1
|
Edamakanti CR, Mohan V, Opal P. Reactive Bergmann glia play a central role in spinocerebellar ataxia inflammation via the JNK pathway. J Neuroinflammation 2023; 20:126. [PMID: 37237366 PMCID: PMC10214658 DOI: 10.1186/s12974-023-02801-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are devastating neurological diseases characterized by progressive cerebellar incoordination. While neurons bear the brunt of the pathology, a growing body of evidence suggests that glial cells are also affected. It has, however, been difficult to understand the role of glia, given the diversity of subtypes, each with their individual contributions to neuronal health. Using human SCA autopsy samples we have discovered that Bergmann glia-the radial glia of the cerebellum, which form intimate functional connections with cerebellar Purkinje neurons-display inflammatory JNK-dependent c-Jun phosphorylation. This phosphorylation defines a signaling pathway not observed in other activated glial populations, providing an opportunity to isolate the role of Bergmann glia in SCA inflammation. Turning to an SCA1 mouse model as a paradigmatic SCA, we demonstrate that inhibiting the JNK pathway reduces Bergmann glia inflammation accompanied by improvements in the SCA1 phenotype both behaviorally and pathologically. These findings demonstrate the causal role for Bergmann glia inflammation in SCA1 and point to a novel therapeutic strategy that could span several ataxic syndromes where Bergmann glia inflammation is a major feature.
Collapse
Affiliation(s)
- Chandrakanth Reddy Edamakanti
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-332, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA.
| | - Vishwa Mohan
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-332, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Joers JM, Adanyeguh IM, Deelchand DK, Hutter DH, Eberly LE, Iltis I, Bushara KO, Lenglet C, Henry PG. Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 2022; 4:fcac246. [PMID: 36300142 PMCID: PMC9581897 DOI: 10.1093/braincomms/fcac246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
Friedreich ataxia is the most common hereditary ataxia. Atrophy of the spinal cord is one of the hallmarks of the disease. MRI and magnetic resonance spectroscopy are powerful and non-invasive tools to investigate pathological changes in the spinal cord. A handful of studies have reported cross-sectional alterations in Friedreich ataxia using MRI and diffusion MRI. However, to our knowledge no longitudinal MRI, diffusion MRI or MRS results have been reported in the spinal cord. Here, we investigated early-stage cross-sectional alterations and longitudinal changes in the cervical spinal cord in Friedreich ataxia, using a multimodal magnetic resonance protocol comprising morphometric (anatomical MRI), microstructural (diffusion MRI), and neurochemical (1H-MRS) assessments.We enrolled 28 early-stage individuals with Friedreich ataxia and 20 age- and gender-matched controls (cross-sectional study). Disease duration at baseline was 5.5 ± 4.0 years and Friedreich Ataxia Rating Scale total neurological score at baseline was 42.7 ± 13.6. Twenty-one Friedreich ataxia participants returned for 1-year follow-up, and 19 of those for 2-year follow-up (cohort study). Each visit consisted in clinical assessments and magnetic resonance scans. Controls were scanned at baseline only. At baseline, individuals with Friedreich ataxia had significantly lower spinal cord cross-sectional area (-31%, P = 8 × 10-17), higher eccentricity (+10%, P = 5 × 10-7), lower total N-acetyl-aspartate (tNAA) (-36%, P = 6 × 10-9) and higher myo-inositol (mIns) (+37%, P = 2 × 10-6) corresponding to a lower ratio tNAA/mIns (-52%, P = 2 × 10-13), lower fractional anisotropy (-24%, P = 10-9), as well as higher radial diffusivity (+56%, P = 2 × 10-9), mean diffusivity (+35%, P = 10-8) and axial diffusivity (+17%, P = 4 × 10-5) relative to controls. Longitudinally, spinal cord cross-sectional area decreased by 2.4% per year relative to baseline (P = 4 × 10-4), the ratio tNAA/mIns decreased by 5.8% per year (P = 0.03), and fractional anisotropy showed a trend to decrease (-3.2% per year, P = 0.08). Spinal cord cross-sectional area correlated strongly with clinical measures, with the strongest correlation coefficients found between cross-sectional area and Scale for the Assessment and Rating of Ataxia (R = -0.55, P = 7 × 10-6) and between cross-sectional area and Friedreich ataxia Rating Scale total neurological score (R = -0.60, P = 4 × 10-7). Less strong but still significant correlations were found for fractional anisotropy and tNAA/mIns. We report here the first quantitative longitudinal magnetic resonance results in the spinal cord in Friedreich ataxia. The largest longitudinal effect size was found for spinal cord cross-sectional area, followed by tNAA/mIns and fractional anisotropy. Our results provide direct evidence that abnormalities in the spinal cord result not solely from hypoplasia, but also from neurodegeneration, and show that disease progression can be monitored non-invasively in the spinal cord.
