1
|
Odaira-Satoh T, Nakagawasai O, Takahashi K, Ono R, Wako M, Nemoto W, Tan-No K. Captopril prevents depressive-like behavior in an animal model of depression by enhancing hippocampal neurogenesis via activation of the ACE2/Ang (1-7)/Mas receptor/AMPK/BDNF pathway. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111198. [PMID: 39561916 DOI: 10.1016/j.pnpbp.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The brain's Renin-Angiotensin System plays an important role in the modulation of mental state. Previously we demonstrated that activated angiotensin (Ang) converting enzyme (ACE) 2, which converts Ang II into Ang (1-7), or the intracerebroventricular administration of Ang (1-7) produced an antidepressant-like effect in mice via Mas receptors (MasR). Since the ACE inhibitor Captopril (Cap) increases Ang (1-7) in the brain, it remains unknown whether Cap affects the depressive-like behavior of olfactory bulbectomized (OBX) mice, an animal model of depression. We tested the effect of Cap on the depressive-like behavior of these mice in the tail-suspension test, quantified ACE2, p-AMP activated protein kinase (AMPK), and brain-derived neurotrophic factor (BDNF) using western blots, and examined the changes in Ang (1-7) level, neurogenesis, and in the expression of ACE2 and MasR on various cell types in the hippocampus using immunohistochemistry. While OBX mice exhibited a depressive-like behavior in the tail-suspension test, as well as a reduction in ACE2, Ang (1-7), p-AMPK, BDNF, and hippocampal neurogenesis, these changes were prevented by Cap administration. The intracerebroventricular administration of Ang (1-7) improved the OBX-induced depressive-like behavior. Except for the changes in ACE2 and Ang (1-7), the effects of Cap were inhibited by the coadministration of A779 (MasR inhibitor) or Compound-C (AMPK inhibitor). ACE2 localized to all cell types, while MasR localized to microglia and neurons. Our results suggest that Cap may act on ACE2-positive cells in the hippocampus to increase ACE2 expression level, thereby enhancing signaling in the ACE2/Ang (1-7)/MasR/AMPK/BDNF pathway and producing antidepressant-like effects.
Collapse
Affiliation(s)
- Takayo Odaira-Satoh
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Kohei Takahashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan; Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Ryotaro Ono
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Miharu Wako
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
2
|
Hu T, Zhou T, Goit RK, Tam KC, Chan YK, Lam WC, Lo ACY. Bioactive Glial-Derived Neurotrophic Factor from a Safe Injectable Collagen-Alginate Composite Gel Rescues Retinal Photoreceptors from Retinal Degeneration in Rabbits. Mar Drugs 2024; 22:394. [PMID: 39330275 PMCID: PMC11433152 DOI: 10.3390/md22090394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The management of vision-threatening retinal diseases remains challenging due to the lack of an effective drug delivery system. Encapsulated cell therapy (ECT) offers a promising approach for the continuous delivery of therapeutic agents without the need for immunosuppressants. In this context, an injectable and terminable collagen-alginate composite (CAC) ECT gel, designed with a Tet-on pro-caspase-8 system, was developed as a safe intraocular drug delivery platform for the sustained release of glial-cell-line-derived neurotrophic factor (GDNF) to treat retinal degenerative diseases. This study examined the potential clinical application of the CAC ECT gel, focusing on its safety, performance, and termination through doxycycline (Dox) administration in the eyes of healthy New Zealand White rabbits, as well as its therapeutic efficacy in rabbits with sodium-iodate (SI)-induced retinal degeneration. The findings indicated that the CAC ECT gel can be safely implanted without harming the retina or lens, displaying resistance to degradation, facilitating cell attachment, and secreting bioactive GDNF. Furthermore, the GDNF levels could be modulated by the number of implants. Moreover, Dox administration was effective in terminating gel function without causing retinal damage. Notably, rabbits with retinal degeneration treated with the gels exhibited significant functional recovery in both a-wave and b-wave amplitudes and showed remarkable efficacy in reducing photoreceptor apoptosis. Given its biocompatibility, mechanical stability, controlled drug release, terminability, and therapeutic effectiveness, our CAC ECT gel presents a promising therapeutic strategy for various retinal diseases in a clinical setting, eliminating the need for immunosuppressants.
