1
|
Liu Z, Pan M, Li J, Li L, Wang T. Progress in the Study of TAp73 and Sperm Apoptosis. Cell Biochem Funct 2025; 43:e70042. [PMID: 39799402 DOI: 10.1002/cbf.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction. When TAp73 is low-expressed or absent, the process of spermatogenesis is severely impaired, and mice deficient in TAp73 exhibit spermatogonial DNA damage, disturbed apical cytoplasmic specialization, and spermatocyte malformations resulting in reduced male fertility. Nevertheless, when TAp73 is overexpressed, it not only drives exogenous death receptors to regulate germ cell apoptosis, but also interacts with its various substrate proteins to promote the translocation of cytoplasmic Bax proteins to the mitochondria, resulting in the upregulation of the Bax/Bcl-2 ratio on the mitochondrial membrane and triggering a series of mitochondrial apoptotic effects. In this article, we will analyze the mechanism of TAp73 and sperm apoptosis, and elaborate the mechanism of TAp73 upregulation, exogenous apoptosis pathway and mitochondrial apoptosis pathway to systematically explain that the process of apoptosis induced by high expression of TAp73 is not fixed and single, but is interconnected, so as to provide a basis for the treatment of oligoasthenospermia and the research and development of new drugs using TAp73 as a target.
Collapse
Affiliation(s)
- Ziao Liu
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Min Pan
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jingya Li
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Li Li
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Tongsheng Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
2
|
Maeso-Alonso L, López-Ferreras L, Marques MM, Marin MC. p73 as a Tissue Architect. Front Cell Dev Biol 2021; 9:716957. [PMID: 34368167 PMCID: PMC8343074 DOI: 10.3389/fcell.2021.716957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
The TP73 gene belongs to the p53 family comprised by p53, p63, and p73. In response to physiological and pathological signals these transcription factors regulate multiple molecular pathways which merge in an ensemble of interconnected networks, in which the control of cell proliferation and cell death occupies a prominent position. However, the complex phenotype of the Trp73 deficient mice has revealed that the biological relevance of this gene does not exclusively rely on its growth suppression effects, but it is also intertwined with other fundamental roles governing different aspects of tissue physiology. p73 function is essential for the organization and homeostasis of different complex microenvironments, like the neurogenic niche, which supports the neural progenitor cells and the ependyma, the male and female reproductive organs, the respiratory epithelium or the vascular network. We propose that all these, apparently unrelated, developmental roles, have a common denominator: p73 function as a tissue architect. Tissue architecture is defined by the nature and the integrity of its cellular and extracellular compartments, and it is based on proper adhesive cell-cell and cell-extracellular matrix interactions as well as the establishment of cellular polarity. In this work, we will review the current understanding of p73 role as a neurogenic niche architect through the regulation of cell adhesion, cytoskeleton dynamics and Planar Cell Polarity, and give a general overview of TAp73 as a hub modulator of these functions, whose alteration could impinge in many of the Trp73 -/- phenotypes.
Collapse
Affiliation(s)
- Laura Maeso-Alonso
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| | - Lorena López-Ferreras
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| | - Margarita M Marques
- Departamento de Producción Animal, Instituto de Desarrollo Ganadero y Sanidad Animal, University of León, León, Spain
| | - Maria C Marin
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| |
Collapse
|
3
|
Sato T, Ito T, Handa H. Cereblon-Based Small-Molecule Compounds to Control Neural Stem Cell Proliferation in Regenerative Medicine. Front Cell Dev Biol 2021; 9:629326. [PMID: 33777938 PMCID: PMC7990905 DOI: 10.3389/fcell.2021.629326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
Thalidomide, a sedative drug that was once excluded from the market owing to its teratogenic properties, was later found to be effective in treating multiple myeloma. We had previously demonstrated that cereblon (CRBN) is the target of thalidomide embryopathy and acts as a substrate receptor for the E3 ubiquitin ligase complex, Cullin-Ring ligase 4 (CRL4CRBN) in zebrafish and chicks. CRBN was originally identified as a gene responsible for mild intellectual disability in humans. Fetuses exposed to thalidomide in early pregnancy were at risk of neurodevelopmental disorders such as autism, suggesting that CRBN is involved in prenatal brain development. Recently, we found that CRBN controls the proliferation of neural stem cells in the developing zebrafish brain, leading to changes in brain size. Our findings imply that CRBN is involved in neural stem cell growth in humans. Accumulating evidence shows that CRBN is essential not only for the teratogenic effects but also for the therapeutic effects of thalidomide. This review summarizes recent progress in thalidomide and CRBN research, focusing on the teratogenic and therapeutic effects. Investigation of the molecular mechanisms underlying the therapeutic effects of thalidomide and its derivatives, CRBN E3 ligase modulators (CELMoDs), reveals that these modulators provide CRBN the ability to recognize neosubstrates depending on their structure. Understanding the therapeutic effects leads to the development of a novel technology called CRBN-based proteolysis-targeting chimeras (PROTACs) for target protein knockdown. These studies raise the possibility that CRBN-based small-molecule compounds regulating the proliferation of neural stem cells may be developed for application in regenerative medicine.
