1
|
Markovich ZR, Hartman JH, Ryde IT, Hershberger KA, Joyce AS, Ferguson PL, Meyer JN. Mild pentachlorophenol-mediated uncoupling of mitochondria depletes ATP but does not cause an oxidized redox state or dopaminergic neurodegeneration in Caenorhabditis elegans. Curr Res Toxicol 2022; 3:100084. [PMID: 35957653 PMCID: PMC9361317 DOI: 10.1016/j.crtox.2022.100084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Aims Mitochondrial dysfunction is implicated in several diseases, including neurological disorders such as Parkinson's disease. However, there is uncertainty about which of the many mechanisms by which mitochondrial function can be disrupted may lead to neurodegeneration. Pentachlorophenol (PCP) is an organic pollutant reported to cause mitochondrial dysfunction including oxidative stress and mitochondrial uncoupling. We investigated the effects of PCP exposure in Caenorhabditis elegans, including effects on mitochondria and dopaminergic neurons. We hypothesized that mild mitochondrial uncoupling by PCP would impair bioenergetics while decreasing oxidative stress, and therefore would not cause dopaminergic neurodegeneration. Results A 48-hour developmental exposure to PCP causing mild growth delay (∼10 % decrease in growth during 48 h, covering all larval stages) reduced whole-organism ATP content > 50 %, and spare respiratory capacity ∼ 30 %. Proton leak was also markedly increased. These findings suggest a main toxic mechanism of mitochondrial uncoupling rather than oxidative stress, which was further supported by a concomitant shift toward a more reduced cellular redox state measured at the whole organism level. However, exposure to PCP did not cause dopaminergic neurodegeneration, nor did it sensitize animals to a neurotoxic challenge with 6-hydroxydopamine. Whole-organism uptake and PCP metabolism measurements revealed low overall uptake of PCP in our experimental conditions (50 μM PCP in the liquid exposure medium resulted in organismal concentrations of < 0.25 μM), and no measurable production of the oxidative metabolites tetra-1,4-benzoquinone and tetrachloro-p-hydroquinone. Innovation This study provides new insights into the mechanistic interplay between mitochondrial uncoupling, oxidative stress, and neurodegeneration in C. elegans. These findings support the premise of mild uncoupling-mediated neuroprotection, but are inconsistent with proposed broad "mitochondrial dysfunction"-mediated neurodegeneration models, and highlight the utility of the C. elegans model for studying mitochondrial and neurotoxicity. Conclusions Developmental exposure to pentachlorophenol causes gross toxicological effects (growth delay and arrest) at high levels. At a lower level of exposure, still causing mild growth delay, we observed mitochondrial dysfunction including uncoupling and decreased ATP levels. However, this was associated with a more-reduced cellular redox tone and did not exacerbate dopaminergic neurotoxicity of 6-hydroxydopamine, instead trending toward protection. These findings may be informative of efforts to define nuanced mitochondrial dysfunction-related adverse outcome pathways that will differ depending on the form of initial mitochondrial toxicity.
Collapse
Affiliation(s)
| | - Jessica H. Hartman
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
| | | | - Abigail S. Joyce
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Patrick L. Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
| |
Collapse
|
2
|
Caron A, Jane Michael N. New Horizons: Is Obesity a Disorder of Neurotransmission? J Clin Endocrinol Metab 2021; 106:e4872-e4886. [PMID: 34117881 DOI: 10.1210/clinem/dgab421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Obesity is a disease of the nervous system. While some will view this statement as provocative, others will take it as obvious. Whatever our side is, the pharmacology tells us that targeting the nervous system works for promoting weight loss. It works, but at what cost? Is the nervous system a safe target for sustainable treatment of obesity? What have we learned-and unlearned-about the central control of energy balance in the last few years? Herein we provide a thought-provoking exploration of obesity as a disorder of neurotransmission. We discuss the state of knowledge on the brain pathways regulating energy homeostasis that are commonly targeted in anti-obesity therapy and explore how medications affecting neurotransmission such as atypical antipsychotics, antidepressants, and antihistamines relate to body weight. Our goal is to provide the endocrine community with a conceptual framework that will help expending our understanding of the pathophysiology of obesity, a disease of the nervous system.