Collapse
Affiliation(s)
- Tingyu Hu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Wai-Ching Lam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| |
Collapse
|
3
|
AlRuwaili R, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GES. The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy. Neurochem Res 2024; 49:533-547. [PMID: 38006577 PMCID: PMC10884085 DOI: 10.1007/s11064-023-04064-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Epilepsy is a neurological disease characterized by repeated seizures. Despite of that the brain-derived neurotrophic factor (BDNF) is implicated in the pathogenesis of epileptogenesis and epilepsy, BDNF may have a neuroprotective effect against epilepsy. Thus, the goal of the present review was to highlight the protective and detrimental roles of BDNF in epilepsy. In this review, we also try to find the relation of BDNF with other signaling pathways and cellular processes including autophagy, mTOR pathway, progranulin (PGN), and α-Synuclein (α-Syn) which negatively and positively regulate BDNF/tyrosine kinase receptor B (TrkB) signaling pathway. Therefore, the assessment of BDNF levels in epilepsy should be related to other neuronal signaling pathways and types of epilepsy in both preclinical and clinical studies. In conclusion, there is a strong controversy concerning the potential role of BDNF in epilepsy. Therefore, preclinical, molecular, and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
4
|
Chen S, Huang W, He T, Zhang M, Jin X, Jiang L, Xu H, Chen K. Exploring the Causality Between Plasma Brain-Derived Neurotrophic Factor and Neurological Diseases: A Mendelian Randomization Study. J Alzheimers Dis 2023; 96:135-148. [PMID: 37742652 DOI: 10.3233/jad-230693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a protein synthesized in the brain and widely expressed in the nervous system. Previous studies have demonstrated a controversial role of BDNF in neurological diseases. OBJECTIVE In this study, we aimed to assess the association between BDNF levels and the risk of neurological diseases by Mendelian randomization analysis. METHODS From a genome-wide association analysis of plasma proteins comprising 3,301 European participants, we isolated 25 genetic variations as instrumental variables for BDNF levels. Summary statistics data on six common neurological diseases as outcome variables. Two-sample Mendelian randomization (MR) analysis was used to assess whether plasma BDNF is causally related to neurological diseases. We also performed sensitivity analysis to ensure the robustness of the results and reverse MR to exclude potential reverse causality. RESULTS We confirmed the significant causal relationship between BDNF levels and the risk of Alzheimer's disease (AD) (OR, 0.92; 95% CI, 0.85, 0.98; p = 0.013). Other methods have also shown similar results. We infer that BDNF also reduces the risk of epilepsy (OR, 0.94; 95% CI, 0.90, 0.98; p = 0.004). In reverse MR analysis, we also found that AD can affect the level of BDNF. CONCLUSIONS Our study suggests higher plasma BDNF was associated with the reduced risk of AD. Moreover, higher plasma BDNF is a protective factor on AD and focal epilepsy. The results provide credence to the idea that BDNF may play a significant role in the development of focal epilepsy and AD.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing Jin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Kawauchi S, Yasuhara T, Kin K, Yabuno S, Sugahara C, Nagase T, Hosomoto K, Okazaki Y, Tomita Y, Umakoshi M, Sasaki T, Kameda M, Borlongan CV, Date I. Transplantation of modified human bone marrow-derived stromal cells affords therapeutic effects on cerebral ischemia in rats. CNS Neurosci Ther 2022; 28:1974-1985. [PMID: 36000240 PMCID: PMC9627357 DOI: 10.1111/cns.13947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS SB623 cells are human bone marrow stromal cells transfected with Notch1 intracellular domain. In this study, we examined potential regenerative mechanisms underlying stereotaxic transplantation of SB623 cells in rats with experimental acute ischemic stroke. METHODS We prepared control group, empty capsule (EC) group, SB623 cell group (SB623), and encapsulated SB623 cell (eSB623) group. Transient middle cerebral artery occlusion (MCAO) was performed on day 0, and 24 h after MCAO, stroke rats received transplantation into the envisioned ischemic penumbra. Modified neurological severity score (mNSS) was evaluated, and histological evaluations were performed. RESULTS In the mNSS, SB623 and eSB623 groups showed significant improvement compared to the other groups. Histological analysis revealed that the infarction area in SB623 and eSB623 groups was reduced. In the eSB623 group, robust cell viability and neurogenesis were detected in the subventricular zone that increased significantly compared to all other groups. CONCLUSION SB623 cells with or without encapsulation showed therapeutic effects on ischemic stroke. Encapsulated SB623 cells showed enhanced neurogenesis and increased viability inside the capsules. This study reveals the mechanism of secretory function of transplanted SB623 cells, but not cell-cell interaction as primarily mediating the cells' functional benefits in ischemic stroke.
Collapse
Affiliation(s)
- Satoshi Kawauchi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takao Yasuhara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kyohei Kin
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan,Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Satoru Yabuno
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chiaki Sugahara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takayuki Nagase
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kakeru Hosomoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yosuke Okazaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yousuke Tomita
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michiari Umakoshi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tatsuya Sasaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South FloridaTampaFloridaUSA
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
6
|
Shaimardanova AA, Chulpanova DS, Mullagulova AI, Afawi Z, Gamirova RG, Solovyeva VV, Rizvanov AA. Gene and Cell Therapy for Epilepsy: A Mini Review. Front Mol Neurosci 2022; 15:868531. [PMID: 35645733 PMCID: PMC9132249 DOI: 10.3389/fnmol.2022.868531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic non-infectious disease of the brain, characterized primarily by recurrent unprovoked seizures, defined as an episode of disturbance of motor, sensory, autonomic, or mental functions resulting from excessive neuronal discharge. Despite the advances in the treatment achieved with the use of antiepileptic drugs and other non-pharmacological therapies, about 30% of patients suffer from uncontrolled seizures. This review summarizes the currently available methods of gene and cell therapy for epilepsy and discusses the development of these approaches. Currently, gene therapy for epilepsy is predominantly adeno-associated virus (AAV)-mediated delivery of genes encoding neuro-modulatory peptides, neurotrophic factors, enzymes, and potassium channels. Cell therapy for epilepsy is represented by the transplantation of several types of cells such as mesenchymal stem cells (MSCs), bone marrow mononuclear cells, neural stem cells, and MSC-derived exosomes. Another approach is encapsulated cell biodelivery, which is the transplantation of genetically modified cells placed in capsules and secreting various therapeutic agents. The use of gene and cell therapy approaches can significantly improve the condition of patient with epilepsy. Therefore, preclinical, and clinical studies have been actively conducted in recent years to prove the benefits and safety of these strategies.