Collapse
Affiliation(s)
- Tomomi Sato
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, School of Medicine, Saitama Medical University, Saitama, Japan.,Department of Obstetrics and Gynecology, School of Medicine, Saitama Medical University, Saitama, Japan
| | - Takumi Ito
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Despotovski V, Vivekanandarajah A, Waters KA, Machaalani R. Expression of reelin with age in the human hippocampal formation. Hippocampus 2021; 31:493-502. [PMID: 33539623 DOI: 10.1002/hipo.23310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/30/2020] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Reelin plays a key role in neuronal migration and lamination in the cortex and hippocampus. Animal studies have shown that reelin expression decreases with age. The aim of this study was to evaluate the expression of reelin in all layers of the human hippocampal formation across three age groups. We used immunohistochemistry in formalin fixed and paraffin embedded hippocampal tissue from infants (1-10 months; n = 9), children (4-10 years; n = 4), and adults (45-60 years; n = 6) to stain for reelin. Expression was quantified (measured as the number of positive reelin cells/mm2 ) in the granule cell layer of the dentate gyrus (DG), the molecular layer of the dentate gyrus (ML), the hippocampal fissure (HF), stratum lacunosum moleculare (SLM), CA4/Hilus and the stratum pyramidale layer of CA3, CA2, and CA1. Expression of reelin was highest in the HF irrespective of age, followed by the SLM and ML. Minimal to no expression was seen in the stratum pyramidale layer of CA1-3. With age, reelin expression decreased and was statistically significant from infancy to childhood in the HF (p = .02). This study confirms that reelin expression decreases with age in the human hippocampus, and shows for the first time that the major decrease occurs between infancy and early childhood.
Collapse
Affiliation(s)
- Vanessa Despotovski
- Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Arunnjah Vivekanandarajah
- Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen A Waters
- Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rita Machaalani
- Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Lee TK, Park YE, Park CW, Kim B, Lee JC, Park JH, Lee HA, Won MH, Ahn JH. Age-dependent changes of p53 and p63 immunoreactivities in the mouse hippocampus. Lab Anim Res 2019; 35:20. [PMID: 32257908 PMCID: PMC7081572 DOI: 10.1186/s42826-019-0022-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
P53 and its family member p63 play important roles in cellular senescence and organismal aging. In this study, p53 and p63 immunoreactivity were examined in the hippocampus of young, adult and aged mice by using immunohistochemistry. In addition, neuronal distribution and degeneration was examined by NeuN immunohistochemistry and fluoro-Jade B fluorescence staining. Strong p53 immunoreactivity was mainly expressed in pyramidal and granule cells of the hippocampus in young mice. p53 immunoreactivity in the pyramidal and granule cells was significantly reduced in the adult mice. In the aged mice, p53 immunoreactivity in the pyramidal and granule cells was more significantly decreased. p63 immunoreactivity was strong in the pyramidal and granule cells in the young mice. p63 immunoreactivity in these cells was apparently and gradually decreased with age, showing that p63 immunoreactivity in the aged granule cells was hardly shown. However, numbers of pyramidal neurons and granule cells were not significantly decreased in the aged mice with normal aging. Taken together, this study indicates that there are no degenerative neurons in the hippocampus during normal aging, showing that p53 and p63 immunoreactivity in hippocampal neurons was progressively reduced during normal aging, which might be closely related to the normal aging processes.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- 1Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Young Eun Park
- 1Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Cheol Woo Park
- 1Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Bora Kim
- 1Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Jae-Chul Lee
- 1Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Joon Ha Park
- 2Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066 Republic of Korea
| | - Hyang-Ah Lee
- 3Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Moo-Ho Won
- 1Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Ji Hyeon Ahn
- 4Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
| |
Collapse
|
6
|
Nemajerova A, Moll UM. Tissue-specific roles of p73 in development and homeostasis. J Cell Sci 2019; 132:132/19/jcs233338. [PMID: 31582429 DOI: 10.1242/jcs.233338] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
p73 (TP73) belongs to the p53 family of transcription factors. Its gene locus encodes two opposing types of isoforms, the transcriptionally active TAp73 class and the dominant-negative DNp73 class, which both play critical roles in development and homeostasis in an astonishingly diverse array of biological systems within specific tissues. While p73 has functions in cancer, this Review focuses on the non-oncogenic activities of p73. In the central and peripheral nervous system, both isoforms cooperate in complex ways to regulate neural stem cell survival, self-renewal and terminal differentiation. In airways, oviduct and to a lesser extent in brain ependyma, TAp73 is the master transcriptional regulator of multiciliogenesis, enabling fluid and germ cell transport across tissue surfaces. In male and female reproduction, TAp73 regulates gene networks that control cell-cell adhesion programs within germinal epithelium to enable germ cell maturation. Finally, p73 participates in the control of angiogenesis in development and cancer. While many open questions remain, we discuss here key findings that provide insight into the complex functions of this gene at the organismal, cellular and molecular level.