Collapse
Affiliation(s)
- Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
3
|
Anilinopyrazines as potential mitochondrial uncouplers. Bioorg Med Chem Lett 2020; 30:127057. [DOI: 10.1016/j.bmcl.2020.127057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
|
4
|
Tang M, Luo Z, Wu Y, Zhuang J, Li K, Hu D, Rong H, Xian B, Ge J. BAM15 attenuates transportation-induced apoptosis in iPS-differentiated retinal tissue. Stem Cell Res Ther 2019; 10:64. [PMID: 30795805 PMCID: PMC6387563 DOI: 10.1186/s13287-019-1151-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background BAM15 is a novel mitochondrial protonophore uncoupler capable of protecting mammals from acute renal ischemic-reperfusion injury and cold-induced microtubule damage. The purpose of our study was to investigate the effect of BAM15 on apoptosis during 5-day transportation of human-induced pluripotent stem (hiPS)-differentiated retinal tissue. Methods Retinal tissues of 30 days and 60 days were transported with or without BAM15 for 5 days in the laboratory or by real express. Immunofluorescence staining of apoptosis marker cleaved caspase3, proliferation marker Ki67, and neural axon marker NEFL was performed. And expression of apoptotic-related factors p53, NFkappaB, and TNF-a was detected by real-time PCR. Also, location of ganglion cells, photoreceptor cells, amacrine cells, and precursors of neuronal cell types in retinal tissue was stained by immunofluorescence after transportation. Furthermore, cell viability was assessed by CCK8 assay. Results Results showed transportation remarkably intensified expression of apoptotic factor cleaved caspase3, p53, NFkappaB, and TNF-a, which could be reduced by supplement of BAM15. In addition, neurons were severely injured after transportation, with axons manifesting disrupted and tortuous by staining NEFL. And the addition of BAM15 in transportation was able to protect neuronal structure and increase cell viability without affecting subtypes cells location of retinal tissue. Conclusions BAM15 might be used as a protective reagent on apoptosis during transporting retinal tissues, holding great potential in research and clinical applications. Electronic supplementary material The online version of this article (10.1186/s13287-019-1151-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingjun Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Ziming Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yihui Wu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Dongpeng Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Huifeng Rong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
5
|
García-Casas P, Arias-Del-Val J, Alvarez-Illera P, Wojnicz A, de Los Ríos C, Fonteriz RI, Montero M, Alvarez J. The Neuroprotector Benzothiazepine CGP37157 Extends Lifespan in C. elegans Worms. Front Aging Neurosci 2019; 10:440. [PMID: 30705628 PMCID: PMC6344432 DOI: 10.3389/fnagi.2018.00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/31/2018] [Indexed: 11/14/2022] Open
Abstract
The benzothiazepine CGP37157 has shown neuroprotective effects in several in vitro models of excitotoxicity involving dysregulation of intracellular Ca2+ homeostasis. Although its mechanism of neuroprotection is unclear, it is probably related with some of its effects on Ca2+ homeostasis. CGP37157 is a well-known inhibitor of the mitochondrial Na+/Ca2+ exchanger (mNCX). However, it is not very specific and also blocks several other Ca2+ channels and transporters, including voltage-gated Ca2+ channels, plasma membrane Na+/Ca2+ exchanger and the Ca2+ homeostasis modulator 1 channel (CALHM1). In the present work, we have studied if CGP37157 could also induce changes in life expectancy. We now report that CGP37157 extends C. elegans lifespan by 10%–15% with a bell-shaped concentration-response, with high concentrations producing no effect. The effect was even larger (25% increase in life expectancy) in worms fed with heat-inactivated bacteria. The worm CGP37157 concentration producing maximum effect was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and was close to the IC50 for inhibition of the Na+/Ca2+ exchanger. CGP37157 also extended the lifespan in eat-2 mutants (a model for caloric restriction), suggesting that caloric restriction is not involved in the mechanism of lifespan extension. Actually, CGP37157 produced no effect in mutants of the TOR pathway (daf15/unc24) or the insulin/insulin-like growth factor-1 (IGF-1) pathway (daf-2), indicating that the effect involves these pathways. Moreover, CGP37157 was also ineffective in nuo-6 mutants, which have a defect in the mitochondrial respiratory chain complex I. Since it has been described that neuroprotection by this compound in cell cultures is abolished by mitochondrial inhibitors, this suggests that life extension in C. elegans and neuroprotection in cell cultures may share a similar mechanism involving mitochondria.