Collapse
Affiliation(s)
| | - Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aysilu I. Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Zaid Afawi
- Center for Neuroscience, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Rimma G. Gamirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Albert A. Rizvanov,
| |
Collapse
|
7
|
The emerging role of miRNA-132/212 cluster in neurologic and cardiovascular diseases: Neuroprotective role in cells with prolonged longevity. Mech Ageing Dev 2021; 199:111566. [PMID: 34517022 DOI: 10.1016/j.mad.2021.111566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023]
Abstract
miRNA-132/212 are small regulators of gene expression with a function that fulfills a vital function in diverse biological processes including neuroprotection of cells with prolonged longevity in neurons and the cardiovascular system. In neurons, miRNA-132 appears to be essential for controlling differentiation, development, and neural functioning. Indeed, it also universally promotes axon evolution, nervous migration, plasticity as well, it is suggested to be neuroprotective against neurodegenerative diseases. Moreover, miRNA-132/212 disorder leads to neural developmental perturbation, and the development of degenerative disorders covering Alzheimer's, Parkinson's, and epilepsy's along with psychiatric perturbations including schizophrenia. Furthermore, the cellular mechanisms of the miRNA-132/212 have additionally been explored in cardiovascular diseases models. Also, the miRNA-132/212 family modulates cardiac hypertrophy and autophagy in cardiomyocytes. The protective and effective clinical promise of miRNA-132/212 in these systems is discussed in this review. To sum up, the current progress in innovative miRNA-based therapies for human pathologies seems of extreme concern and reveals promising novel therapeutic strategies.
Collapse
|
8
|
Ahmed MA, Kamel EO. Involvement of H 2 S, NO and BDNF-TrkB signalling pathway in the protective effects of simvastatin against pentylenetetrazole-induced kindling and cognitive impairments in mice. Basic Clin Pharmacol Toxicol 2020; 127:461-476. [PMID: 32562563 DOI: 10.1111/bcpt.13457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Cognitive dysfunction was observed in pentylenetetrazole (PTZ)-kindled mice. The potential effectiveness of simvastatin (SIM) on PTZ-induced kindling and cognitive impairments in mice was evaluated. The influence of SIM on hydrogen sulphide (H2 S), nitric oxide (NO), reactive aldehydes and brain-derived neurotrophic factor/tyrosine receptor kinase B (BDNF-TrkB) signalling was also investigated. Kindling and cognitive impairments in mice were induced by 12 ip injections of PTZ (35 mg/kg) once every alternate day. The levels of reactive aldehydes and nitrite were increased while H2 S was decreased in PTZ-treated mice. These results were accompanied by a reduction in the gene expression of aldehyde dehydrogenase 2, cystathionine β-synthase, BDNF and TrkB. In PTZ-kindled mice, a rise in brain inducible nitric oxide synthase protein expression associated with histopathological changes was observed. SIM administration (1, 5 and 10 mg/kg, daily orally) along with alternate day of PTZ (35 mg/kg) resulted in a decrease in PTZ-induced kindling with a dose-dependent improvement in cognitive function. SIM (10 mg/kg) prevented, to variable extent, the disturbances associated with PTZ-kindled mice with cortical, cerebellar and hippocampal structural improvement. These results suggested that SIM triggers multiple mechanisms that improve cognitive function in PTZ-kindled mice through modulation of oxidative stress, H2 S, NO and BDNF-TrkB signalling pathway.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
9
|
Kin K, Yasuhara T, Kameda M, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Okazaki M, Sasaki T, Tajiri N, Borlongan CV, Date I. Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats. Mol Psychiatry 2020; 25:1202-1214. [PMID: 30108315 DOI: 10.1038/s41380-018-0208-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Despite the advances in pharmacological therapies, only the half of depressed patients respond to currently available treatment. Thus, the need for further investigation and development of effective therapies, especially those designed for treatment-resistant depression, has been sorely needed. Although antidepressant effects of mesenchymal stem cells (MSCs) have been reported, the potential benefit of this cell therapy on treatment-resistant depression is unknown. Cell encapsulation may enhance the survival rate of grafted cells, but the therapeutic effects and mechanisms mediating encapsulation of MSCs remain unexplored. Here, we showed that encapsulation enhanced the antidepressant effects of MSCs by attenuating depressive-like behavior of Wistar Kyoto (WKY) rats, which are considered as a promising animal model of treatment-resistant depression. The implantation of encapsulated MSCs (eMSCs) into the lateral ventricle counteracted depressive-like behavior and enhanced the endogenous neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, whereas the implantation of MSCs without encapsulation or the implantation of eMSCs into the striatum did not show such ameliorative effects. eMSCs displayed robust and stable secretion of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, fibroblast growth factor-2, and ciliary neurotrophic factor (CNTF), and the implantation of eMSCs into the lateral ventricle activated relevant pathways associated with these growth factors. Additionally, eMSCs upregulated intrinsic expression of VEGF and CNTF and their receptors. This study suggests that the implantation of eMSCs into the lateral ventricle exerted antidepressant effects likely acting via neurogenic pathways, supporting their utility for depression treatment.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoya Kidani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.,Department of Psychology, Kibi International University Graduate School of Psychology, 8, iga-cho, takahashi-shi, Okayama, 716-8508, Japan