Collapse
Affiliation(s)
- James M Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Isaac M Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Diane H Hutter
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isabelle Iltis
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Khalaf O Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Demographic reporting across a decade of neuroimaging: a systematic review. Brain Imaging Behav 2022; 16:2785-2796. [DOI: 10.1007/s11682-022-00724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Diversity of participants in biomedical research with respect to race, ethnicity, and biological sex is crucial, particularly given differences in disease prevalence, recovery, and survival rates between demographic groups. The objective of this systematic review was to report on the demographics of neuroimaging studies using magnetic resonance imaging (MRI). The Web of Science database was used and data collection was performed between June 2021 to November 2021; all articles were reviewed independently by at least two researchers. Articles utilizing MR data acquired in the United States, with n ≥ 10 human subjects, and published between 2010–2020 were included. Non-primary research articles and those published in journals that did not meet a quality control check were excluded. Of the 408 studies meeting inclusion criteria, approximately 77% report sex, 10% report race, and 4% report ethnicity. Demographic reporting also varied as function of disease studied, participant age range, funding, and publisher. We anticipate quantitative data on the extent, or lack, of reporting will be necessary to ensure inclusion of diverse populations in biomedical research.
Collapse
|
4
|
Guo B, Eberly LE, Henry PG, Lenglet C, Lock EF. Multiway sparse distance weighted discrimination. J Comput Graph Stat 2022; 32:730-743. [PMID: 37377729 PMCID: PMC10292743 DOI: 10.1080/10618600.2022.2099404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Modern data often take the form of a multiway array. However, most classification methods are designed for vectors, i.e., 1-way arrays. Distance weighted discrimination (DWD) is a popular high-dimensional classification method that has been extended to the multiway context, with dramatic improvements in performance when data have multiway structure. However, the previous implementation of multiway DWD was restricted to classification of matrices, and did not account for sparsity. In this paper, we develop a general framework for multiway classification which is applicable to any number of dimensions and any degree of sparsity. We conducted extensive simulation studies, showing that our model is robust to the degree of sparsity and improves classification accuracy when the data have multiway structure. For our motivating application, magnetic resonance spectroscopy (MRS) was used to measure the abundance of several metabolites across multiple neurological regions and across multiple time points in a mouse model of Friedreich's ataxia, yielding a four-way data array. Our method reveals a robust and interpretable multi-region metabolomic signal that discriminates the groups of interest. We also successfully apply our method to gene expression time course data for multiple sclerosis treatment. An R implementation is available in the package MultiwayClassification at http://github.com/lockEF/MultiwayClassification.
Collapse
Affiliation(s)
- Bin Guo
- Division of Biostatistics, School of Public Health
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health
- Center for Magnetic Resonance Research, University of Minnesota
| | | | | | - Eric F Lock
- Division of Biostatistics, School of Public Health
| |
Collapse
|
5
|
Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal 2021; 5:NS20200093. [PMID: 34046211 PMCID: PMC8132591 DOI: 10.1042/ns20200093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Friedreich ataxia (FRDA) is a recessive disorder resulting from relative deficiency of the mitochondrial protein frataxin. Frataxin functions in the process of iron–sulfur (Fe–S) cluster synthesis. In this review, we update some of the processes downstream of frataxin deficiency that may mediate the pathophysiology. Based on cellular models, in vivo models and observations of patients, ferroptosis may play a major role in the pathogenesis of FRDA along with depletion of antioxidant reserves and abnormalities of mitochondrial biogenesis. Ongoing clinical trials with ferroptosis inhibitors and nuclear factor erythroid 2-related factor 2 (Nrf2) activators are now targeting each of the processes. In addition, better understanding of the mitochondrial events in FRDA may allow the development of improved imaging methodology for assessing the disorder. Though not technologically feasible at present, metabolic imaging approaches may provide a direct methodology to understand the mitochondrial changes occurring in FRDA and provide a methodology to monitor upcoming trials of frataxin restoration.