Collapse
Affiliation(s)
- Paloma García-Casas
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and CSIC, Valladolid, Spain
| | - Jessica Arias-Del-Val
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and CSIC, Valladolid, Spain
| | - Pilar Alvarez-Illera
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and CSIC, Valladolid, Spain
| | - Aneta Wojnicz
- Department of Clinical Pharmacology, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria la Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Cristobal de Los Ríos
- Department of Clinical Pharmacology, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria la Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Rosalba I Fonteriz
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and CSIC, Valladolid, Spain
| | - Mayte Montero
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and CSIC, Valladolid, Spain
| | - Javier Alvarez
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and CSIC, Valladolid, Spain
| |
Collapse
|
6
|
Urra FA, Muñoz F, Córdova-Delgado M, Ramírez MP, Peña-Ahumada B, Rios M, Cruz P, Ahumada-Castro U, Bustos G, Silva-Pavez E, Pulgar R, Morales D, Varela D, Millas-Vargas JP, Retamal E, Ramírez-Rodríguez O, Pessoa-Mahana H, Pavani M, Ferreira J, Cárdenas C, Araya-Maturana R. FR58P1a; a new uncoupler of OXPHOS that inhibits migration in triple-negative breast cancer cells via Sirt1/AMPK/β1-integrin pathway. Sci Rep 2018; 8:13190. [PMID: 30181620 PMCID: PMC6123471 DOI: 10.1038/s41598-018-31367-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Highly malignant triple-negative breast cancer (TNBC) cells rely mostly on glycolysis to maintain cellular homeostasis; however, mitochondria are still required for migration and metastasis. Taking advantage of the metabolic flexibility of TNBC MDA-MB-231 cells to generate subpopulations with glycolytic or oxidative phenotypes, we screened phenolic compounds containing an ortho-carbonyl group with mitochondrial activity and identified a bromoalkyl-ester of hydroquinone named FR58P1a, as a mitochondrial metabolism-affecting compound that uncouples OXPHOS through a protonophoric mechanism. In contrast to well-known protonophore uncoupler FCCP, FR58P1a does not depolarize the plasma membrane and its effect on the mitochondrial membrane potential and bioenergetics is moderate suggesting a mild uncoupling of OXPHOS. FR58P1a activates AMPK in a Sirt1-dependent fashion. Although the activation of Sirt1/AMPK axis by FR58P1a has a cyto-protective role, selectively inhibits fibronectin-dependent adhesion and migration in TNBC cells but not in non-tumoral MCF10A cells by decreasing β1-integrin at the cell surface. Prolonged exposure to FR58P1a triggers a metabolic reprograming in TNBC cells characterized by down-regulation of OXPHOS-related genes that promote cell survival but comprise their ability to migrate. Taken together, our results show that TNBC cell migration is susceptible to mitochondrial alterations induced by small molecules as FR58P1a, which may have therapeutic implications.
Collapse
Affiliation(s)
- Félix A Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Felipe Muñoz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Miguel Córdova-Delgado
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - María Paz Ramírez
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Bárbara Peña-Ahumada
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Melany Rios
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Pablo Cruz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Danna Morales
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Juan Pablo Millas-Vargas
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Evelyn Retamal
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Oney Ramírez-Rodríguez
- Campus Río Simpson, University of Aysén, Obispo Vielmo 62, Coyhaique, 5952122, Aysén, Chile
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile
| | - Mario Pavani
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile
| | - Jorge Ferreira
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago, Chile
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106, United States.
- The Buck Institute for Research on Aging, Novato, CA, 94945, United States.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales and Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, casilla 747, Talca, Chile.