| | - Cesario V Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
10
|
Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019; 7:380. [PMID: 31850335 PMCID: PMC6901392 DOI: 10.3389/fbioe.2019.00380] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cell encapsulation is a bioengineering technology that provides live allogeneic or xenogeneic cells packaged in a semipermeable immune-isolating membrane for therapeutic applications. The concept of cell encapsulation was first proposed almost nine decades ago, however, and despite its potential, the technology has yet to deliver its promise. The few clinical trials based on cell encapsulation have not led to any licensed therapies. Progress in the field has been slow, in part due to the complexity of the technology, but also because of the difficulties encountered when trying to prevent the immune responses generated by the various microcapsule components, namely the polymer, the encapsulated cells, the therapeutic transgenes and the DNA vectors used to genetically engineer encapsulated cells. While the immune responses induced by polymers such as alginate can be minimized using highly purified materials, the need to cope with the immunogenicity of encapsulated cells is increasingly seen as key in preventing the immune rejection of microcapsules. The encapsulated cells are recognized by the host immune cells through a bidirectional exchange of immune mediators, which induce both the adaptive and innate immune responses against the engrafted capsules. The potential strategies to cope with the immunogenicity of encapsulated cells include the selective diffusion restriction of immune mediators through capsule pores and more recently inclusion in microcapsules of immune modulators such as CXCL12. Combining these strategies with the use of well-characterized cell lines harboring the immunomodulatory properties of stem cells should encourage the incorporation of cell encapsulation technology in state-of-the-art drug development.
Collapse
Affiliation(s)
- Assem Ashimova
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sergey Yegorov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Baurzhan Negmetzhanov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
11
|
Zhang X, Li X, Liu N, Zheng P, Ma L, Guo F, Sun T, Zhou R, Yu J. The Anticonvulsant Effects of Baldrinal on Pilocarpine-Induced convulsion in Adult Male Mice. Molecules 2019; 24:E1617. [PMID: 31022879 PMCID: PMC6514916 DOI: 10.3390/molecules24081617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a prevalent neurological disorder that was reported to affect about 56 million people in the world. Approximately one-third of the epileptic patients that suffer from seizures do not receive effective medical treatment. The aim of this study was to determine the potential anticonvulsant activities of Baldrinal (BAL) with a mouse model of pilocarpine (PILO)-induced epilepsy. The mice were treated with different doses of BAL or sodium valproate prior to PILO injection. Spontaneous and evoked seizures were evaluated from EEG recordings, and their severity was tested by the Racine scale. In addition, the brain tissues were analyzed for histological changes, and the in situ levels of glutamic acid (Glu) and gamma-aminobutyric acid (GABA) were also measured. Activation of astrocytes in the hippocampus was measured. PILO-treated mice showed a significant increase in Glu levels, which was restored by BAL. In addition, BAL treatment also reduced the rate of seizures in the epileptic mice, and ameliorated the increased levels of NMDAR1, BDNF, IL-1β and TNF-α. Taken together, BAL has a potential antiepileptic effect, which may be mediated by reducing the inflammatory response in the PILO-induced brain and restoring the balance of GABAergic and glutamatergic neurons.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Xing Li
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Ping Zheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| | - Fengying Guo
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
12
|
Zheng P, Bin H, Chen W. Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF. Cancer Cell Int 2019; 19:109. [PMID: 31049031 PMCID: PMC6482545 DOI: 10.1186/s12935-019-0821-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study is to explore the effect of microRNA-103a (miR-103a) on astrocytes activation and hippocampal neuron injury in epilepsy rats by targeting brain-derived neurotrophic factor (BDNF). Methods The epilepsy rat model was induced by intraperitoneal injection of lithium chloride-pilocarpine. Successful modeled rats were intralateroventricularly microinjected with miR-103a inhibitors, inhibitors negative control (NC), siRNA-NC and BDNF-siRNA, respectively. The RT-qPCR and western blot analysis were used to detect the expression of miR-103a, BDNF and glial fibrillary acidic protein (GFAP) in hippocampus tissues of rats. TUNEL staining was used to detect the apoptosis of hippocampal neurons. The RT-PCR and ELISA was used to detect the levels of TNF-α and IL-6 in hippocampal tissues and in serum, respectively. Results Increased expression of miR-103a, GFAP, and number of apoptotic neurons, decreased expression of BDNF and number of surviving neurons were found in hippocampus tissues of epilepsy rats. After miR-103a inhibitors interfered with epilepsy rats, there showed decreased expression of miR-103a and GFAP, increased expression of BDNF and decreased number of apoptotic neuron as well as increased number of surviving neurons. Compared with miR-103a inhibitors alone, epilepsy rats treated with BDNF-siRNA combined with miR-103a inhibitors significantly increased expression of GFAP in hippocampal tissues of epilepsy rats, increased number of apoptotic neurons and significantly decreased the number of surviving neurons. Conclusion Our study provides evidence that the inhibition of miR-103a can inhibit the activation of astrocytes in hippocampus tissues and improve the pathological injury of neurons of epilepsy rats by regulating BDNF gene. Electronic supplementary material The online version of this article (10.1186/s12935-019-0821-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Zheng