Collapse
|
6
|
Selvadurai LP, Corben LA, Delatycki MB, Storey E, Egan GF, Georgiou‐Karistianis N, Harding IH. Multiple mechanisms underpin cerebral and cerebellar white matter deficits in Friedreich ataxia: The IMAGE-FRDA study. Hum Brain Mapp 2020; 41:1920-1933. [PMID: 31904895 PMCID: PMC7267947 DOI: 10.1002/hbm.24921] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023] Open
Abstract
Friedreich ataxia is a progressive neurodegenerative disorder with reported abnormalities in cerebellar, brainstem, and cerebral white matter. White matter structure can be measured using in vivo neuroimaging indices sensitive to different white matter features. For the first time, we examined the relative sensitivity and relationship between multiple white matter indices in Friedreich ataxia to more richly characterize disease expression and infer possible mechanisms underlying the observed white matter abnormalities. Diffusion-tensor, magnetization transfer, and T1-weighted structural images were acquired from 31 individuals with Friedreich ataxia and 36 controls. Six white matter indices were extracted: fractional anisotropy, diffusivity (mean, axial, radial), magnetization transfer ratio (microstructure), and volume (macrostructure). For each index, whole-brain voxel-wise between-group comparisons and correlations with disease severity, onset age, and gene triplet-repeat length were undertaken. Correlations between pairs of indices were assessed in the Friedreich ataxia cohort. Spatial similarities in the voxel-level pattern of between-group differences across the indices were also assessed. Microstructural abnormalities were maximal in cerebellar and brainstem regions, but evident throughout the brain, while macroscopic abnormalities were restricted to the brainstem. Poorer microstructure and reduced macrostructural volume correlated with greater disease severity and earlier onset, particularly in peri-dentate nuclei and brainstem regions. Microstructural and macrostructural abnormalities were largely independent. Reduced fractional anisotropy was most strongly associated with axial diffusivity in cerebral tracts, and magnetization transfer in cerebellar tracts. Multiple mechanisms likely underpin white matter abnormalities in Friedreich ataxia, with differential impacts in cerebellar and cerebral pathways.
Collapse
Affiliation(s)
- Louisa P. Selvadurai
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Louise A. Corben
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVictoriaAustralia
| | - Martin B. Delatycki
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVictoriaAustralia
- Victorian Clinical Genetics ServicesParkvilleVictoriaAustralia
| | - Elsdon Storey
- Department of MedicineMonash UniversityPrahranVictoriaAustralia
| | - Gary F. Egan
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
| | - Nellie Georgiou‐Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Ian H. Harding
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
7
|
|
8
|
Ultra-High Field Proton MR Spectroscopy in Early-Stage Amyotrophic Lateral Sclerosis. Neurochem Res 2017; 42:1833-1844. [PMID: 28367604 DOI: 10.1007/s11064-017-2248-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
A major hurdle in the development of effective treatments for amyotrophic lateral sclerosis (ALS) has been the lack of robust biomarkers for use as clinical trial endpoints. Neurochemical profiles obtained in vivo by high field proton magnetic resonance spectroscopy (1H-MRS) can potentially provide biomarkers of cerebral pathology in ALS. However, previous 1H-MRS studies in ALS have produced conflicting findings regarding alterations in the levels of neurochemical markers such as glutamate (Glu) and myo-inositol (mIns). Furthermore, very few studies have investigated the neurochemical abnormalities associated with ALS early in its course. In this study, we measured neurochemical profiles using single-voxel 1H-MRS at 7 T (T) and glutathione (GSH) levels using edited MRS at 3 T in 19 subjects with ALS who had relatively high functional status [ALS Functional Rating Scale-Revised (ALSFRS-R) mean ± SD = 39.8 ± 5.6] and 17 healthy controls. We observed significantly lower total N-acetylaspartate over mIns (tNAA/mIns) ratio in the motor cortex and pons of subjects with ALS versus healthy controls. No group differences were detected in GSH at 3 and 7 T. In subjects with ALS, the levels of tNAA, mIns, and Glu in the motor cortex were dependent on the extent of disease represented by El Escorial diagnostic subcategories. Specifically, combined probable/definite ALS had lower tNAA than possible ALS and controls (both p = 0.03), higher mIns than controls (p < 0.01), and lower Glu than possible ALS (p < 0.01). The effect of disease stage on MRS-measured metabolite levels may account for dissimilar findings among previous 1H-MRS studies in ALS.