| |
Collapse
|
7
|
Arduino DM, Perocchi F. Pharmacological modulation of mitochondrial calcium homeostasis. J Physiol 2018; 596:2717-2733. [PMID: 29319185 DOI: 10.1113/jp274959] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are pivotal organelles in calcium (Ca2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Daniela M Arduino
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, 81377, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, 85764, Germany
| | - Fabiana Perocchi
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, 81377, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, 85764, Germany
| |
Collapse
|
8
|
Cho I, Song HO, Cho JH. Mitochondrial Uncoupling Attenuates Age-Dependent Neurodegeneration in C. elegans. Mol Cells 2017; 40:864-870. [PMID: 29081084 PMCID: PMC5712516 DOI: 10.14348/molcells.2017.0172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
The uncoupling protein 4 (ucp-4) gene is involved in age-dependent neurodegeneration in C. elegans. Therefore, we aimed to investigate the mechanism underlying the association between mitochondrial uncoupling and neurodegeneration by examining the effects of uncoupling agents and ucp-4 overexpression in C. elegans. Treatment with either DNP or CCCP improved neuronal defects in wild type during aging. Uncoupling agents also restored neuronal phenotypes of ucp-4 mutants to those exhibited by wild type, while ucp-4 overexpression attenuated the severity of age-dependent neurodegeneration. Neuronal improvements were further associated with reductions in mitochondrial membrane potentials. However, these age-dependent neuroprotective effects were limited in mitophagy-deficient mutant, pink-1, background. These results suggest that membrane uncoupling can attenuate age-dependent neurodegeneration by stimulating mitophagy.
Collapse
Affiliation(s)
- Injeong Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| | - Hyun-Ok Song
- Department of Infection Biology, Wonkwang University School of Medicine, Iksan 54538,
Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| |
Collapse
|
9
|
Childress ES, Alexopoulos SJ, Hoehn KL, Santos WL. Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. J Med Chem 2017; 61:4641-4655. [DOI: 10.1021/acs.jmedchem.7b01182] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth S. Childress
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephanie J. Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Kyle L. Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
- Departments of Pharmacology and Medicine, Cardiovascular Research Center, and Emily Couric Clinical Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Michael NJ, Simonds SE, van den Top M, Cowley MA, Spanswick D. Mitochondrial uncoupling in the melanocortin system differentially regulates NPY and POMC neurons to promote weight-loss. Mol Metab 2017; 6:1103-1112. [PMID: 29031712 PMCID: PMC5641603 DOI: 10.1016/j.molmet.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Objective The mitochondrial uncoupling agent 2,4-dinitrophenol (DNP), historically used as a treatment for obesity, is known to cross the blood-brain-barrier, but its effects on central neural circuits controlling body weight are largely unknown. As hypothalamic melanocortin neuropeptide Y/agouti-related protein (NPY/AgRP) and pro-opiomelanocortin (POMC) neurons represent key central regulators of food intake and energy expenditure we investigated the effects of DNP on these neurons, food intake and energy expenditure. Method C57BL/6 and melanocortin-4 receptor (MC4R) knock-out mice were administered DNP intracerebroventricularly (ICV) and the metabolic changes were characterized. The specific role of NPY and POMC neurons and the ionic mechanisms mediating the effects of uncoupling were examined with in vitro electrophysiology performed on NPY hrGFP or POMC eGFP mice. Results Here we show DNP-induced differential effects on melanocortin neurons including inhibiting orexigenic NPY and activating anorexigenic POMC neurons through independent ionic mechanisms coupled to mitochondrial function, consistent with an anorexigenic central effect. Central administration of DNP induced weight-loss, increased BAT thermogenesis and browning of white adipose tissue, and decreased food intake, effects that were absent in MC4R knock-out mice and blocked by the MC4R antagonist, AgRP. Conclusion These data show a novel central anti-obesity mechanism of action of DNP and highlight the potential for selective melanocortin mitochondrial uncoupling to target metabolic disorders. Mitochondrial uncoupling of the melanocortin system with DNP induced weight-loss. DNP inhibited NPY neurones via activation of ATP-sensitive potassium channels. DNP activated POMC neurones via block of inwardly rectifying potassium channels. Central DNP reduced food intake and increased WAT browning and BAT thermogenesis.
Collapse
Affiliation(s)
- Natalie Jane Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Australia(5).
| | - Stephanie Elise Simonds
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Australia(5).
| | | | - Michael Alexander Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Australia(5).
