1
|
Tir S, Foster RG, Peirson SN. Evaluation of the Digital Ventilated Cage® system for circadian phenotyping. Sci Rep 2025; 15:3674. [PMID: 39880968 PMCID: PMC11779816 DOI: 10.1038/s41598-025-87530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC®, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber. Home cage activity in C57BL/6J mice was recorded under a range of lighting conditions, along with circadian clock-deficient cryptochrome-deficient mice (Cry1-/-, Cry2-/- double knockout). C57BL/6J mice exhibited a 24 h period under light/dark conditions, with a free-running period of 23.5 h under constant dark, and period lengthening under constant light. Animals displayed expected phase shifting responses to jet-lag and nocturnal light pulses. Sex differences in circadian parameters and phase shifting responses were also observed. Cryptochrome-deficient mice showed subtle changes in activity under light/dark conditions and were arrhythmic under constant dark, as expected. Our results show the suitability of the DVC system for circadian behavioural screens, accurately detecting circadian period, circadian disruption, phase shifts and mice with clock defects. We provide an evaluation of the strengths and limitations of this method, highlighting how the use of the DVC for studying circadian rhythms depends upon the research requirements of the end user.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Kumar J, Naina Mohamed I, Mohamed R, Ugusman A, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Kamaluddin MR, Abdul Hamid H, Mehat MZ, Shanmugam PK. Locomotion changes in methamphetamine and amphetamine withdrawal: a systematic review. Front Pharmacol 2024; 15:1428492. [PMID: 39086393 PMCID: PMC11288965 DOI: 10.3389/fphar.2024.1428492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Despite extensive preclinical research over the years, a significant gap remains in our understanding of the specific effects of methamphetamine (METH) and amphetamine (AMPH) withdrawal. Understanding these differences could be pivotal to unveiling the unique pathophysiology underlying each stimulant. This may facilitate the development of targeted and effective treatment strategies tailored to the specific characteristics of each substance. Following PRISMA guidelines, this systematic review was conducted to examine alterations in spontaneous locomotor activity, specifically horizontal activity, in animals experiencing withdrawal from extended and repeated administration of AMPH or METH. Original articles were retrieved from four electronic databases, supplemented by a review of the references cited in the published papers. A total of thirty-one full-length articles (n = 31) were incorporated in the analysis. The results indicated that six studies documented a significant increase in horizontal activity among animals, seven studies reported decreased locomotion, and eighteen studies (8 AMPH; 10 METH) reported no significant alterations in the animals' locomotor activity. Studies reporting heightened locomotion mainly employed mice undergoing withdrawal from METH, studies reporting diminished locomotion predominantly involved rats undergoing withdrawal from AMPH, and studies reporting no significant changes in horizontal activity employed both rats and mice (12 rats; 6 mice). Drug characteristics, routes of administration, animal models, dosage regimens, duration, and assessment timing seem to influence the observed outcomes. Despite more than 50% of papers enlisted in this review indicate no significant changes in the locomotion during the stimulant withdrawal, the unique reactions of animals to withdrawal from METH and AMPH reported by some underscore the need for a more nuanced understanding of stimulant withdrawal.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rashidi Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohammad Rahim Kamaluddin
- The Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, The National University of Malaysia, Bangi, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
3
|
Kitanaka N, Arai K, Takehara K, Hall FS, Tomita K, Igarashi K, Sato T, Uhl GR, Kitanaka J. Opioid receptor antagonists reduce motivated wheel-running behavior in mice. Behav Pharmacol 2024; 35:114-121. [PMID: 38451023 DOI: 10.1097/fbp.0000000000000769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We hypothesized that opioid receptor antagonists would inhibit motivated behavior produced by a natural reward. To evaluate motivated responses to a natural reward, mice were given access to running wheels for 71.5 h in a multi-configuration testing apparatus. In addition to a running wheel activity, locomotor activity (outside of the wheel), food and water intake, and access to a food container were measured in the apparatus. Mice were also tested separately for novel-object exploration to investigate whether naloxone affects behavior unrelated to natural reward. In untreated mice wheel running increased from day 1 to day 3. The selective µ-opioid receptor antagonist β-funaltrexamine (β-FNA) (5 mg/kg) slightly decreased wheel running, but did not affect the increase in wheel running from day 1 to day 3. The non-selective opioid receptor antagonist naloxone produced a greater reduction in wheel running than β-FNA and eliminated the increase in wheel running that occurred over time in the other groups. Analysis of food access, locomotor behavior, and behavior in the novel-object test suggested that the reduction in wheel running was selective for this highly reinforcing behavior. These results indicate that opioid receptor antagonism reduces responses to the natural rewarding effects of wheel running and that these effects involve multiple opioid receptors since the non-selective opioid receptor antagonist had greater effects than the selective µ-opioid receptor antagonist. It is possible that at the doses employed, other receptor systems than opioid receptors might be involved, at least in part, in the effect of naloxone and β-FNA.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Kanayo Arai