Collapse
|
9
|
Wyss PO, Hock A, Kollias S. The Application of Human Spinal Cord Magnetic Resonance Spectroscopy to Clinical Studies: A Review. Semin Ultrasound CT MR 2017; 38:153-162. [DOI: 10.1053/j.sult.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Subramony SH. Degenerative Ataxias: challenges in clinical research. Ann Clin Transl Neurol 2016; 4:53-60. [PMID: 28078315 PMCID: PMC5221462 DOI: 10.1002/acn3.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
The degenerative ataxias are a very heterogeneous group of disorders that include numerous genetic diseases as well as apparently “sporadic” entities. There has been an explosion of discoveries related to genetic defects and related pathomechanisms that has brought us to the threshold of meaningful therapies in some but not all of these diseases. There also continues to be lack of knowledge of the causation of disease in a sizeable proportion of these patients. The overall rarity of ataxias as a whole and certainly of the individual genetic entities together with slow and variable progression and variable prognosis in juxtaposition with a rapid development of possible therapies in the horizon such as gene replacement and gene knock‐down strategies places the ataxias in a unique position distinct from other similar neurodegenerative diseases. The pace of laboratory research seems not matched by the pace of clinical research and clinical trial readiness. This review summarizes the author's views on the various challenges in translational research in ataxias and hopes to stimulate further thought and discussions on how to bring real help to these patients.
Collapse
Affiliation(s)
- Sub H Subramony
- Department of Neurology University of Florida College of Medicine and McKnight Brain Institute Gainesville Florida
| |
Collapse
|
11
|
McKay J, Tkáč I. Quantitative in vivo neurochemical profiling in humans: where are we now? Int J Epidemiol 2016; 45:1339-1350. [PMID: 27794521 DOI: 10.1093/ije/dyw235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 11/14/2022] Open
Abstract
Proton nuclear magnetic resonance spectroscopy of biofluids has become one of the key techniques for metabolic profiling and phenotyping. This technique has been widely used in a number of epidemiological studies and in a variety of health disorders. However, its utilization in brain disorders is limited due to the blood-brain barrier, which not only protects the brain from unwanted substances in the blood, but also substantially limits the potential of finding biomarkers for neurological disorders in serum. This review article focuses on the potential of localized in vivo proton magnetic resonance spectroscopy (1H-MRS) for non-invasive neurochemical profiling in the human brain. First, methodological aspects of 1H-MRS (data acquisition, processing and metabolite quantification) that are essential for reliable non-invasive neurochemical profiling are described. Second, the power of 1H-MRS-based neurochemical profiling is demonstrated using some examples of its application in neuroscience and neurology. Finally, the authors present their vision and propose necessary steps to establish 1H-MRS as a method suitable for large-scale neurochemical profiling in epidemiological research.
Collapse
Affiliation(s)
- Jessica McKay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Gramegna LL, Tonon C, Manners DN, Pini A, Rinaldi R, Zanigni S, Bianchini C, Evangelisti S, Fortuna F, Carelli V, Testa C, Lodi R. Combined Cerebellar Proton MR Spectroscopy and DWI Study of Patients with Friedreich’s Ataxia. THE CEREBELLUM 2016; 16:82-88. [DOI: 10.1007/s12311-016-0767-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Baldarçara L, Currie S, Hadjivassiliou M, Hoggard N, Jack A, Jackowski AP, Mascalchi M, Parazzini C, Reetz K, Righini A, Schulz JB, Vella A, Webb SJ, Habas C. Consensus paper: radiological biomarkers of cerebellar diseases. THE CEREBELLUM 2015; 14:175-96. [PMID: 25382714 DOI: 10.1007/s12311-014-0610-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine.