| | - David Spanswick
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Australia(5); Neurosolutions, Coventry, P.O. 3517, UK; Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
11
|
Wu B, Jiang M, Peng Q, Li G, Hou Z, Milne GL, Mori S, Alonso R, Geisler JG, Duan W. 2,4 DNP improves motor function, preserves medium spiny neuronal identity, and reduces oxidative stress in a mouse model of Huntington's disease. Exp Neurol 2017; 293:83-90. [PMID: 28359739 PMCID: PMC9912814 DOI: 10.1016/j.expneurol.2017.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the gene huntingtin. There is no treatment to prevent or delay the disease course of HD currently. Oxidative stress and mitochondrial dysfunction have emerged as key determinants of the disease progression in HD. Therefore, counteracting mutant huntingtin (mHtt)-induced oxidative stress and mitochondrial dysfunction appears as a new approach to treat this devastating disease. Interestingly, mild mitochondrial uncoupling improves neuronal resistance to stress and facilitates neuronal survival. Mild mitochondrial uncoupling can be induced by the proper dose of 2,4-dinitrophenol (DNP), a proton ionophore that was previously used for weight loss. In this study, we evaluated the effects of chronic administration of DNP at three doses (0.5, 1, 5mg/kg/day) on mHtt-induced behavioral deficits and cellular abnormalities in the N171-82Q HD mouse model. DNP at a low dose (1mg/kg/day) significantly improved motor function and preserved medium spiny neuronal marker DARPP32 and postsynaptic protein PSD95 in the striatum of HD mice. Further mechanistic study suggests that DNP at this dose reduced oxidative stress in HD mice, which was indicated by reduced levels of F2-isoprostanes in the brain of HD mice treated with DNP. Our data indicated that DNP provided behavioral benefit and neuroprotective effect at a weight neutral dose in HD mice, suggesting that the potential value of repositioning DNP to HD treatment is warranted in well-controlled clinical trials in HD.
Collapse
Affiliation(s)
- Bin Wu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of General Practice, The First hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gang Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Pharmacology, Inner Mongolian Medical University School of Pharmacy, Hohhot, Inner Mongolian, China
| | - Zhipeng Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ginger L. Milne
- Eicosanoid Core Laboratory, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert Alonso
- Mitochon Pharmaceuticals Inc., Radnor, PA, United States
| | | | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
12
|
Geisler JG, Marosi K, Halpern J, Mattson MP. DNP, mitochondrial uncoupling, and neuroprotection: A little dab'll do ya. Alzheimers Dement 2017; 13:582-591. [PMID: 27599210 PMCID: PMC5337177 DOI: 10.1016/j.jalz.2016.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/27/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Recent findings have elucidated roles for mitochondrial uncoupling proteins (UCPs) in neuronal plasticity and resistance to metabolic and oxidative stress. UCPs are induced by bioenergetic challenges such as caloric restriction and exercise and may protect neurons against dysfunction and degeneration. The pharmacological uncoupler 2,4-dinitrophenol (DNP), which was once prescribed to >100,000 people as a treatment for obesity, stimulates several adaptive cellular stress-response signaling pathways in neurons including those involving the brain-derived neurotrophic factor (BDNF), the transcription factor cyclic AMP response element-binding protein (CREB), and autophagy. Preclinical data show that low doses of DNP can protect neurons and improve functional outcome in animal models of Alzheimer's and Parkinson's diseases, epilepsy, and cerebral ischemic stroke. Repurposing of DNP and the development of novel uncoupling agents with hormetic mechanisms of action provide opportunities for new breakthrough therapeutic interventions in a range of acute and chronic insidious neurodegenerative/neuromuscular conditions, all paradoxically at body weight-preserving doses.
