) and 95% confidence interval (CI) were calculated to assess the strength of the novel therapeutics for AD and mild-to-moderate AD. A total of nine studies comprising 1314 patients and 1311 controls were included in the final meta-analysis. We found the effect of PPAR-γ agonists on Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-cog) scores by using STATA software. There was no evidence for obvious publication bias in the overall meta-analysis. There is insufficient evidence of statistically incognition of AD and mild-to-moderate AD patients have been improved who were treated with PPAR-γ agonists in our research. However, PPAR-γ agonists may be a promising therapeutic approach in future, especially pioglitazone, with large-scale randomized controlled trials to confirm.
Collapse
Affiliation(s)
- Huawei Cheng
- a Department of Pharmacy, Anhui Cancer Hospital , Hefei , China
| | - Yuping Shang
- a Department of Pharmacy, Anhui Cancer Hospital , Hefei , China
| | - Ling Jiang
- b Department of Pharmacy, Anhui Provincial Hospital , Hefei , China
| | - Tian-lu Shi
- b Department of Pharmacy, Anhui Provincial Hospital , Hefei , China
| | - Lin Wang
- c Clinical Laboratory, the First Affiliated Hospital of Anhui University of Chinese Medicine , Hefei , China
| |
Collapse
|
38
|
Lee CH, Yi MH, Chae DJ, Zhang E, Oh SH, Kim DW. Effect of pioglitazone on excitotoxic neuronal damage in the mouse hippocampus. Biomol Ther (Seoul) 2015; 23:261-7. [PMID: 25995825 PMCID: PMC4428719 DOI: 10.4062/biomolther.2014.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 11/05/2022] Open
Abstract
Pioglitazone (PGZ), a synthetic peroxisome proliferator-activated receptor γ agonist, is known to regulate inflammatory process and to have neuroprotective effects against neurological disorders. In the present study, we examined the effects of 30 mg/kg PGZ on excitotoxic neuronal damage and glial activation in the mouse hippocampus following intracerebroventricular injection of kainic acid (KA). PGZ treatment significantly reduced seizure-like behavior. PGZ had the neuroprotective effect against KA-induced neuronal damage and attenuated the activations of astrocytes and microglia in the hippocampal CA3 region. In addition, MPO and NFκB immunoreactivities in the glial cells were also decreased in the PGZ-treated group. These results indicate that PGZ had anticonvulsant and neuroprotective effects against KA-induced excitotocix injury, and that neuroprotective effect of PGZ might be due to the attenuation of KA-induced activation in astrocytes and microglia as well as KA-induced increases in MPO and NFκB.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714
| | - Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Dong Jin Chae
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Enji Zhang
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Sang-Ha Oh
- Department of Plastic Surgery, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| |
Collapse
|
39
|
Payandemehr B, Ebrahimi A, Gholizadeh R, Rahimian R, Varastehmoradi B, Gooshe M, Aghaei HN, Mousavizadeh K, Dehpour AR. Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:140-5. [PMID: 25448777 DOI: 10.1016/j.pnpbp.2014.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023]
Abstract
Cannabinoid and PPAR receptors show well established interactions in a set of physiological effects. Regarding the seizure-modulating properties of both classes of receptors, the present study aimed to evaluate the roles of the PPAR-gamma, PPAR-alpha and CB1 receptors on the anticonvulsant effects of WIN 55,212-2 (WIN, a non selective cannabinoid agonist). The clonic seizure thresholds after intravenous administration of pentylenetetrazole (PTZ) were assessed in mice weighing 23-30 g. WIN increased the seizure threshold dose dependently. Pretreatment with pioglitazone, as a PPARγ agonist, potentiated the anticonvulsant effects of WIN, while PPARγ antagonist inhibited these anticonvulsant effects partially. On the other hand PPARα antagonist reduced the anticonvulsant effects of WIN significantly. Finally the combination of CB1 antagonist and PPARα antagonist could completely block the anticonvulsant properties of WIN. Taken together, these results show for the first time that a functional interaction exists between cannabinoid and PPAR receptors in the modulation of seizure susceptibility.