Collapse
|
14
|
Doss S, Rinnenthal JL, Schmitz-Hübsch T, Brandt AU, Papazoglou S, Lux S, Maul S, Würfel J, Endres M, Klockgether T, Minnerop M, Paul F. Cerebellar neurochemical alterations in spinocerebellar ataxia type 14 appear to include glutathione deficiency. J Neurol 2015; 262:1927-35. [PMID: 26041613 DOI: 10.1007/s00415-015-7788-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 12/16/2022]
Abstract
Autosomal dominant ataxia type 14 (SCA14) is a rare usually adult-onset progressive disorder with cerebellar neurodegeneration caused by mutations in protein kinase C gamma. We set out to examine cerebellar and extracerebellar neurochemical changes in SCA14 by MR spectroscopy. In 13 SCA14 patients and 13 healthy sex- and age-matched controls, 3-T single-voxel brain proton MR spectroscopy was performed in a cerebellar voxel of interest (VOI) at TE = 30 ms to obtain a neurochemical profile of metabolites with short relaxation times. In the cerebellum and in additional VOIs in the prefrontal cortex, motor cortex, and somatosensory cortex, a second measurement was performed at TE = 144 ms to mainly extract the total N-acetyl-aspartate (tNAA) signal besides the signals for total creatine (tCr) and total choline (tCho). The cerebellar neurochemical profile revealed a decrease in glutathione (6.12E-06 ± 2.50E-06 versus 8.91E-06 ± 3.03E-06; p = 0028) and tNAA (3.78E-05 ± 5.67E-06 versus 4.25E-05 ± 5.15E-06; p = 0023) and a trend for reduced glutamate (2.63E-05 ± 6.48E-06 versus 3.15E-05 ± 7.61E-06; p = 0062) in SCA14 compared to controls. In the tNAA-focused measurement, cerebellar tNAA (296.6 ± 42.6 versus 351.7 ± 16.5; p = 0004) and tCr (272.1 ± 25.2 versus 303.2 ± 31.4; p = 0004) were reduced, while the prefrontal, somatosensory and motor cortex remained unaffected compared to controls. Neuronal pathology in SCA14 detected by MR spectroscopy was restricted to the cerebellum and did not comprise cortical regions. In the cerebellum, we found in addition to signs of neurodegeneration a glutathione reduction, which has been associated with cellular damage by oxidative stress in other neurodegenerative diseases such as Parkinson's disease and Friedreich's ataxia.
Collapse
Affiliation(s)
- Sarah Doss
- Department of Neurology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Magnetic resonance imaging biomarkers in patients with progressive ataxia: current status and future direction. THE CEREBELLUM 2013; 12:245-66. [PMID: 22828959 DOI: 10.1007/s12311-012-0405-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A diagnostic challenge commonly encountered in neurology is that of an adult patient presenting with ataxia. The differential is vast and clinical assessment alone may not be sufficient due to considerable overlap between different causes of ataxia. Magnetic resonance (MR)-based biomarkers such as voxel-based morphometry, MR spectroscopy, diffusion-weighted and diffusion-tensor imaging and functional MR imaging are gaining great attention for their potential as indicators of disease. A number of studies have reported correlation with clinical severity and underlying pathophysiology, and in some cases, MR imaging has been shown to allow differentiation of conditions causing ataxia. However, despite recent advances, their sensitivity and specificity vary. In addition, questions remain over their validity and reproducibility, especially when applied in routine clinical practice. This article extensively reviews the current literature regarding MR-based biomarkers for the patient with predominantly adult-onset ataxia. Imaging features characteristic of a particular ataxia are provided and features differentiating ataxia groups and subgroups are discussed. Finally, discussion will turn to the feasibility of applying these biomarkers in routine clinical practice.
Collapse
|
16
|
Morgan JJ, Kleven GA, Tulbert CD, Olson J, Horita DA, Ronca AE. Longitudinal 1H MRS of rat forebrain from infancy to adulthood reveals adolescence as a distinctive phase of neurometabolite development. NMR IN BIOMEDICINE 2013; 26:683-691. [PMID: 23322706 PMCID: PMC3634877 DOI: 10.1002/nbm.2913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
This study represents the first longitudinal, within-subject (1) H MRS investigation of the developing rat brain spanning infancy, adolescence and early adulthood. We obtained neurometabolite profiles from a voxel located in a central location of the forebrain, centered on the striatum, with smaller contributions for the cortex, thalamus and hypothalamus, on postnatal days 7, 35 and 60. Water-scaled metabolite signals were corrected for T1 effects and quantified using the automated processing software LCModel, yielding molal concentrations. Our findings indicate age-related concentration changes in N-acetylaspartate + N-acetylaspartylglutamate, myo-inositol, glutamate + glutamine, taurine, creatine + phosphocreatine and glycerophosphocholine + phosphocholine. Using a repeated measures design and analysis, we identified significant neurodevelopment changes across all three developmental ages and identified adolescence as a distinctive phase in normative neurometabolic brain development. Between postnatal days 35 and 60, changes were observed in the concentrations of N-acetylaspartate + N-acetylaspartylglutamate, glutamate + glutamine and glycerophosphocholine + phosphocholine. Our data replicate past studies of early neurometabolite development and, for the first time, link maturational profiles in the same subjects across infancy, adolescence and adulthood.