Collapse
Affiliation(s)
- Alice Nemajerova
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Ute M Moll
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8691, USA
| |
Collapse
|
7
|
Lukaszewicz AI, Nguyen C, Melendez E, Lin DP, Teo JL, Lai KKY, Huttner WB, Shi SH, Kahn M. The Mode of Stem Cell Division Is Dependent on the Differential Interaction of β-Catenin with the Kat3 Coactivators CBP or p300. Cancers (Basel) 2019; 11:cancers11070962. [PMID: 31324005 PMCID: PMC6678591 DOI: 10.3390/cancers11070962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Normal long-term repopulating somatic stem cells (SSCs) preferentially divide asymmetrically, with one daughter cell remaining in the niche and the other going on to be a transient amplifying cell required for generating new tissue in homeostatic maintenance and repair processes, whereas cancer stem cells (CSCs) favor symmetric divisions. We have previously proposed that differential β-catenin modulation of transcriptional activity via selective interaction with either the Kat3 coactivator CBP or its closely related paralog p300, regulates symmetric versus asymmetric division in SSCs and CSCs. We have previously demonstrated that SSCs that divide asymmetrically per force retain one of the dividing daughter cells in the stem cell niche, even when treated with specific CBP/β-catenin antagonists, whereas CSCs can be removed from their niche via forced stochastic symmetric differentiative divisions. We now demonstrate that loss of p73 in early corticogenesis biases β-catenin Kat3 coactivator usage and enhances β-catenin/CBP transcription at the expense of β-catenin/p300 transcription. Biased β-catenin coactivator usage has dramatic consequences on the mode of division of neural stem cells (NSCs), but not neurogenic progenitors. The observed increase in symmetric divisions due to enhanced β-catenin/CBP interaction and transcription leads to an immediate increase in NSC symmetric differentiative divisions. Moreover, we demonstrate for the first time that the complex phenotype caused by the loss of p73 can be rescued in utero by treatment with the small-molecule-specific CBP/β-catenin antagonist ICG-001. Taken together, our results demonstrate the causal relationship between the choice of β-catenin Kat3 coactivator and the mode of stem cell division.
Collapse
Affiliation(s)
- Agnes I Lukaszewicz
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cu Nguyen
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Melendez
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - David P Lin
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jia-Ling Teo
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keane K Y Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Kahn
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA.
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA 90033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
8
|
Miller MW. p53-Mediated Activities in NS-5 Neural Stem Cells: Effects of Ethanol. Alcohol Clin Exp Res 2019; 43:655-667. [PMID: 30748015 DOI: 10.1111/acer.13976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transforming growth factor (TGF) β1 and ethanol (EtOH) powerfully inhibit the proliferation, DNA repair, and survival of neural stem cells (NSCs). The present study tests the hypothesis that the EtOH-induced DNA damage response is mediated through p53 pathways and influenced by growth factor signals. METHODS Cultures of nonimmortalized NSCs, NS-5 cells, were transfected with p53 siRNA, exposed to either the mitogenic fibroblast growth factor (FGF) 2 or antimitogenic TGFβ1, and to EtOH. Stage-specific cellular and genomic responses were examined. RESULTS p53 status, EtOH exposure, and growth factor significantly affected the expression of transcripts related to the DNA damage response (including those coding for excision repair proteins), mitotic promoters, and regulators of cell death via the tumor necrosis factor pathway. There were significant compensatory increases in p53 family members, p63 and p73, notably in regard to the regulation of cell cycle restriction and apoptosis. Treatment with p53 siRNA potentiated EtOH- and TGFβ1-induced changes in the numbers of proliferating NSCs and increased the proportion of NSCs expressing the apoptotic marker annexin V. CONCLUSIONS Thus, it appears that EtOH and TGFβ1 affect proliferation, DNA repair, and survival of NSCs via p53-mediated activities.