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China
| | - He Bin
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China
| | - Wei Chen
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China.,2Department of Neurosurgery, First affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Kin K, Yasuhara T, Borlongan CV, Date I. Encapsulated stem cells ameliorate depressive-like behavior via growth factor secretion. Brain Circ 2018; 4:128-132. [PMID: 30450420 PMCID: PMC6187943 DOI: 10.4103/bc.bc_17_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022] Open
Abstract
As prevalence of depression continues to rise around the world, there remains a stagnation of available treatments as the affected population grows. The subset of treatment-resistant depression also is on the rise highlighting the need for innovative treatments to address this issue. Mesenchymal stem cells (MSCs) have been reported to attenuate depression-like behaviors, however, the effects of encapsulation of MSCs have yet to be investigated. Encapsulation of MSCs exhibited prolonged survival of exogenous cell injection accompanied with increased secretion of neurotrophic factors including vascular endothelial growth factor, ciliary neurotrophic factor, and others. The enhanced expression of these factors highlights the ability of encapsulated MSCs to upregulate the respective signaling pathways, which are associated with depression pathology and activation of neurogenesis. This treatment identifies a promising therapeutic option for depression, specifically treatment-resistant depression. Further, evaluation of long-term effects of the treatment is warranted. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases including PubMed. Some original themes in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, US
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
14
|
Wang ZZ, Sakiyama-Elbert SE. Matrices, scaffolds & carriers for cell delivery in nerve regeneration. Exp Neurol 2018; 319:112837. [PMID: 30291854 DOI: 10.1016/j.expneurol.2018.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
Nerve injuries can be life-long debilitating traumas that severely impact patients' quality of life. While many acellular neural scaffolds have been developed to aid the process of nerve regeneration, complete functional recovery is still very difficult to achieve, especially for long-gap peripheral nerve injury and most cases of spinal cord injury. Cell-based therapies have shown many promising results for improving nerve regeneration. With recent advances in neural tissue engineering, the integration of biomaterial scaffolds and cell transplantation are emerging as a more promising approach to enhance nerve regeneration. This review provides an overview of important considerations for designing cell-carrier biomaterial scaffolds. It also discusses current biomaterials used for scaffolds that provide permissive and instructive microenvironments for improved cell transplantation.
Collapse
Affiliation(s)
- Ze Zhong Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biomedical Engineering, University of Austin at Texas, Austin, TX, USA
| | | |
Collapse
|
15
|
Seizure-Suppressant and Neuroprotective Effects of Encapsulated BDNF-Producing Cells in a Rat Model of Temporal Lobe Epilepsy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:211-224. [PMID: 29766029 PMCID: PMC5948312 DOI: 10.1016/j.omtm.2018.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/05/2018] [Indexed: 12/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) may represent a therapeutic for chronic epilepsy, but evaluating its potential is complicated by difficulties in its delivery to the brain. Here, we describe the effects on epileptic seizures of encapsulated cell biodelivery (ECB) devices filled with genetically modified human cells engineered to release BDNF. These devices, implanted into the hippocampus of pilocarpine-treated rats, highly decreased the frequency of spontaneous seizures by more than 80%. These benefits were associated with improved cognitive performance, as epileptic rats treated with BDNF performed significantly better on a novel object recognition test. Importantly, long-term BDNF delivery did not alter normal behaviors such as general activity or sleep/wake patterns. Detailed immunohistochemical analyses revealed that the neurological benefits of BDNF were associated with several anatomical changes, including reduction in degenerating cells and normalization of hippocampal volume, neuronal counts (including parvalbumin-positive interneurons), and neurogenesis. In conclusion, the present data suggest that BDNF, when continuously released in the epileptic hippocampus, reduces the frequency of generalized seizures, improves cognitive performance, and reverts many histological alterations associated with chronic epilepsy. Thus, ECB device-mediated long-term supplementation of BDNF in the epileptic tissue may represent a valid therapeutic strategy against epilepsy and some of its co-morbidities.