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Kaoko Takehara
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kento Igarashi
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - George R Uhl
- Neurology, VA Maryland Healthcare System
- Departments of Neurology
- Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junichi Kitanaka
- Neurology, VA Maryland Healthcare System
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe, Japan
| |
Collapse
|
4
|
Young JW, Kenton JA, Milienne-Petiot M, Deben D, Achim C, Geyer MA, Perry W, Grant IE, Minassian A. Chronic methamphetamine exposure exerts few effects on the iTat mouse model of HIV, but blocks Tat expression-induced slowed reward retrieval. Behav Brain Res 2023; 437:114109. [PMID: 36108778 PMCID: PMC10878174 DOI: 10.1016/j.bbr.2022.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Human immunodeficiency virus (HIV) continues to infect millions worldwide, negatively impacting neurobehavioral function. Further understanding of the combined effects of HIV and methamphetamine use is crucial, as methamphetamine use is prevalent in people with HIV. The HIV-associated protein Tat may contribute to cognitive dysfunction, modeled preclinically in mice using doxycycline (DOX)-inducible Tat expression (iTat). Tat may exert its effects on cognitive function via disruption of the dopamine transporter, similar to the action of methamphetamine. Additionally, Tat and methamphetamine both decrease interneuron populations, including those expressing calbindin. It is important to understand the combined effects of Tat and methamphetamine in preclinical models of HIV infection. Here, we used iTat transgenic mice and a chronic binge regimen of methamphetamine exposure to determine their combined impact on reward learning and motivation. We also measured calbindin expression in behavior-relevant brain regions. Before induction with DOX, iTat mice exhibited no differences in behavior. Chronic methamphetamine exposure before Tat induction impaired initial reward learning but did not affect motivation. Furthermore, DOX-induced Tat expression did not alter behavior, but slowed latencies to retrieve rewards. This effect of Tat, however, was not observed in methamphetamine-treated mice, indicative of a potential protective effect. Finally, Tat expression was associated with an increase in calbindin-expressing cells in the VTA, while methamphetamine exposure did not alter calbindin numbers. These findings may indicate a protective role of methamphetamine in HIV neuropathology, which in turn may help in our understanding of why people with HIV use methamphetamine at disproportionately higher rates.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| | - Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | | | - Debbie Deben
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Igor E Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States
| |
Collapse
|
5
|
Dietary Alaska Pollack Protein Induces Acute and Sustainable Skeletal Muscle Hypertrophy in Rats. Nutrients 2022; 14:nu14030547. [PMID: 35276908 PMCID: PMC8837972 DOI: 10.3390/nu14030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Our previous studies suggested that Alaska pollack protein (APP) intake increases skeletal muscle mass and that it may cause a slow-to-fast shift in muscle fiber type in rats fed a high-fat diet after 56 days of feeding. In this study, we explored whether dietary APP induces acute and sustainable skeletal muscle hypertrophy in rats fed a normal-fat diet. Male 5-week-old Sprague–Dawley rats were divided into four groups and fed a purified ingredient-based high-fat diet or a purified ingredient-based normal-fat diet with casein or APP, containing the same amount of crude protein. Dietary APP significantly increased gastrocnemius muscle mass (105~110%) after 2, 7 days of feeding, regardless of dietary fat content. Rats were separated into two groups and fed a normal-fat diet with casein or APP. Dietary APP significantly increased gastrocnemius muscle mass (110%) after 56 days of feeding. Dietary APP significantly increased the cross-sectional area of the gastrocnemius skeletal muscle and collagen-rich connective tissue after 7 days of feeding. It decreased the gene expression of Mstn /Myostatin, Trim63/MuRF1, and Fbxo32/atrogin-1, but not other gene expression, such as serum IGF-1 after 7 days of feeding. No differences were observed between casein and APP groups with respect to the percentage of Type I, Type IIA, and Type IIX or IIB fibers, as determined by myosin ATPase staining after 7 days of feeding. In the similar experiment, the puromycin-labeled peptides were not different between dietary casein and APP after 2 days of feeding. These results demonstrate that APP induces acute and sustainable skeletal muscle hypertrophy in rats, regardless of dietary fat content. Dietary APP, as a daily protein source, may be an approach for maintaining or increasing muscle mass.