Collapse
Affiliation(s)
- Michael W Miller
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse, New York.,Touro College of Osteopathic Medicine, Middletown, New York.,Research Service, Veterans Affairs Medical Center, Syracuse, New York
| |
Collapse
|
9
|
Marques MM, Villoch-Fernandez J, Maeso-Alonso L, Fuertes-Alvarez S, Marin MC. The Trp73 Mutant Mice: A Ciliopathy Model That Uncouples Ciliogenesis From Planar Cell Polarity. Front Genet 2019; 10:154. [PMID: 30930930 PMCID: PMC6428764 DOI: 10.3389/fgene.2019.00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
p73 transcription factor belongs to one of the most important gene families in vertebrate biology, the p53-family. Trp73 gene, like the other family members, generates multiple isoforms named TA and DNp73, with different and, sometimes, antagonist functions. Although p73 shares many biological functions with p53, it also plays distinct roles during development. Trp73 null mice (p73KO from now on) show multiple phenotypes as gastrointestinal and cranial hemorrhages, rhinitis and severe central nervous system defects. Several groups, including ours, have revisited the apparently unrelated phenotypes observed in total p73KO and revealed a novel p73 function in the organization of ciliated epithelia in brain and trachea, but also an essential role as regulator of ependymal planar cell polarity. Unlike p73KO or TAp73KO mice, tumor-prone Trp53−/− mice (p53KO) do not present ependymal ciliary or planar cell polarity defects, indicating that regulation of ciliogenesis and PCP is a p73-specific function. Thus, loss of ciliary biogenesis and epithelial organization might be a common underlying cause of the diverse p73KO-phenotypes, highlighting Trp73 role as an architect of the epithelial tissue. In this review we would like to discuss the data regarding p73 role as regulator of ependymal cell ciliogenesis and PCP, supporting the view of the Trp73-mutant mice as a model that uncouples ciliogenesis from PCP and a possible model of human congenital hydrocephalus.
Collapse
Affiliation(s)
- Margarita M Marques
- Departamento de Producción Animal, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Desarrollo Ganadero y Sanidad Animal, Universidad de León, León, Spain
| | - Javier Villoch-Fernandez
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Biomedicina, Universidad de León, León, Spain
| | - Laura Maeso-Alonso
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Biomedicina, Universidad de León, León, Spain
| | - Sandra Fuertes-Alvarez
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Biomedicina, Universidad de León, León, Spain
| | - Maria C Marin
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Biomedicina, Universidad de León, León, Spain
| |
Collapse
|
10
|
Meyer G, González-Arnay E, Moll U, Nemajerova A, Tissir F, González-Gómez M. Cajal-Retzius neurons are required for the development of the human hippocampal fissure. J Anat 2019; 235:569-589. [PMID: 30861578 DOI: 10.1111/joa.12947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 01/14/2023] Open
Abstract
Cajal-Retzius neurons (CRN) are the main source of Reelin in the marginal zone of the developing neocortex and hippocampus (HC). They also express the transcription factor p73 and are complemented by later-appearing GABAergic Reelin+ interneurons. The human dorsal HC forms at gestational week 10 (GW10), when it develops a rudimentary Ammonic plate and incipient dentate migration, although the dorsal hippocampal fissure (HF) remains shallow and contains few CRN. The dorsal HC transforms into the indusium griseum (IG), concurrently with the rostro-caudal appearance of the corpus callosum, by GW14-17. Dorsal and ventral HC merge at the site of the former caudal hem, which is located at the level of the future atrium of the lateral ventricle and closely connected with the choroid plexus. The ventral HC forms at GW11 in the temporal lobe. The ventral HF is wide open at GW14-16 and densely populated by large numbers of CRNs. These are in intimate contact with the meninges and meningeal blood vessels, suggesting signalling through diverse pathways. At GW17, the fissure deepens and begins to fuse, although it is still marked by p73/Reelin+ CRNs. The p73KO mouse illustrates the importance of p73 in CRN for HF formation. In the mutant, Tbr1/Reelin+ CRNs are born in the hem but do not leave it and subsequently disappear, so that the mutant cortex and HC lack CRN from the onset of corticogenesis. The HF is absent, which leads to profound architectonic alterations of the HC. To determine which p73 isoform is important for HF formation, isoform-specific TAp73- and DeltaNp73-deficient embryonic and early postnatal mice were examined. In both mutants, the number of CRNs was reduced, but each of their phenotypes was much milder than in the global p73KO mutant missing both isoforms. In the TAp73KO mice, the HF of the dorsal HC failed to form, but was present in the ventral HC. In the DeltaNp73KO mice, the HC had a mild patterning defect along with a shorter HF. Complex interactions between both isoforms in CRNs may contribute to their crucial activity in the developing brain.