Collapse
|
16
|
Yasuhara T, Date I, Liska MG, Kaneko Y, Vale FL. Translating regenerative medicine techniques for the treatment of epilepsy. Brain Circ 2017; 3:156-162. [PMID: 30276318 PMCID: PMC6057691 DOI: 10.4103/bc.bc_21_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is considered a chronic neurological disorder and is accompanied by persistent and diverse disturbances in electrical brain activity. While antiepileptic pharmaceuticals are still the predominant treatment for epilepsy, the advent of numerous surgical interventions has further improved outcomes for patients. Despite these advancements, a subpopulation continues to experience intractable seizures which are resistant to current conventional and nonconventional therapeutic options. In this review, we begin with an introduction to the clinical presentation of epilepsy before discussing the clinically relevant laboratory models of epilepsy. Finally, we explore the implications of regenerative medicine – including cell therapy, neuroprotective agents, and electrical stimulation – for epilepsy, supplemented with our laboratory's data. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - M Grant Liska
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| | - Fernando L Vale
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Lin WH, Li XF, Lin MX, Zhou Y, Huang HP. Novel insights into the effect of paroxetine administration in pilocarpine‑induced chronic epileptic rats. Mol Med Rep 2017; 16:8245-8252. [PMID: 28983622 DOI: 10.3892/mmr.2017.7659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the role of paroxetine intervention in epilepsy, and its association with the expression of serotonin transporter (SERT) and hippocampal apoptosis. Thirty adult male Sprague Dawley rats were divided into control vehicle (n=6) and epileptic (n=24) groups. Status epilepticus (SE) was induced via systemic injection of pilocarpine, and seizure activity was monitored via video electroencephalogram. The epileptic group was then randomly divided into two groups; Four weeks following SE induction, paroxetine (5 mg/kg/day; SE + paroxetine group) or normal saline (SE group) was intraperitoneally injected for 4 weeks. Brain tissue was collected to evaluate apoptosis via terminal deoxynucleotidyl transferase dUTP nick‑end labeling. SERT, B‑cell lymphoma‑2 (Bcl‑2) and brain derived neurotropic factor (BDNF) expression levels were evaluated by western blotting, and miR‑16 expression was evaluated by reverse transcription‑quantitative polymerase chain reaction. Paroxetine did not affect the mortality of the pilocarpine‑induced chronic epileptic rats. Spontaneous recurrent seizures (SSRs) were observed 7‑28 days following SE induction. The frequency and stage of the SSRs were reduced by paroxetine administration. Apoptotic cells were observed in the epileptic hippocampus. Following paroxetine intervention, the staining intensity and number of apoptotic cells were significantly decreased. Expression levels of BDNF and Bcl‑2 were lower in the SE group compared with the vehicle group. The former was not altered by paroxetine injection; however, the latter was increased. In the SE group, SERT expression was not altered in the raphe nucleus but was decreased in the hippocampus. Following paroxetine administration, SERT expression was decreased in the raphe nucleus and increased in the hippocampus. In the SE group, miR‑16 expression was decreased in the raphe nucleus and increased in the hippocampus. Following paroxetine administration, miR‑16 expression was not altered in the raphe nucleus but was reduced in the hippocampus. In conclusion, the seizures and hippocampal apoptosis observed in chronic epileptic rats were alleviated by paroxetine treatment. This effect may be associated with the reduced Bcl‑2 and BDNF expression and the modulation of SERT expression. The alterations in miR‑16 expression may provide a potential explanation for the modulation of apoptosis; however, further research is required to determine the complete underlying molecular mechanism.
Collapse
Affiliation(s)
- Wan-Hui Lin
- Department of Neurology and Geriatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Feng Li
- Department of Neurology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ming-Xing Lin
- Department of Pediatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ying Zhou
- Neuroscience Research Center of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Hua-Pin Huang
- Department of Neurology and Geriatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
18
|
Guerra M, Blázquez JL, Rodríguez EM. Blood-brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow. Fluids Barriers CNS 2017; 14:19. [PMID: 28701191 PMCID: PMC5508761 DOI: 10.1186/s12987-017-0067-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/24/2017] [Indexed: 12/12/2022] Open
Abstract
Despite decades of research, no compelling non-surgical therapies have been developed for foetal hydrocephalus. So far, most efforts have pointed to repairing disturbances in the cerebrospinal fluid (CSF) flow and to avoid further brain damage. There are no reports trying to prevent or diminish abnormalities in brain development which are inseparably associated with hydrocephalus. A key problem in the treatment of hydrocephalus is the blood–brain barrier that restricts the access to the brain for therapeutic compounds or systemically grafted cells. Recent investigations have started to open an avenue for the development of a cell therapy for foetal-onset hydrocephalus. Potential cells to be used for brain grafting include: (1) pluripotential neural stem cells; (2) mesenchymal stem cells; (3) genetically-engineered stem cells; (4) choroid plexus cells and (5) subcommissural organ cells. Expected outcomes are a proper microenvironment for the embryonic neurogenic niche and, consequent normal brain development.
Collapse
Affiliation(s)
- M Guerra
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.