Collapse
Affiliation(s)
- Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ebrahimi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Gholizadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bardia Varastehmoradi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Gooshe
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Nayeb Aghaei
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Physiology Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Ghavimi H, Charkhpour M, Ghasemi S, Mesgari M, Hamishehkar H, Hassanzadeh K, Arami S, Hassanzadeh K. Pioglitazone prevents morphine antinociceptive tolerance via ameliorating neuroinflammation in rat cerebral cortex. Pharmacol Rep 2014; 67:78-84. [PMID: 25560579 DOI: 10.1016/j.pharep.2014.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Opioid induced neuroinflammation is shown to be implicated in opioid analgesic tolerance development. In the present study the effect of pioglitazone on morphine-induced tolerance and neuroinflammation in the cerebral cortex of the rat was investigated. MATERIALS AND METHODS Various groups of rats received morphine (10mg/kg; ip) and vehicle (po), or morphine (10mg/kg) and pioglitazone (20 or 40 mg/kg; po) once a day for 17 days. In order to determine the possible involvement of PPAR-γ in the pioglitazone effect, one group of rats received PPAR-γ antagonist, GW-9662 (2mg/kg; sc), and pioglitazone (40 mg/kg) and morphine once daily for 17 days. Nociception was assessed using a tail flick apparatus and the percentage of the maximal possible effect was calculated as well. On 18th day, 2h after the last morphine injection, the cerebral cortex of the animals were harvested and the tissue levels of tumour necrosis factor alpha, interleukin-1beta, interleukin-6, interleukin-10 and nuclear factor-kappa B activity were determined. RESULTS Co-administration of pioglitazone (40 mg/kg) with morphine not only attenuated morphine-induced tolerance, but also prevented the up-regulation of pro-inflammatory cytokines (tumour necrosis factor alpha, interleukin-1beta, interleukin-6) and nuclear factor-kappa B activity in the rat cerebral cortex. Moreover, GW-9662 (2mg/kg) administration 30 min before pioglitazone, antagonized the above mentioned pioglitazone-induced effects. CONCLUSION It is concluded that oral administration of pioglitazone attenuates morphine-induced tolerance. This effect of pioglitazone may be, at least in part, due to its anti-inflammatory property which suppressed the cortical pro-inflammatory cytokine and inhibited of nuclear factor-kappa B activity.
Collapse
Affiliation(s)
- Hamed Ghavimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Charkhpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Rasht University of Medical Sciences, Gilan, Iran
| | - Mehran Mesgari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hamishehkar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Katayoun Hassanzadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sanam Arami
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
41
|
Ghavimi H, Hassanzadeh K, Maleki-Dizaji N, Azarfardian A, Ghasami S, Zolali E, Charkhpour M. Pioglitazone prevents morphine antinociception tolerance and withdrawal symptoms in rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:811-21. [DOI: 10.1007/s00210-014-0996-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/20/2014] [Indexed: 12/22/2022]
|
42
|
Kołosowska K, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. The role of interleukin-1β in the pentylenetetrazole-induced kindling of seizures, in the rat hippocampus. Eur J Pharmacol 2014; 731:31-7. [PMID: 24642361 DOI: 10.1016/j.ejphar.2014.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/28/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
Because the contribution of inflammatory mediators to seizure disorders is unclear, we investigated the changes in the expression of interleukin-1β (IL-β) and its receptor - IL-1 receptor type 1 (IL-1R1), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the rat hippocampus at different stages of pentylenetetrazole (PTZ)-induced kindling. The occurrence and progressive development of seizures were induced by repeated systemic administration of PTZ, a non-competitive antagonist of the γ-aminobutyric acid type A (GABAA) receptor at a subconvulsive dose of 30 mg/kg. We also examined the effects of continuous intracerebroventricular administration of IL-1β and lipopolysaccharide (LPS) in this model of epilepsy using subcutaneously implanted osmotic mini-pumps. We observed enhanced IL-1R1 expression in the dentate gyrus (DG) at different stages of kindling, whereas the elevated IL-1β level was distinctive to fully kindled seizures. We did not detect significant changes in the concentration of IL-6 or TNF-α throughout the kindling process. LPS accelerated transiently the process of kindling, while IL-1β showed a predisposition to delay kindling acquisition. Our study supports the concept of seizure-related modifications in brain cytokine production during epileptogenesis. Although some evidence indicates a proconvulsant property of IL-1β activity, it cannot be ruled out that the alterations in IL-1 system reflect the activation of endogenous protective mechanisms with respect to the kindling of seizures.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland.