Collapse
Affiliation(s)
- Gundela Meyer
- Department of Basic Medical Sciences, University La Laguna, La Laguna, Spain
| | | | - Ute Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of NeuroScience, UCL Louvain, Brussels, Belgium
| | | |
Collapse
|
11
|
Abul M, Al-Bader MD, Mouihate A. Exposure to synthetic glucocorticoids during pregnancy alters the expression of p73 gene variants in fetal brains in a sex-specific manner. Brain Res 2018; 1707:117-123. [PMID: 30476470 DOI: 10.1016/j.brainres.2018.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022]
Abstract
Fetal exposure to dexamethasone (DEX) alters brain plasticity and cognitive functions during adulthood in a sex-dependent manner. The mechanisms underlying such long-lasting sex-dependent change of prenatal DEX is not well understood. The p73 gene plays an important role in brain development. It encodes for two protein variants; the neural cell death protein (TAp73) and the anti-neural cell death protein (ΔNp73). Therefore, we sought to determine how prenatal exposure to DEX alters the expression of these p73 gene variants in the brain of male and female fetuses. Pregnant dams received daily injections of either DEX (0.4 mg/kg, i.p.) or saline from gestation day (GD) 14 until GD21. On GD21, body and brain weights were monitored and mRNA and protein levels of TAp73 and ΔNp73 were measured in male and female fetal brains using RT-PCR, Western blot, and immunohistochemistry. Prenatal exposure to DEX significantly reduced the body and brain weights of both male and female fetuses, although reduction in brain weight was less severe than that of the body weight. Administration of DEX to pregnant dams led to enhanced expression of both TAp73 and ΔNp73 gene/protein variants in the brain of male but not in that of female fetuses. Dexamethasone induced a sex-dependent effect on the expression of p73 gene variants. DEX-induced growth restriction in the brain of female fetuses is independent of p73 gene. This study strongly suggests that survival/death programs operate differently during the development of male and female brains.
Collapse
Affiliation(s)
- Mai Abul
- Department of Physiology, Health Sciences Centre, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Maie D Al-Bader
- Department of Physiology, Health Sciences Centre, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Health Sciences Centre, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| |
Collapse
|
12
|
Meyer G, González-Gómez M. The heterogeneity of human Cajal-Retzius neurons. Semin Cell Dev Biol 2018; 76:101-111. [DOI: 10.1016/j.semcdb.2017.08.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/29/2022]
|
13
|
Ruiz-Reig N, Andrés B, Huilgol D, Grove EA, Tissir F, Tole S, Theil T, Herrera E, Fairén A. Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. Cereb Cortex 2018; 27:2841-2856. [PMID: 27178193 DOI: 10.1093/cercor/bhw126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Current address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Eloisa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Alfonso Fairén
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| |
Collapse
|
14
|
Fujitani M, Sato R, Yamashita T. Loss of p73 in ependymal cells during the perinatal period leads to aqueductal stenosis. Sci Rep 2017; 7:12007. [PMID: 28931858 PMCID: PMC5607290 DOI: 10.1038/s41598-017-12105-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/05/2017] [Indexed: 11/17/2022] Open
Abstract
The p53 family member p73 plays a critical role in brain development. p73 knockout mice exhibit a number of deficits in the nervous system, such as neuronal death, hydrocephalus, hippocampal dysgenesis, and pheromonal defects. Among these phenotypes, the mechanisms of hydrocephalus remain unknown. In this study, we generated a p73 knock-in (KI) mutant mouse and a conditional p73 knockout mouse. The homozygous KI mutants showed aqueductal stenosis. p73 was expressed in the ependymal cell layer and several brain areas. Unexpectedly, when p73 was disrupted during the postnatal period, animals showed aqueductal stenosis at a later stage but not hydrocephalus. An assessment of the integrity of cilia and basal body (BB) patch formation suggests that p73 is required to establish translational polarity but not to establish rotational polarity or the planar polarization of BB patches. Deletion of p73 in adult ependymal cells did not affect the maintenance of translational polarity. These results suggest that the loss of p73 during the embryonic period is critical for hydrocephalus development.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0872, Japan. .,Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Ryohei Sato
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,World Premier International, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Van Nostrand JL, Bowen ME, Vogel H, Barna M, Attardi LD. The p53 family members have distinct roles during mammalian embryonic development. Cell Death Differ 2017; 24:575-579. [PMID: 28211873 DOI: 10.1038/cdd.2016.128] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
The p53 tumor suppressor is a member of a multi-protein family, including the p63 and p73 transcription factors. These proteins can bind to the same consensus sites in DNA and activate the same target genes, suggesting that there could be functional redundancy between them. Indeed, double mutant mice heterozygous for any two family member-encoding genes display enhanced cancer phenotypes relative to single heterozygous mutants. However, whether the family members play redundant roles during embryonic development has remained largely unexplored. Although p53-/-; p73-/- mice are born and manifest phenotypes characteristic of each of the single mutants, the consequences of combined deficiency of p63 and either p53 or p73 have not been elucidated. To examine the functional overlap of p53 family members during development, we bred and analyzed compound mutant embryo phenotypes. We discovered that double knockout embryos and five allele knockout embryos only displayed obvious defects accounted for by loss of single p53 family members. Surprisingly, at mid-gestation (E11), we identified a single viable triple knockout embryo that appeared grossly normal. Together, these results suggest that the p53 family is not absolutely required for early embryogenesis and that p53 family members are largely non-redundant during early development.