Collapse
Affiliation(s)
- Jonathan J. Morgan
- Program in Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Gale A. Kleven
- Department of Psychology, Wright State University, Dayton, OH USA
| | - Christina D. Tulbert
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - John Olson
- Center for Biomolecular Imaging, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - David A. Horita
- Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - April E. Ronca
- Program in Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Center for Biomolecular Imaging, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
17
|
Martino D, Stamelou M, Bhatia KP. The differential diagnosis of Huntington's disease-like syndromes: 'red flags' for the clinician. J Neurol Neurosurg Psychiatry 2013; 84:650-6. [PMID: 22993450 PMCID: PMC3646286 DOI: 10.1136/jnnp-2012-302532] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A growing number of progressive heredodegenerative conditions mimic the presentation of Huntington's disease (HD). Differentiating among these HD-like syndromes is necessary when a patient with a combination of movement disorders, cognitive decline, behavioural abnormalities and progressive disease course proves negative to the genetic testing for HD causative mutations, that is, IT15 gene trinucleotide-repeat expansion. The differential diagnosis of HD-like syndromes is complex and may lead to unnecessary and costly investigations. We propose here a guide to this differential diagnosis focusing on a limited number of clinical features ('red flags') that can be identified through accurate clinical examination, collection of historical data and a few routine ancillary investigations. These features include the ethnic background of the patient, the involvement of the facio-bucco-lingual and cervical district by the movement disorder, the co-occurrence of cerebellar features and seizures, the presence of peculiar gait patterns and eye movement abnormalities, and an atypical progression of illness. Additional help may derive from the cognitive-behavioural presentation of the patient, as well as by a restricted number of ancillary investigations, mainly MRI and routine blood tests. These red flags should be constantly updated as the phenotypic characterisation and identification of more reliable diagnostic markers for HD-like syndromes progress over the following years.
Collapse
Affiliation(s)
- Davide Martino
- Neuroscience & Trauma Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK.
| | | | | |
Collapse
|
18
|
The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 2012; 61:342-62. [DOI: 10.1016/j.neuroimage.2011.12.038] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/15/2011] [Indexed: 12/13/2022] Open
|
19
|
Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich's ataxia. Neuroradiology 2010; 53:367-72. [PMID: 21128070 DOI: 10.1007/s00234-010-0807-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/16/2010] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Decreased fractional anisotropy (FA) demonstrated by diffusion tensor MR imaging (DTI) in areas of white matter (WM) damage is generally associated with increase of radial diffusivity, while axial diffusivity is reported to be decreased, unchanged, or increased. Aiming to better define the type of axial diffusivity change occurring in a typical human neurodegenerative disease, we investigated axial and radial diffusivity in Friedreich's ataxia (FRDA) which is characterized by selective neuronal loss of the dentate nuclei and atrophy and decreased FA of the superior cerebellar peduncles (SCPs). METHODS Axial and radial diffusivity of the whole-brain WM were evaluated in 14 patients with FRDA and 14 healthy volunteers using DTI at 1.5 T and the tract-based spatial statistics (TBSS) method, part of FSL software. RESULTS TBSS analysis showed a single area in the central midbrain corresponding to the decussation of the SCPs which exhibited lower FA in patients than in controls. In this area, a significant increase of both axial and radial diffusivity was observed. No clusters of significantly decreased axial diffusivity were observed, while additional clusters of increase of radial diffusivity were present throughout the brain. CONCLUSIONS The selective decrease of FA in SCPs of FRDA patients reflecting chronic WM tract damage is associated with increase of both the axial and radial diffusivity, the latter more pronounced than the former. The ultrastructural and biophysical bases of the increased axial diffusivity in chronically degenerating WM tracts deserve further studies.
Collapse
|