| | - Piotr Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
43
|
Lee EB, Mattson MP. The neuropathology of obesity: insights from human disease. Acta Neuropathol 2014; 127:3-28. [PMID: 24096619 DOI: 10.1007/s00401-013-1190-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 02/06/2023]
Abstract
Obesity, a pathologic state defined by excess adipose tissue, is a significant public health problem as it affects a large proportion of individuals and is linked with increased risk for numerous chronic diseases. Obesity is the result of fundamental changes associated with modern society including overnutrition and sedentary lifestyles. Proper energy homeostasis is dependent on normal brain function as the master metabolic regulator, which integrates peripheral signals, modulates autonomic outflow and controls feeding behavior. Therefore, many human brain diseases are associated with obesity. This review explores the neuropathology of obesity by examining brain diseases which either cause or are influenced by obesity. First, several genetic and acquired brain diseases are discussed as a means to understand the central regulation of peripheral metabolism. These diseases range from monogenetic causes of obesity (leptin deficiency, MC4R deficiency, Bardet-Biedl syndrome and others) to complex neurodevelopmental disorders (Prader-Willi syndrome and Sim1 deficiency) and neurodegenerative conditions (frontotemporal dementia and Gourmand's syndrome) and serve to highlight the central regulatory mechanisms which have evolved to maintain energy homeostasis. Next, to examine the effect of obesity on the brain, chronic neuropathologic conditions (epilepsy, multiple sclerosis and Alzheimer's disease) are discussed as examples of obesity leading to maladaptive processes which exacerbate chronic disease. Thus, obesity is associated with multiple pathways including abnormal metabolism, altered hormonal signaling and increased inflammation which act in concert to promote downstream neuropathology. Finally, the effect of anti-obesity interventions is discussed in terms of brain structure and function. Together, understanding human diseases and anti-obesity interventions leads to insights into the bidirectional interaction between peripheral metabolism and central brain function, highlighting the need for continued clinicopathologic and mechanistic studies of the neuropathology of obesity.
Collapse
|
44
|
The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 2013; 63:405-12. [DOI: 10.1016/j.neuint.2013.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/14/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
|
45
|
Al-Shorbagy MY, El Sayeh BM, Abdallah DM. Additional antiepileptic mechanisms of levetiracetam in lithium-pilocarpine treated rats. PLoS One 2013; 8:e76735. [PMID: 24098559 PMCID: PMC3789684 DOI: 10.1371/journal.pone.0076735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 08/28/2013] [Indexed: 01/22/2023] Open
Abstract
Several studies have addressed the antiepileptic mechanisms of levetiracetam (LEV); however, its effect on catecholamines and the inflammatory mediators that play a role in epilepsy remain elusive. In the current work, lithium (Li) pretreated animals were administered LEV (500 mg/kg i.p) 30 min before the induction of convulsions by pilocarpine (PIL). Li-PIL-induced seizures were accompanied by increased levels of hippocampal prostaglandin (PG) E2, myeloperoxidase (MPO), tumor necrosis factor-α, and interleukin-10. Moreover, it markedly elevated hippocampal lipid peroxides and nitric oxide levels, while it inhibited the glutathione content. Li-PIL also reduced hippocampal noradrenaline, as well as dopamine contents. Pretreatment with LEV protected against Li-PIL-induced seizures, where it suppressed the severity and delayed the onset of seizures in Li-PIL treated rats. Moreover, LEV reduced PGE2 and MPO, yet it did not affect the level of both cytokines in the hippocampus. LEV also normalized hippocampal noradrenaline, dopamine, glutathione, lipid peroxides, and nitric oxide contents. In conclusion, alongside its antioxidant property, LEV anticonvulsive effect involves catecholamines restoration, as well as inhibition of PGE2, MPO, and nitric oxide.