Collapse
Affiliation(s)
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Joshua Halpern
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Lee Y, Heo G, Lee KM, Kim AH, Chung KW, Im E, Chung HY, Lee J. Neuroprotective effects of 2,4-dinitrophenol in an acute model of Parkinson's disease. Brain Res 2017; 1663:184-193. [PMID: 28322751 DOI: 10.1016/j.brainres.2017.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/24/2017] [Accepted: 03/16/2017] [Indexed: 01/09/2023]
Abstract
Neurons depend on mitochondria for homeostasis and survival, and thus, mitochondrial dysfunction has been implicated in neurodegenerative diseases, including Parkinson's disease (PD). Increasing evidence indicates the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), protects neurons against neurodegeneration and enhances neural plasticity. Here, the authors evaluated the protective effects of intraperitoneally (i.p.) administered low dose DNP in an acute mouse model of PD. Mice were administered DNP (1 or 5mg/kg) for 12 consecutive days, and then on day 13, MPTP (20mg/kg, i.p.) was administered four times (with 2h intervals between injections) to induce PD. It was found that MPTP-induced motor dysfunction was ameliorated in the DNP-treated mice versus vehicle-treated controls. Additionally, DNP effectively attenuated dopaminergic neuronal loss observed in MPTP treated mice. Moreover, in primary cultured neurons, DNP at 10μM, but not at 100μM, prevented MPP+-induced cell death and mitochondrial membrane potential (MMP) reduction. In addition, DNP was observed to cause the nuclear translocation of Nrf2 in primary neurons. Taken together, these findings of the present study suggest that DNP protects dopaminergic neurons against neurodegeneration and maintains MMP integrity in PD by activating adaptive stress responses.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Gwangbeom Heo
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyung Moon Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Ah Hyun Kim
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
14
|
Zhang XC, Wei ZW, Gong XY, Si XY, Zhao YY, Yang CD, Zhang SC, Zhang XR. Integrated Droplet-Based Microextraction with ESI-MS for Removal of Matrix Interference in Single-Cell Analysis. Sci Rep 2016; 6:24730. [PMID: 27126222 PMCID: PMC4850364 DOI: 10.1038/srep24730] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/04/2016] [Indexed: 11/24/2022] Open
Abstract
Integrating droplet-based microfluidics with mass spectrometry is essential to high-throughput and multiple analysis of single cells. Nevertheless, matrix effects such as the interference of culture medium and intracellular components influence the sensitivity and the accuracy of results in single-cell analysis. To resolve this problem, we developed a method that integrated droplet-based microextraction with single-cell mass spectrometry. Specific extraction solvent was used to selectively obtain intracellular components of interest and remove interference of other components. Using this method, UDP-Glc-NAc, GSH, GSSG, AMP, ADP and ATP were successfully detected in single MCF-7 cells. We also applied the method to study the change of unicellular metabolites in the biological process of dysfunctional oxidative phosphorylation. The method could not only realize matrix-free, selective and sensitive detection of metabolites in single cells, but also have the capability for reliable and high-throughput single-cell analysis.
Collapse
Affiliation(s)
- Xiao-Chao Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen-Wei Wei
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao-Yun Gong
- National Institute of Metrology, Beijing 100013, China
| | - Xing-Yu Si
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yao-Yao Zhao
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng-Dui Yang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Si-Chun Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin-Rong Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Structure-activity relationships of furazano[3,4-b]pyrazines as mitochondrial uncouplers. Bioorg Med Chem Lett 2015; 25:4858-4861. [PMID: 26119501 DOI: 10.1016/j.bmcl.2015.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/21/2022]
Abstract
Chemical mitochondrial uncouplers are lipophilic weak acids that transport protons into the mitochondrial matrix via a pathway that is independent of ATP synthase, thereby uncoupling nutrient oxidation from ATP production. These uncouplers have potential for the treatment of diseases such as obesity, Parkinson's disease, and aging. We have previously identified a novel mitochondrial protonophore, named BAM15, which stimulates mitochondrial respiration across a broad dosing range compared to carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Herein, we report our investigations on the structure-activity relationship profile of BAM15. Our studies demonstrate the importance of the furazan, pyrazine, and aniline rings as well as pKa in maintaining its effective protonophore activity.
Collapse
|
16
|
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94:909-50. [PMID: 24987008 DOI: 10.1152/physrev.00026.2013] [Citation(s) in RCA: 3647] [Impact Index Per Article: 331.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Magdalena Juhaszova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Steven J Sollott
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
17
|
Khailova LS, Silachev DN, Rokitskaya TI, Avetisyan AV, Lyamsaev KG, Severina II, Il'yasova TM, Gulyaev MV, Dedukhova VI, Trendeleva TA, Plotnikov EY, Zvyagilskaya RA, Chernyak BV, Zorov DB, Antonenko YN, Skulachev VP. A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1739-47. [PMID: 25038514 DOI: 10.1016/j.bbabio.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/20/2014] [Accepted: 07/09/2014] [Indexed: 02/02/2023]
Abstract
Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H(+) conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.