Collapse
|
6
|
Metoprine, a histamine N-methyltransferase inhibitor, attenuates methamphetamine-induced hyperlocomotion via activation of histaminergic neurotransmission in mice. Pharmacol Biochem Behav 2021; 209:173257. [PMID: 34418452 DOI: 10.1016/j.pbb.2021.173257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 08/15/2021] [Indexed: 12/19/2022]
Abstract
Metoprine increases the content of histamine in brain by inhibiting histamine N-methyltransferase (HMT), a centrally acting histamine degrading enzyme. We present data demonstrating that pretreatment with metoprine attenuates the hyperlocomotive effects of METH in mice using a multi-configuration behavior apparatus designed to monitor four behavioral outcomes [horizontal locomotion, appetitive behavior (food access), and food and water intake]. Metoprine pretreatment itself induced hyperlocomotion in mice challenged with saline during the large part of light phase. The trend was also observed during the following dark phase. This is the first report that metoprine has a long-lasting locomotor stimulating property. Similarly, in a tail suspension test, a single injection of metoprine significantly reduced total time of immobility in mice, consistent with the idea that metoprine possesses motor stimulating properties. Metoprine pretreatment did not affect other aspects of behavior. Metoprine did not affect the appetitive and drinking behavior while exerted an effect on stereotypy. No stereotyped behavior was observed in mice pretreated with vehicle followed by METH, while stereotyped sniffing was observed in mice pretreated with metoprine followed by METH. The metoprine pretreatment attenuated METH-induced hyperlocomotion during the first 2 h of light phase, suggesting that metoprine-induced locomotor stimulating property might be different from that of METH. The hypothalamic content of histamine (but not its brain metabolite) was increased after metoprine or METH administration. Both METH and metoprine reduced dopamine and histamine turnover in the striatum and the nucleus accumbens and the hypothalamus, respectively, and there is a significant metoprine pretreatment x METH challenge interaction in the histamine turnover. It is likely that metoprine may attenuate METH-induced hyperlocomotion via activation of histaminergic neurotransmission. Metoprine also might induce a long-lasting locomotor stimulating effect via a putative mechanism different from that whereby METH induces the locomotor stimulating effect.
Collapse
|
7
|
Rauhut AS. Voluntary exercise ameliorates anxiogenic effects of acute methamphetamine exposure in Swiss-Webster mice. Pharmacol Rep 2019; 71:1020-1024. [PMID: 31585317 DOI: 10.1016/j.pharep.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/18/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The present experiment examined the ability of voluntary exercise (i.e., home-cage wheel running; HCWR) to ameliorate anxiety-like behavior associated with acute methamphetamine exposure in male, Swiss-Webster mice. METHODS Mice were permitted access to home-cage running wheels (Exercise), locked home-cage running wheels or no home-cage running wheels (Sedentary) for 6 weeks and then exposed to different methamphetamine doses (vehicle, 0.25, 0.5, or 1.0 mg/kg) once weekly during an 8 h open-field session for 4 weeks. Group differences in hypothalamic-pituitary-adrenal (HPA) activity also were assessed by weighing adrenal glands. RESULTS It was found that HCWR ameliorated anxiety-like behavior after an injection of either the 0.5 or 1.0 mg/kg methamphetamine dose. Adrenal weights did not differ between Exercise and Sedentary mice. CONCLUSION Taken together, these results suggest that voluntary exercise ameliorates the anxiogenic effects of methamphetamine depending on the dose, perhaps via a non-HPA mechanism.
Collapse
|
8
|
Gaspar LS, Álvaro AR, Carmo‐Silva S, Mendes AF, Relógio A, Cavadas C. The importance of determining circadian parameters in pharmacological studies. Br J Pharmacol 2019; 176:2827-2847. [PMID: 31099023 PMCID: PMC6637036 DOI: 10.1111/bph.14712] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022] Open
Abstract
In mammals, most molecular and cellular processes show circadian changes, leading to daily variations in physiology and ultimately in behaviour. Such daily variations induce a temporal coordination of processes that is essential to ensure homeostasis and health. Thus, it is of no surprise that pharmacokinetics (PK) and pharmacodynamics (PD) of many drugs are also subject to circadian variations, profoundly affecting their efficacy and tolerability. Understanding how circadian rhythms influence drug PK, PD, and toxicity might significantly improve treatment efficacy and decrease related side effects. Therefore, it is essential to take circadian variations into account and to determine circadian parameters in pharmacological studies, especially when drugs have a short half-life or target rhythmic processes. This review provides an overview of the current knowledge on circadian rhythms and their relevance to the field of pharmacology. Methodologies to evaluate circadian rhythms in vitro, in rodent models and in humans, from experimental to computational approaches, are described and discussed. Lastly, we aim at alerting the scientific, medical, and regulatory communities to the relevance of the physiological time, as a key parameter to be considered when designing pharmacological studies. This will eventually lead to more successful preclinical and clinical trials and pave the way to a more personalized treatment to the benefit of the patients.