Collapse
Affiliation(s)
- Muhammad Y. Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bahia M. El Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
46
|
Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, Beckett TL, Murphy MP, Chen KC, Blalock EM, Landfield PW, Porter NM, Thibault O. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J Alzheimers Dis 2013; 30:943-61. [PMID: 22495349 DOI: 10.3233/jad-2012-111661] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-β (Aβ) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-β and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.
Collapse
Affiliation(s)
- James L Searcy
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Adabi Mohazab R, Javadi-Paydar M, Delfan B, Dehpour AR. Possible involvement of PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute pioglitazone on pentylenetetrazole-induced seizures in mice. Epilepsy Res 2012; 101:28-35. [DOI: 10.1016/j.eplepsyres.2012.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/18/2012] [Accepted: 02/26/2012] [Indexed: 11/28/2022]
|
48
|
Smeland OB, Meisingset TW, Sonnewald U. Dietary supplementation with acetyl-l-carnitine in seizure treatment of pentylenetetrazole kindled mice. Neurochem Int 2012; 61:444-54. [PMID: 22709675 DOI: 10.1016/j.neuint.2012.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 06/01/2012] [Accepted: 06/03/2012] [Indexed: 10/28/2022]
Abstract
In spite of the availability of new antiepileptic drugs a considerable number of epilepsy patients still have pharmacoresistant seizures, and thus there is a need for novel approaches. Acetyl-l-carnitine (ALCAR), which delivers acetyl units to mitochondria for acetyl-CoA production, has been shown to improve brain energy homeostasis and protects against various neurotoxic insults. To our knowledge, this is the first study of ALCAR's effect on metabolism in pentylenetetrazole (PTZ) kindled mice. ALCAR or the commonly used antiepileptic drug valproate, was added to the drinking water of mice for 25days, and animals were injected with PTZ or saline three times a week during the last 21 days. In order to investigate ALCAR's effects on glucose metabolism, mice were injected with [1-(13)C]glucose 15 min prior to microwave fixation. Brain extracts from cortex and the hippocampal formation (HF) were studied using (1)H and (13)C NMR spectroscopy and HPLC. PTZ kindling caused glucose hypometabolism, evidenced by a reduction in both glycolysis and TCA cycle turnover in both brain regions investigated. Glutamatergic and GABAergic neurons were affected in cortex and HF, but the amount of glutamate was only reduced in HF. Slight astrocytic involvement could be detected in the cortex. Interestingly, the dopamine content was increased in the HF. ALCAR attenuated the PTZ induced reduction in [3-(13)C]alanine and the increase in dopamine in the HF. However, TCA cycle metabolism was not different from that seen in PTZ kindled animals. In conclusion, even though ALCAR did not delay the kindling process, it did show some promising ameliorative effects, worthy of further investigation.