Collapse
Affiliation(s)
- Jeanine L Van Nostrand
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Gonzalez-Cano L, Fuertes-Alvarez S, Robledinos-Anton N, Bizy A, Villena-Cortes A, Fariñas I, Marques MM, Marin MC. p73 is required for ependymal cell maturation and neurogenic SVZ cytoarchitecture. Dev Neurobiol 2015; 76:730-47. [PMID: 26482843 PMCID: PMC6175433 DOI: 10.1002/dneu.22356] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
The adult subventricular zone (SVZ) is a highly organized microenvironment established during the first postnatal days when radial glia cells begin to transform into type B-cells and ependymal cells, all of which will form regenerative units, pinwheels, along the lateral wall of the lateral ventricle. Here, we identify p73, a p53 homologue, as a critical factor controlling both cell-type specification and structural organization of the developing mouse SVZ. We describe that p73 deficiency halts the transition of the radial glia into ependymal cells, leading to the emergence of immature cells with abnormal identities in the ventricle and resulting in loss of the ventricular integrity. p73-deficient ependymal cells have noticeably impaired ciliogenesis and they fail to organize into pinwheels, disrupting SVZ niche structure and function. Therefore, p73 is essential for appropriate ependymal cell maturation and the establishment of the neurogenic niche architecture. Accordingly, lack of p73 results in impaired neurogenesis. Moreover, p73 is required for translational planar cell polarity establishment, since p73 deficiency results in profound defects in cilia organization in individual cells and in intercellular patch orientation. Thus, our data reveal a completely new function of p73, independent of p53, in the neurogenic architecture of the SVZ of rodent brain and in the establishment of ependymal planar cell polarity with important implications in neurogenesis. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 730-747, 2016.
Collapse
Affiliation(s)
- L Gonzalez-Cano
- Instituto De Biomedicina (IBIOMED) and Departamento de Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| | - S Fuertes-Alvarez
- Instituto De Biomedicina (IBIOMED) and Departamento de Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| | - N Robledinos-Anton
- Instituto De Biomedicina (IBIOMED) and Departamento de Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| | - A Bizy
- Departamento De Biologia Celular and CIBERNED, Universidad De Valencia, Burjassot, 46100, Spain
| | - A Villena-Cortes
- Departamento De Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| | - I Fariñas
- Departamento De Biologia Celular and CIBERNED, Universidad De Valencia, Burjassot, 46100, Spain
| | - M M Marques
- Instituto De Desarrollo Ganadero and Departamento De Produccion Animal, University of Leon, Campus De Vegazana, 24071 Leon, Spain
| | - Maria C Marin
- Instituto De Biomedicina (IBIOMED) and Departamento de Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain.,Departamento De Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| |
Collapse
|
17
|
Medina-Bolívar C, González-Arnay E, Talos F, González-Gómez M, Moll UM, Meyer G. Cortical hypoplasia and ventriculomegaly of p73-deficient mice: Developmental and adult analysis. J Comp Neurol 2014; 522:2663-79. [PMID: 24500610 DOI: 10.1002/cne.23556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/31/2014] [Indexed: 12/24/2022]
Abstract
Trp73, a member of the p53 gene family, plays a crucial role in neural development. We describe two main phenotypic variants of p73 deficiency in the brain, a severe one characterized by massive apoptosis in the cortex leading to early postnatal death and a milder, non-/low-apoptosis one in which 50% of pups may reach adulthood using an intensive-care breeding protocol. Both variants display the core triad of p73 deficiency: cortical hypoplasia, hippocampal malformations, and ventriculomegaly. We studied the development of the neocortex in p73 KO mice from early embryonic life into advanced age (25 months). Already at E14.5, the incipient cortical plate of the p73 KO brains showed a reduced width. Examination of adult neocortex revealed a generalized, nonprogressive reduction by 10-20%. Area-specific architectonic landmarks and lamination were preserved in all cortical areas. The surviving adult animals had moderate ventricular distension, whereas pups of the early lethal phenotypic variant showed severe ventriculomegaly. Ependymal cells of wild-type ventricles strongly express p73 and are particularly vulnerable to p73 deficiency. Ependymal denudation by apoptosis and reduction of ependymal cilia were already evident in young mice, with complete absence of cilia in older animals. Loss of p73 function in the ependyma may thus be one determining factor for chronic hydrocephalus, which leads to atrophy of subcortical structures (striatum, septum, amygdala). p73 Is thus involved in a variety of CNS activities ranging from embryonic regulation of brain size to the control of cerebrospinal fluid homeostasis in the adult brain via maintenance of the ependyma.