Collapse
Affiliation(s)
- Ljudmila S Khailova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Denis N Silachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana I Rokitskaya
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Armine V Avetisyan
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Konstantin G Lyamsaev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Inna I Severina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana M Il'yasova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Mikhail V Gulyaev
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Lomonosovsky Prospect 31/5, Moscow 117192, Russia
| | - Vera I Dedukhova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana A Trendeleva
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33/2, 119071 Moscow, Russia
| | - Egor Y Plotnikov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Renata A Zvyagilskaya
- Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia; A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33/2, 119071 Moscow, Russia
| | - Boris V Chernyak
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Dmitry B Zorov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Yuri N Antonenko
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia.
| | - Vladimir P Skulachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Vorobyevy Gory 1, Moscow 119991, Russia.
| |
Collapse
|
18
|
Kenwood BM, Weaver JL, Bajwa A, Poon IK, Byrne FL, Murrow BA, Calderone JA, Huang L, Divakaruni AS, Tomsig JL, Okabe K, Lo RH, Cameron Coleman G, Columbus L, Yan Z, Saucerman JJ, Smith JS, Holmes JW, Lynch KR, Ravichandran KS, Uchiyama S, Santos WL, Rogers GW, Okusa MD, Bayliss DA, Hoehn KL. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab 2013; 3:114-23. [PMID: 24634817 DOI: 10.1016/j.molmet.2013.11.005] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/15/2013] [Accepted: 11/15/2013] [Indexed: 11/29/2022] Open
Abstract
Dysregulation of oxidative phosphorylation is associated with increased mitochondrial reactive oxygen species production and some of the most prevalent human diseases including obesity, cancer, diabetes, neurodegeneration, and heart disease. Chemical 'mitochondrial uncouplers' are lipophilic weak acids that transport protons into the mitochondrial matrix via a pathway that is independent of ATP synthase, thereby uncoupling nutrient oxidation from ATP production. Mitochondrial uncouplers also lessen the proton motive force across the mitochondrial inner membrane and thereby increase the rate of mitochondrial respiration while decreasing production of reactive oxygen species. Thus, mitochondrial uncouplers are valuable chemical tools that enable the measurement of maximal mitochondrial respiration and they have been used therapeutically to decrease mitochondrial reactive oxygen species production. However, the most widely used protonophore uncouplers such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and 2,4-dinitrophenol have off-target activity at other membranes that lead to a range of undesired effects including plasma membrane depolarization, mitochondrial inhibition, and cytotoxicity. These unwanted properties interfere with the measurement of mitochondrial function and result in a narrow therapeutic index that limits their usefulness in the clinic. To identify new mitochondrial uncouplers that lack off-target activity at the plasma membrane we screened a small molecule chemical library. Herein we report the identification and validation of a novel mitochondrial protonophore uncoupler (2-fluorophenyl){6-[(2-fluorophenyl)amino](1,2,5-oxadiazolo[3,4-e]pyrazin-5-yl)}amine, named BAM15, that does not depolarize the plasma membrane. Compared to FCCP, an uncoupler of equal potency, BAM15 treatment of cultured cells stimulates a higher maximum rate of mitochondrial respiration and is less cytotoxic. Furthermore, BAM15 is bioactive in vivo and dose-dependently protects mice from acute renal ischemic-reperfusion injury. From a technical standpoint, BAM15 represents an effective new tool that allows the study of mitochondrial function in the absence of off-target effects that can confound data interpretation. From a therapeutic perspective, BAM15-mediated protection from ischemia-reperfusion injury and its reduced toxicity will hopefully reignite interest in pharmacological uncoupling for the treatment of the myriad of diseases that are associated with altered mitochondrial function.