| | - J L Blázquez
- Departamento de Anatomía e Histología Humana, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - E M Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
19
|
Kin K, Yasuhara T, Kameda M, Agari T, Sasaki T, Morimoto J, Okazaki M, Umakoshi M, Kuwahara K, Kin I, Tajiri N, Date I. Hippocampal neurogenesis of Wistar Kyoto rats is congenitally impaired and correlated with stress resistance. Behav Brain Res 2017; 329:148-156. [PMID: 28465137 DOI: 10.1016/j.bbr.2017.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/17/2017] [Accepted: 04/22/2017] [Indexed: 12/28/2022]
Abstract
The hippocampus is thought to be an important region for depression. However, the relationship between hippocampal neurogenesis and depression is still controversial. Wistar Kyoto (WKY) rats are frequently used as a depression model. WKY rats are known to show physiologically abnormal features, and these features resemble abnormalities seen in depressed patients. However, the neurogenesis of WKY rats is still unknown. In this study, we first evaluated the neurogenesis of WKY rats and compared it to that of Wistar (WIS) rats. No strain effect was observed in the number of cells positive for 5-bromo-2'-deoxyuridine (BrdU) and BrdU/Doublecortin (Dcx) in the subventricular zone (SVZ). However, the number of BrdU- and BrdU/Dcx-positive cells in the dentate gyrus (DG) of the hippocampus was significantly lower in WKY rats than in WIS rats. Next, we evaluated the correlation between neurogenesis and behavior tests. Behavior tests did not affect neurogenesis in either strain. Hippocampal neurogenesis correlated negatively with the results of a forced swim test (FST) on day 2 in each strain. That is, rats with a lower level of native neurogenesis in the DG showed a higher level of learned helplessness induced by the inescapable stress of the FST on day 1. Our findings indicate that hippocampal neurogenesis in WKY rats is congenitally impaired in contrast to that in WIS rats. Native cell proliferation and neurogenesis in the DG are correlated with stress resistance. These findings may be useful for developing new targets for depression treatment.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Takashi Agari
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan; Department of Psychology, Kibi International University Graduate School of Psychology, 8, iga-cho, takahashi-shi, Okayama, 716-8508, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
20
|
Xiang L, Ren Y, Cai H, Zhao W, Song Y. MicroRNA-132 aggravates epileptiform discharges via suppression of BDNF/TrkB signaling in cultured hippocampal neurons. Brain Res 2015; 1622:484-95. [PMID: 26168887 DOI: 10.1016/j.brainres.2015.06.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRs) are increasingly recognized as targets to prevent or disrupt epilepsy as well as serve as diagnostic biomarkers of epileptogenesis. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin related kinase type B (TrkB) also contribute to the pathophysiology of epilepsy. However, the possible involvement of miRs in BDNF-mediated molecular basis for epileptogenesis is less understood. In the present study, we found a dramatic upregulation of miR-132 and BDNF mRNA in the hippocampal neuronal culture model of status epilepticus (SE) obtained by Mg(2+)-free treatment. To investigate the role of miR-132 in the pathogenesis of epilepsy mediated by BDNF/TrkB signaling, we used a transfection approach to overexpress miR-132, and then detected a consequential decrease in BDNF mRNA and BDNF-dependent full-length TrkB receptor (TrkB.FL) signaling activity in the epileptic neurons. We investigated the alterations of epileptiform discharges in the hippocampal neuronal culture model of SE using the whole-cell patch-clamp technique. Activation of TrkB.FL by pretreatment with BDNF partly inhibited the Mg(2+)-free induced continuous high-frequency epileptiform discharges, while overexpression of miR-132 exacerbated epileptiform discharges. MiR-132 was also implicated in the postepileptic enhancement of high voltage dependent calcium channel. These results suggest that miR-132 promotes epileptogenesis through regulating BDNF/TrkB signaling in the hippocampal neuronal culture model of SE.
Collapse
Affiliation(s)
- Lei Xiang
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin 300052, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin 300060, China
| | - Yanping Ren
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin 300052, China
| | - Hao Cai
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wen Zhao
- VIP Ward, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yijun Song
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin 300052, China.
| |
Collapse
|
21
|
Venugopal C, Chandanala S, Prasad HC, Nayeem D, Bhonde RR, Dhanushkodi A. Regenerative therapy for hippocampal degenerative diseases: lessons from preclinical studies. J Tissue Eng Regen Med 2015; 11:321-333. [PMID: 26118731 DOI: 10.1002/term.2052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Abstract
Increase in life expectancy has put neurodegenerative diseases on the rise. Amongst these, degenerative diseases involving hippocampus like Alzheimer's disease (AD) and temporal lobe epilepsy (TLE) are ranked higher as it is vulnerable to excitotoxicity induced neuronal dysfunction and death resulting in cognitive impairment. Modern medicines have not succeeded in halting the progression of these diseases rendering them incurable and often fatal. Under such scenario, regenerative studies employing stem cells or their by-products in animal models of AD and TLE have yielded encourageing results. This review focuses on the distinct cell types, such as hippocampal cell lines, neural precursor cells, embryonic stem cells derived neural precursor cells, induced pluripotent stem cells, induced neurons and mesenchymal stem cells, which can be employed to rescue hippocampal functions in neurodegenerative diseases like AD and TLE. Besides, the divergent mechanisms through which cell based therapy confer neuroprotection, current impediments and possible improvements in stem cell transplantation strategies are discussed. Authors are aware of the voluminous literature available on this issue and have made a sincere attempt to put forth the current status of research in the field of cell based therapy concurrently discussing the promise it holds for combating neurodegenerative diseases like AD and TLE in the near future. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chaitra Venugopal
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | | | | | - Danish Nayeem
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | - Ramesh R Bhonde
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | | |
Collapse
|
22
|
Carriers in cell-based therapies for neurological disorders. Int J Mol Sci 2014; 15:10669-723. [PMID: 24933636 PMCID: PMC4100175 DOI: 10.3390/ijms150610669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023] Open
Abstract
There is a pressing need for long-term neuroprotective and neuroregenerative therapies to promote full function recovery of injuries in the human nervous system resulting from trauma, stroke or degenerative diseases. Although cell-based therapies are promising in supporting repair and regeneration, direct introduction to the injury site is plagued by problems such as low transplanted cell survival rate, limited graft integration, immunorejection, and tumor formation. Neural tissue engineering offers an integrative and multifaceted approach to tackle these complex neurological disorders. Synergistic therapeutic effects can be obtained from combining customized biomaterial scaffolds with cell-based therapies. Current scaffold-facilitated cell transplantation strategies aim to achieve structural and functional rescue via offering a three-dimensional permissive and instructive environment for sustainable neuroactive factor production for prolonged periods and/or cell replacement at the target site. In this review, we intend to highlight important considerations in biomaterial selection and to review major biodegradable or non-biodegradable scaffolds used for cell transplantation to the central and peripheral nervous system in preclinical and clinical trials. Expanded knowledge in biomaterial properties and their prolonged interaction with transplanted and host cells have greatly expanded the possibilities for designing suitable carrier systems and the potential of cell therapies in the nervous system.