Collapse
Affiliation(s)
- Carolina Medina-Bolívar
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
18
|
p63 Regulates adult neural precursor and newly born neuron survival to control hippocampal-dependent Behavior. J Neurosci 2013; 33:12569-85. [PMID: 23904595 DOI: 10.1523/jneurosci.1251-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms that regulate adult neural precursor cell (NPC) survival, and thus maintain adult neurogenesis, are not well defined. Here, we investigate the role of p63, a p53 family member, in adult NPC function in mice. Conditional ablation of p63 in adult NPCs or p63 haploinsufficiency led to reduced numbers of NPCs and newborn neurons in the neurogenic zones of the hippocampus and lateral ventricles and in the olfactory bulb. These reductions were attributable to enhanced apoptosis of NPCs and newborn neurons and were rescued by inhibition of caspase activity, p53, or the p53 apoptotic effector PUMA (p53-upregulated modulator of apoptosis). Moreover, these cellular deficits were functionally important because they led to perturbations in hippocampus-dependent memory formation. These results indicate that p63 regulates the numbers of adult NPCs and adult-born neurons as well as neural stem cell-dependent cognitive functions, and that it does so, at least in part, by inhibiting p53-dependent cell death.
Collapse
|
19
|
Kalkan Y, Unal B, Keles ON, Kara A. Numerical analysis of age and gender-dependent neuronal cells in postnatal development of rat hippocampus. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.npbr.2012.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Transcriptional Regulation and Specification of Neural Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:129-55. [DOI: 10.1007/978-94-007-6621-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Fonseca MB, Nunes AF, Morgado AL, Solá S, Rodrigues CMP. TAp63γ demethylation regulates protein stability and cellular distribution during neural stem cell differentiation. PLoS One 2012; 7:e52417. [PMID: 23251711 PMCID: PMC3522631 DOI: 10.1371/journal.pone.0052417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022] Open
Abstract
p63 is a close relative of the p53 tumor suppressor and transcription factor that modulates cell fate. The full-length isoform of p63, containing a transactivation (TA) domain (TAp63) is an essential proapoptotic protein in neural development. The role of p63 in epithelial development is also well established; however, its precise function during neural differentiation remains largely controversial. Recently, it has been demonstrated that several conserved elements of apoptosis are also integral components of cellular differentiation; p53 directly interacts with key regulators of neurogenesis. The aim of this study was to evaluate the role of p63 during mouse neural stem cell (NSC) differentiation and test whether the histone H3 lysine 27-specific demethylase JMJD3 interacts with p63 to redirect NSCs to neurogenesis. Our results showed that JMJD3 and TAp63γ are coordinately regulated to establish neural-specific gene expression programs in NSCs undergoing differentiation. JMJD3 overexpression increased TAp63γ levels in a demethylase activity-dependent manner. Importantly, overexpression of TAp63γ increased β-III tubulin whereas downregulation of TAp63γ by specific p63 siRNA decreased β-III tubulin. Immunoprecipitation assays demonstrated direct interaction between TAp63γ and JMJD3, and modulation of TAp63γ methylation status by JMJD3-demethylase activity. Importantly, the demethylase activity of JMJD3 influenced TAp63γ protein stabilization and cellular distribution, as well as TAp63γ-regulated neurogenesis. These findings clarify the role of p63 in adult neural progenitor cells and reveal TAp63γ as a direct target for JMJD3-mediated neuronal commitment.