Collapse
Affiliation(s)
- Laetitia S. Gaspar
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
| | - Ana Rita Álvaro
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Sara Carmo‐Silva
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Alexandrina Ferreira Mendes
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Angela Relógio
- Institute for Theoretical BiologyCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt—Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research CenterCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt—Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Cláudia Cavadas
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
9
|
Perry AN, Ortiz RJ, Hernandez KR, Cushing BS. Effects of methamphetamine on alloparental behavior in male and female prairie voles. Physiol Behav 2019; 203:128-134. [PMID: 28917948 DOI: 10.1016/j.physbeh.2017.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 11/28/2022]
Abstract
Psychostimulant abuse is associated with a variety of impairments in social functioning, including an increased frequency of depression and aggression and deficits in social cognition. Psychostimulants reduce social investigation in rats and mice; however, it is less clear how other forms of social behavior (e.g., prosocial behavior) are affected. Females are also generally more sensitive to the effects of psychostimulants on locomotion and stereotyped behavior, which suggests that females might also display greater disruption of prosocial behavior. In order to test the hypothesis that psychostimulants reduce prosocial behavior and that females are more vulnerable, we treated adult male and female prairie voles with methamphetamine for three days (0, 0.2 or 2.0mg/kg, i.p.) and examined effects on locomotion and alloparental behavior. The lower methamphetamine dose increased activity in the open field in males and reduced locomotion in females. Methamphetamine-treated males took longer to enter the pup chamber, but both sexes displayed reduced pup contact following treatment with the lower methamphetamine dose. The methamphetamine-induced reduction in prosocial behavior was not associated with changes in pup-directed aggression in males or females. In order to investigate potential mechanisms underlying these changes in behavior, we measured adrenal weights as a proxy for activation of the hypothalamic-pituitary-adrenal (HPA) axis. The higher methamphetamine dose increased adrenal weights. Collectively, these data demonstrate that methamphetamine administration reduces alloparental behavior in both sexes and that females are more sensitive to some of the effects of this drug (e.g., locomotion/stereotyped behavior and possibly stimulation of the HPA axis).
Collapse
Affiliation(s)
- Adam N Perry
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Richard J Ortiz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Keziah R Hernandez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Bruce S Cushing
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States
| |
Collapse
|
10
|
Bains RS, Wells S, Sillito RR, Armstrong JD, Cater HL, Banks G, Nolan PM. Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J Neurosci Methods 2017; 300:37-47. [PMID: 28456660 PMCID: PMC5909039 DOI: 10.1016/j.jneumeth.2017.04.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 12/15/2022]
Abstract
Automated assessment of mouse home-cage behaviour is robust and reliable. Analysis over multiple light/dark cycles improves ability to classify behaviours. Combined RFID and video analysis enables home-cage analysis in group housed animals.
An important factor in reducing variability in mouse test outcomes has been to develop assays that can be used for continuous automated home cage assessment. Our experience has shown that this has been most evidenced in long-term assessment of wheel-running activity in mice. Historically, wheel-running in mice and other rodents have been used as a robust assay to determine, with precision, the inherent period of circadian rhythms in mice. Furthermore, this assay has been instrumental in dissecting the molecular genetic basis of mammalian circadian rhythms. In teasing out the elements of this test that have determined its robustness – automated assessment of an unforced behaviour in the home cage over long time intervals – we and others have been investigating whether similar test apparatus could be used to accurately discriminate differences in distinct behavioural parameters in mice. Firstly, using these systems, we explored behaviours in a number of mouse inbred strains to determine whether we could extract biologically meaningful differences. Secondly, we tested a number of relevant mutant lines to determine how discriminative these parameters were. Our findings show that, when compared to conventional out-of-cage phenotyping, a far deeper understanding of mouse mutant phenotype can be established by monitoring behaviour in the home cage over one or more light:dark cycles.