Collapse
|
23
|
Xie W, Song YJ, Li D, Pan LP, Wu QJ, Tian X. The suppression of epileptiform discharges in cultured hippocampal neurons is regulated via alterations in full-length tropomyosin-related kinase type B receptors signalling activity. Eur J Neurosci 2014; 40:2564-75. [PMID: 24830751 DOI: 10.1111/ejn.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Xie
- School of Biomedical Engineering; Tianjin Medical University; Tianjin China
| | - Yi-Jun Song
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Dai Li
- Senior Officials Inpatient Ward; Tianjin Medical University General Hospital and Tianjin Neurological Institute; Tianjin China
| | - Li-Ping Pan
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Qiu-Jing Wu
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Xin Tian
- School of Biomedical Engineering; Tianjin Medical University; Tianjin China
| |
Collapse
|
24
|
Emerich DF, Orive G, Thanos C, Tornoe J, Wahlberg LU. Encapsulated cell therapy for neurodegenerative diseases: from promise to product. Adv Drug Deliv Rev 2014; 67-68:131-41. [PMID: 23880505 DOI: 10.1016/j.addr.2013.07.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/31/2013] [Accepted: 07/12/2013] [Indexed: 12/27/2022]
Abstract
Delivering therapeutic molecules, including trophic factor proteins, across the blood brain barrier to the brain parenchyma to treat chronic neurodegenerative diseases remains one of the great challenges in biology. To be effective, delivery needs to occur in a long-term and stable manner at sufficient quantities directly to the target region in a manner that is selective but yet covers enough of the target site to be efficacious. One promising approach uses cellular implants that produce and deliver therapeutic molecules directly to the brain region of interest. Implanted cells can be precisely positioned into the desired region and can be protected from host immunological attack by encapsulating them and by surrounding them within an immunoisolatory, semipermeable capsule. In this approach, cells are enclosed within a semiporous capsule with a perm selective membrane barrier that admits oxygen and required nutrients and releases bioactive cell secretions while restricting passage of larger cytotoxic agents from the host immune defense system. Recent advances in human cell line development have increased the levels of secreted therapeutic molecules from encapsulated cells, and membrane extrusion techniques have led to the first ever clinical demonstrations of long-term survival and function of encapsulated cells in the brain parenchyma. As such, cell encapsulation is capable of providing a targeted, continuous, de novo synthesized source of very high levels of therapeutic molecules that can be distributed over significant portions of the brain.
Collapse
|
25
|
Yasuhara T, Agari T, Kameda M, Kondo A, Kuramoto S, Jing M, Sasaki T, Toyoshima A, Sasada S, Sato K, Shinko A, Wakamori T, Okuma Y, Miyoshi Y, Tajiri N, Borlongan CV, Date I. Regenerative medicine for epilepsy: from basic research to clinical application. Int J Mol Sci 2013; 14:23390-401. [PMID: 24287913 PMCID: PMC3876052 DOI: 10.3390/ijms141223390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 11/15/2013] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurological disorder, which presents with various forms of seizures. Traditional treatments, including medication using antiepileptic drugs, remain the treatment of choice for epilepsy. Recent development in surgical techniques and approaches has improved treatment outcomes. However, several epileptic patients still suffer from intractable seizures despite the advent of the multimodality of therapies. In this article, we initially provide an overview of clinical presentation of epilepsy then describe clinically relevant animal models of epilepsy. Subsequently, we discuss the concepts of regenerative medicine including cell therapy, neuroprotective agents, and electrical stimulation, which are reviewed within the context of our data.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-86-235-7336; Fax: +81-86-227-0191
| | - Takashi Agari
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Akihiko Kondo
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Satoshi Kuramoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Meng Jing
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Atsuhiko Toyoshima
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Kenichiro Sato
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Aiko Shinko
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Takaaki Wakamori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Yu Okuma
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Yasuyuki Miyoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Naoki Tajiri
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; E-Mails: (N.T.); (C.V.B.)
| | - Cesario V. Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; E-Mails: (N.T.); (C.V.B.)
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| |
Collapse
|
26
|
The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 2013; 63:405-12. [DOI: 10.1016/j.neuint.2013.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/14/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
|
27
|
Zanin M, Pettingill L, Harvey A, Emerich D, Thanos C, Shepherd R. The development of encapsulated cell technologies as therapies for neurological and sensory diseases. J Control Release 2012; 160:3-13. [DOI: 10.1016/j.jconrel.2012.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/10/2012] [Indexed: 12/31/2022]
|