Collapse
Affiliation(s)
- Maria B. Fonseca
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana F. Nunes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana L. Morgado
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
22
|
Mouihate A, Al-Bader MD. Glucocorticoid-induced fetal brain growth restriction is associated with p73 gene activation. J Neurosci Res 2012; 91:95-104. [PMID: 23086675 DOI: 10.1002/jnr.23130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/13/2012] [Accepted: 07/20/2012] [Indexed: 01/22/2023]
Abstract
Fetal exposure to excessive amounts of glucocorticoids (GCs) hampers proper brain development. The molecular mechanism(s) underlying these GCs effects are not well understood. We explored the impact of fetal exposure to maternal GCs on fetal brain expression of p63 and p73 transactivation (TA) and dominant negative (ΔN) gene variants that promote neural cell death (TA) and cell survival programs (ΔN). The fetoplacental enzyme 11β-hydroxysteroid dehydrogenase 2, which shields fetuses from maternal glucocorticoids, was inhibited throughout pregnancy by daily injection of carbenoxolone to pregnant dams. The expression of p63 and p73 gene variants and proteins was monitored by real-time rtPCR and Western blot in the brains of male and female fetuses. Carbenoxolone administration led to an overall enhanced level of corticosterone in the amniotic fluid of both male and female fetuses at late pregnancy. These enhanced corticosterone levels were associated with a significant reduction in fetal brain weights and a significant increase in TAp73 mRNA and p73 protein levels. However, the expression levels of TAp63 mRNA and p63 proteins were either suppressed or unaffected. The pro-neural survival gene variant ΔNp73 was significantly reduced in female and enhanced in male fetal brains, whereas ΔNp63 was significantly reduced in the brains of both genders. These data suggest that the GCs-induced negative impact on fetal brain development likely is due, at least in part, to their action of the pro-neural cell death gene variant TAp73 and to the modulation of the pro-survival ΔNp63 and ΔNp73 gene variants in a gender-dependent fashion.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | |
Collapse
|
23
|
Ostrakhovitch EA, Semenikhin OA. The role of redox environment in neurogenic development. Arch Biochem Biophys 2012; 534:44-54. [PMID: 22910298 DOI: 10.1016/j.abb.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
The dynamic changes of cellular redox elements during neurogenesis allow the control of specific programs for selective lineage progression. There are many redox couples that influence the cellular redox state. The shift from a reduced to an oxidized state and vice versa may act as a cellular switch mechanism of stem cell mode of action from proliferation to differentiation. The redox homeostasis ensures proper functioning of redox-sensitive signaling pathways through oxidation/reduction of critical cysteine residues on proteins involved in signal transduction. This review presents the current knowledge on the relation between changes in the cellular redox environment and stem cell programming in the course of commitment to a restricted neural lineage, focusing on in vivo neurogenesis and in vitro neuronal differentiation. The first two sections outline the main systems that control the intracellular redox environment and make it more oxidative or reductive. The last section provides the background on redox-sensitive signaling pathways that regulate neurogenesis.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | |
Collapse
|
24
|
Driving apoptosis-relevant proteins toward neural differentiation. Mol Neurobiol 2012; 46:316-31. [PMID: 22752662 DOI: 10.1007/s12035-012-8289-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/05/2012] [Indexed: 01/12/2023]
Abstract
Emerging evidence suggests that apoptosis regulators and executioners may control cell fate, without involving cell death per se. Indeed, several conserved elements of apoptosis are integral components of terminal differentiation, which must be restrictively activated to assure differentiation efficiency, and carefully regulated to avoid cell loss. A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation, as an alternative to cell death will surely make stem cells more suitable for neuro-replacement therapies. In this review, we summarize recent studies on the mechanisms underlying the non-apoptotic function of p53, caspases, and Bcl-2 family members during neural differentiation. In addition, we discuss how apoptosis-regulatory proteins control the decision between differentiation, self-renewal, and cell death in neural stem cells, and how activity is restrained to prevent cell loss.
Collapse
|
25
|
Holembowski L, Schulz R, Talos F, Scheel A, Wolff S, Dobbelstein M, Moll U. While p73 is essential, p63 is completely dispensable for the development of the central nervous system. Cell Cycle 2011; 10:680-9. [PMID: 21293190 DOI: 10.4161/cc.10.4.14859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ancient p53 paralogs p63 and p73 regulate specific tissue formation, cell survival and cell death via their TA and ΔN isoforms. Targeted disruption of the p73 locus leads to severe defects in the development of the central nervous system (CNS), and p73 has recently been shown to be an essential regulator of neural stem cell maintenance and differentiation in both embryonal and adult neurogenesis. In contrast, global p63-/- mice lack skin and limbs. Moreover, p63 is detectable in embryonic cortex. It has previously been proposed to also play critical pro-death and pro-survival roles in neural precursors of the developing sympathetic and central nervous system, respectively, based on experimental overexpression and siRNA-mediated knockdown of p63. Here we perform an extensive analysis of the developing central nervous system in global p63-/- mice and their wildtype littermates. Brain and spinal cord of embryos and newborn mice were assessed in vivo for neuroanatomy, histology, apoptosis, proliferation, stemness and differentiation, and in vitro for self-renewal and maturation in neurosphere assays. None of these analyses revealed a detectable phenotype in p63-/- mice. Hence, despite the profound impact of p63 on the development of stratified epithelia and limbs, p63 is completely dispensable for proper development of the central nervous system. Thus, despite their strong homology, the non-overlapping tissue specificity of p63 and p73 functions appears more pronounced than previously anticipated.
Collapse
Affiliation(s)
- Lena Holembowski
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences, Ernst Caspari Haus, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|