Collapse
Key Words
- ANT, adenine nucleotide translocase
- Bioenergetics
- CCCP
- DNP
- ECAR, extracellular acidification rate
- FCCP
- FCCP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone
- Ischemia
- Mitochondria
- OCR, oxygen consumption rate
- ROS, reactive oxygen species
- TCA cycle, tricarboxylic acid cycle
- TMPD, N,N,N′,N′-tetramethyl-p-phenylenediamine dihydrochloride
- TMRM, tetramethylrhodamine
Collapse
Affiliation(s)
- Brandon M Kenwood
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Janelle L Weaver
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Amandeep Bajwa
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ivan K Poon
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frances L Byrne
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Beverley A Murrow
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Joseph A Calderone
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Liping Huang
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ajit S Divakaruni
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jose L Tomsig
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Ryan H Lo
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - G Cameron Coleman
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhen Yan
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA ; Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA ; Department of Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA ; Department of Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey S Smith
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA ; Department of Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Mark D Okusa
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle L Hoehn
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA ; Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA ; Department of Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA ; Emily Couric Clinical Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
19
|
Urra FA, Martínez-Cifuentes M, Pavani M, Lapier M, Jaña-Prado F, Parra E, Maya JD, Pessoa-Mahana H, Ferreira J, Araya-Maturana R. An ortho-carbonyl substituted hydroquinone derivative is an anticancer agent that acts by inhibiting mitochondrial bioenergetics and by inducing G₂/M-phase arrest in mammary adenocarcinoma TA3. Toxicol Appl Pharmacol 2013; 267:218-27. [PMID: 23333614 DOI: 10.1016/j.taap.2012.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/23/2012] [Accepted: 12/25/2012] [Indexed: 01/16/2023]
Abstract
Tumor cells present a known metabolic reprogramming, which makes them more susceptible for a selective cellular death by modifying its mitochondrial bioenergetics. Anticancer action of the antioxidant 9,10-dihydroxy-4,4-dimethyl-5,8-dihydroanthracen-1(4H)-one (HQ) on mouse mammary adenocarcinoma TA3, and its multiresistant variant TA3-MTXR, were evaluated. HQ decreased the viability of both tumor cells, affecting slightly mammary epithelial cells. This hydroquinone blocked the electron flow through the NADH dehydrogenase (Complex I), leading to ADP-stimulated oxygen consumption inhibition, transmembrane potential dissipation and cellular ATP level decrease, without increasing ROS production. Duroquinol, an electron donor at CoQ level, reversed the decrease of cell viability induced by HQ. Additionally, HQ selectively induced G₂/M-phase arrest. Taken together, our results suggest that the bioenergetic dysfunction provoked by HQ is implicated in its anticancer action.
Collapse
Affiliation(s)
- Félix A Urra
- Department of Organic and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone 1007, Casilla 233, Santiago-1, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Naven RT, Swiss R, Klug-Mcleod J, Will Y, Greene N. The Development of Structure-Activity Relationships for Mitochondrial Dysfunction: Uncoupling of Oxidative Phosphorylation. Toxicol Sci 2012; 131:271-8. [DOI: 10.1093/toxsci/kfs279] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
21
|
Wu YN, Johnson SW. Dopamine oxidation facilitates rotenone-dependent potentiation of N-methyl-D-aspartate currents in rat substantia nigra dopamine neurons. Neuroscience 2011; 195:138-44. [PMID: 21884756 DOI: 10.1016/j.neuroscience.2011.08.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 12/21/2022]
Abstract
Rotenone is a mitochondrial poison that causes dopamine cell death and is used as a model of Parkinson's disease in rodents. Recently, we showed that rotenone augments currents evoked by N-methyl-D-aspartate (NMDA) by relieving voltage-dependent Mg(2+) block in rat substantia nigra compacta (SNC) dopamine neurons. Because rotenone is well known to generate reactive oxygen species (ROS), we conducted the present experiments to evaluate the role of ROS in mediating the effect of rotenone on NMDA current augmentation. Using patch pipettes to record whole-cell currents from SNC neurons in slices of rat brain, we found that the ability of rotenone (100 nM) to increase NMDA (3-30 μM) current was antagonized by the antioxidant agent n-acetylcysteine (1 mM). In contrast, mercaptosuccinate (1 mM), which blocks glutathione peroxidase and raises tissue levels of H(2)O(2), mimicked rotenone by augmenting inward currents evoked by NMDA. Because oxidation of dopamine can also generate ROS, we explored the role of dopamine on this action of rotenone. We prepared dopamine-depleted midbrain slices from rats that had been pretreated with reserpine (5 mg/kg ip) and alpha-methyl-para-tyrosine (AMPT, 250 mg/kg ip). Dopamine depletion blocked the ability of rotenone (100 nM) to increase inward current evoked by NMDA (30 μM). Rotenone-dependent augmentation of NMDA current was also blocked by the monoamine oxidase inhibitor pargyline (100 μM) in slices prepared from normal rats. In contrast, the dopamine precursor levodopa potentiated the action of rotenone on NMDA current. These results suggest that ROS and/or dopamine oxidation products mediate the ability of rotenone to potentiate NMDA currents. Because excessive NMDA receptor stimulation can produce excitotoxicity, our results suggest that oxidative metabolism of dopamine might facilitate the neurotoxicity of rotenone.
Collapse
Affiliation(s)
- Y-N Wu
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|