Collapse
Affiliation(s)
- Rasneer S Bains
- Mary Lyon Centre, MRC Harwell Institute, Harwell Science Campus, Oxfordshire, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Harwell Science Campus, Oxfordshire, UK
| | | | - J Douglas Armstrong
- Actual Analytics Ltd., Edinburgh, UK; School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Heather L Cater
- Mary Lyon Centre, MRC Harwell Institute, Harwell Science Campus, Oxfordshire, UK
| | - Gareth Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science Campus, Oxfordshire, UK
| | - Patrick M Nolan
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science Campus, Oxfordshire, UK.
| |
Collapse
|
11
|
Fujimoto E, Sato-Mito N, Okita I, Uemura S, Ishimoto T, Sato K. Daily rhythm and heat shock protein expression in obese ob/ob mice. Nutr Neurosci 2014; 18:110-7. [PMID: 24621067 DOI: 10.1179/1476830513y.0000000103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES This study examined heat shock protein (HSP) 70 expression and rhythms of drinking behavior and locomotor activity in obesity, in order to clarify the involvement of HSPs in obesity-induced disturbance of circadian rhythms. METHODS C57BL/6J ob/ob mice were used as a murine model of severe obesity. Drinking behavior and locomotor activity of male C57BL/6J (control) mice and ob/ob mice were recorded with the behavioral analyzing system. HSP70 concentration in the homogenized supernatant of each tissue, including the brain, liver, and kidney, was measured by an enzyme-linked immunosorbent assay. RESULTS We observed an attenuated locomotor activity rhythm in the ob/ob mice compared with the control mice at 13 weeks of age and especially at 27 weeks of age. The drinking rhythm was little affected by obesity. HSP70 protein expression was reduced in the brain and kidney of the ob/ob mice compared with the control mice. However, HSP70 expression in the liver was not altered. DISCUSSION This study suggests that the obesity-induced reduction of HSP70 expression in the brain and kidney can be directly or indirectly associated with disturbance of rhythms of the master clock and peripheral clocks. The study provides a link between circadian rhythm and HSP expression in obesity; the disturbance of these factors may lead to the progression of metabolic disorders.
Collapse
|
12
|
Kitanaka N, Kitanaka J, Hall FS, Uhl GR, Watabe K, Kubo H, Takahashi H, Takemura M. Attenuation of Methamphetamine-Induced conditioned place preference in Mice after a Drug-Free period and Facilitation of this effect by exposure to a Running Wheel. J Exp Neurosci 2012. [DOI: 10.4137/jen.s10046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The effect of exposure of male mice to a horizontal running wheel (Fast-Trac™) on conditioned place preference (CPP) and hyperlocomotion induced by methamphetamine (METH) was determined. In the first experiment eleven-week-old male ICR mice were divided into three groups and exposed to three different environments (housed individually with (group A) or without a running wheel (group B), or housed in a group of eight mice without a running wheel (group C)) for two weeks except during periods of CPP conditioning and testing procedures. Administration of METH (0.5 mg/kg, i.p.) every other day during three conditioning sessions, with saline conditioning sessions in the other compartment on alternate days (ie, saline/METH conditioning), induced a significant CPP, compared to saline/saline conditioning, in mice of groups A and C, but not B. The increased CPP for METH was significantly attenuated by additional 5-day (drug-free)-exposure to a running wheel in mice of group A (but not group C). In the second experiment, pre-exposure of another set of mice to a running wheel for three days did not affect a subsequent METH (1.0 mg/kg)- or saline-induced horizontal locomotion or rearing, compared with the locomotor activities observed in mice without an experience of a running wheel. These observations suggest that experience of a running wheel may selectively facilitate an attenuation of drug-seeking behavior.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - F. Scott Hall
- Molecular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224, USA
| | - George R. Uhl
- Molecular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224, USA
| | | | - Hitoshi Kubo
- Muromachi Kikai, Co., Ltd., Tokyo 103-0022, Japan
| | | | - Motohiko Takemura
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| |
Collapse
|
13
|
Beeler JA, Frazier CRM, Zhuang X. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front Integr Neurosci 2012; 6:49. [PMID: 22833718 PMCID: PMC3400936 DOI: 10.3389/fnint.2012.00049] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/02/2012] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the "reward deficiency hypothesis" as a perceived energy deficit. We propose that dopamine, by facilitating energy expenditure, should be protective against obesity. We suggest the apparent failure of this protective mechanism in Western societies with high prevalence of obesity arises as a consequence of sedentary lifestyles that thwart energy expenditure.
Collapse
Affiliation(s)
- Jeff A. Beeler
- Department of Neurobiology, The University of ChicagoChicago, IL, USA
| | | | - Xiaoxi Zhuang
- Department of Neurobiology, The University of ChicagoChicago, IL, USA
- Committee on Neurobiology, The University of ChicagoChicago, IL, USA
| |
Collapse
|