Collapse
Affiliation(s)
- Olav B Smeland
- Dept. of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
49
|
Shafaroodi H, Moezi L, Ghorbani H, Zaeri M, Hassanpour S, Hassanipour M, Dehpour AR. Sub-chronic treatment with pioglitazone exerts anti-convulsant effects in pentylenetetrazole-induced seizures of mice: The role of nitric oxide. Brain Res Bull 2012; 87:544-50. [PMID: 22366335 DOI: 10.1016/j.brainresbull.2012.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Pioglitazone delayed the development of seizure responses and shortened the duration of convulsion of genetically epileptic EL mice. The anti-epileptic effect of pioglitazone was attributed partly through the reduction of inflammatory responses and preventing apoptosis. There are also some reports showing that some pioglitazone effects mediate through nitric oxide. In this study we evaluated sub-chronic pioglitazone effects in two models of intravenous and intraperitoneal pentylenetetrazole-induced clonic seizures in mice. MATERIALS AND METHODS Different doses of pioglitazone were administered orally for 10 days in different groups of male mice. L-NAME, a non selective inhibitor of nitric oxide synthase, aminoguanidine, a selective inhibitor of inducible nitric oxide synthase, or L-arginine, a nitric oxide donor, was administered acutely or sub-chronically to evaluate the role of nitric oxide in pioglitazone anti-seizure effects. RESULTS We demonstrated that sub-chronic administration of pioglitazone exerted anti-convulsant effects in both models of intravenous and intraperitoneal pentylenetetrazole. Acute and sub-chronic pre-administration of L-NAME prevented the anti-convulsant effect of pioglitazone in both models of intravenous and intraperitoneal pentylenetetrazole. Aminoguanidine did not alter the anti-convulsant effect of pioglitazone in two models of intravenous and intraperitoneal pentylenetetrazole. Both acute and sub-chronic pre-treatment of mice with L-arginine exerted anti-convulsant effect when administered with a non effective dose of pioglitazone in intraperitoneal method. In intravenous method, acute administration of L-arginine with a non-effective dose of pioglitazone enhanced the seizure clonic latency. CONCLUSION Taken together, sub-chronic pioglitazone treatment exerts anti-convulsant effects in intravenous and intraperitoneal pentylenetetrazole-induced seizures of mice probably through induction of constitutive nitric oxide synthase.
Collapse
Affiliation(s)
- Hamed Shafaroodi
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Branch and Pharmaceutical Sciences Research Center, Islamic Azad University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
50
|
Al-Shorbagy MY, El Sayeh BM, Abdallah DM. Diverse effects of variant doses of dexamethasone in lithium–pilocarpine induced seizures in rats. Can J Physiol Pharmacol 2012; 90:13-21. [DOI: 10.1139/y11-096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Corticosteroids are used in the management of several epileptic aliments; however, their effectiveness in combating seizures remains controversial, with pro- and anti-convulsive effects ascribed. The current study aimed to address the modulatory effect of dexamethasone (DEX) utilizing 3 dose levels (5, 10, and 20 mg/kg body mass of male Wistar rat) in the rat lithium–pilocarpine (Li-PIL) epilepsy model. Li-PIL induced seizures that were associated with neuronal cell loss in the CA3 region, and increased prostaglandin (PG)E2, tumor necrosis factor (TNF)-α, interleukin (IL)-10, nitric oxide, and neutrophil infiltration in the hippocampus. However, Li-PIL compromised the oxidant–antioxidant balance of the hippocampus. Effective anticonvulsant activity was only observed with10 mg DEX/kg body mass, which reduced seizure production and incidence, as well as neuronal cell loss in the CA3 region. At this anticonvulsant dose, enhancements in the antioxidant system and IL-10, as well as suppression of altered inflammatory markers were observed. Conversely, doubling the dose showed a tendency to shorten seizure latency, and neither affected seizure incidence nor CA3 neuronal cell loss. These effects were associated with an increase in levels of PGE2 and TNF-α. The present study found a lack of protection at 5 mg DEX/kg body mass, an anticonvulsant effect at 10 mg/kg, and a loss of protection at 20 mg/kg in the Li-PIL epilepsy model, which indicates that there is an optimal dose of DEX for preventing the induction of seizures.
Collapse
Affiliation(s)
- Muhammad Y. Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Str, 11562 Cairo, Egypt
| | - Bahia M. El Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Str, 11562 Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Str, 11562 Cairo, Egypt
| |
Collapse
|