1
|
Mathieson L, Mendes A, Marsden J, Pond J, Moscato P. Computer-Aided Breast Cancer Diagnosis with Optimal Feature Sets: Reduction Rules and Optimization Techniques. Methods Mol Biol 2017; 1526:299-325. [PMID: 27896749 DOI: 10.1007/978-1-4939-6613-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter introduces a new method for knowledge extraction from databases for the purpose of finding a discriminative set of features that is also a robust set for within-class classification. Our method is generic and we introduce it here in the field of breast cancer diagnosis from digital mammography data. The mathematical formalism is based on a generalization of the k-Feature Set problem called (α, β)-k-Feature Set problem, introduced by Cotta and Moscato (J Comput Syst Sci 67(4):686-690, 2003). This method proceeds in two steps: first, an optimal (α, β)-k-feature set of minimum cardinality is identified and then, a set of classification rules using these features is obtained. We obtain the (α, β)-k-feature set in two phases; first a series of extremely powerful reduction techniques, which do not lose the optimal solution, are employed; and second, a metaheuristic search to identify the remaining features to be considered or disregarded. Two algorithms were tested with a public domain digital mammography dataset composed of 71 malignant and 75 benign cases. Based on the results provided by the algorithms, we obtain classification rules that employ only a subset of these features.
Collapse
Affiliation(s)
- Luke Mathieson
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Alexandre Mendes
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - John Marsden
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jeffrey Pond
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
2
|
Heidari M, Johnstone DM, Bassett B, Graham RM, Chua ACG, House MJ, Collingwood JF, Bettencourt C, Houlden H, Ryten M, Olynyk JK, Trinder D, Milward EA. Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features. Mol Psychiatry 2016; 21:1599-1607. [PMID: 26728570 PMCID: PMC5078858 DOI: 10.1038/mp.2015.192] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 10/01/2015] [Accepted: 10/26/2015] [Indexed: 11/25/2022]
Abstract
The 'neurodegeneration with brain iron accumulation' (NBIA) disease family entails movement or cognitive impairment, often with psychiatric features. To understand how iron loading affects the brain, we studied mice with disruption of two iron regulatory genes, hemochromatosis (Hfe) and transferrin receptor 2 (Tfr2). Inductively coupled plasma atomic emission spectroscopy demonstrated increased iron in the Hfe-/- × Tfr2mut brain (P=0.002, n ≥5/group), primarily localized by Perls' staining to myelinated structures. Western immunoblotting showed increases of the iron storage protein ferritin light polypeptide and microarray and real-time reverse transcription-PCR revealed decreased transcript levels (P<0.04, n ≥5/group) for five other NBIA genes, phospholipase A2 group VI, fatty acid 2-hydroxylase, ceruloplasmin, chromosome 19 open reading frame 12 and ATPase type 13A2. Apart from the ferroxidase ceruloplasmin, all are involved in myelin homeostasis; 16 other myelin-related genes also showed reduced expression (P<0.05), although gross myelin structure and integrity appear unaffected (P>0.05). Overlap (P<0.0001) of differentially expressed genes in Hfe-/- × Tfr2mut brain with human gene co-expression networks suggests iron loading influences expression of NBIA-related and myelin-related genes co-expressed in normal human basal ganglia. There was overlap (P<0.0001) of genes differentially expressed in Hfe-/- × Tfr2mut brain and post-mortem NBIA basal ganglia. Hfe-/- × Tfr2mut mice were hyperactive (P<0.0112) without apparent cognitive impairment by IntelliCage testing (P>0.05). These results implicate myelin-related systems involved in NBIA neuropathogenesis in early responses to iron loading. This may contribute to behavioral symptoms in NBIA and hemochromatosis and is relevant to patients with abnormal iron status and psychiatric disorders involving myelin abnormalities or resistant to conventional treatments.
Collapse
Affiliation(s)
- M Heidari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - D M Johnstone
- Bosch Institute and Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - B Bassett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - R M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute - Biosciences, Curtin University of Technology, Bentley, WA, Australia
| | - A C G Chua
- School of Medicine and Pharmacology, University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia,Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
| | - M J House
- School of Physics, University of Western Australia, Crawley, WA, Australia
| | - J F Collingwood
- Warwick Engineering in Biomedicine, School of Engineering, University of Warwick, Coventry, UK
| | - C Bettencourt
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - H Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - M Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK,Department of Medical and Molecular Genetics, King's College London, London, UK
| | - J K Olynyk
- School of Biomedical Sciences and Curtin Health Innovation Research Institute - Biosciences, Curtin University of Technology, Bentley, WA, Australia,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia,Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, The University of Western Australia, Murdoch, WA, Australia,Department of Gastroenterology and Hepatology, Fremantle Hospital, Fremantle, WA, Australia
| | - D Trinder
- School of Medicine and Pharmacology, University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia,Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
| | - E A Milward
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia,School of Biomedical Sciences and Pharmacy MSB, University of Newcastle, Callaghan, NSW 2308, Australia. E-mail:
| |
Collapse
|
3
|
Pellegrino RM, Boda E, Montarolo F, Boero M, Mezzanotte M, Saglio G, Buffo A, Roetto A. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse. Sci Rep 2016; 6:30725. [PMID: 27477597 PMCID: PMC4967901 DOI: 10.1038/srep30725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022] Open
Abstract
The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits.
Collapse
Affiliation(s)
- Rosa Maria Pellegrino
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Martina Boero
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Mariarosa Mezzanotte
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| |
Collapse
|
4
|
Heidari M, Gerami SH, Bassett B, Graham RM, Chua ACG, Aryal R, House MJ, Collingwood JF, Bettencourt C, Houlden H, Ryten M, Olynyk JK, Trinder D, Johnstone DM, Milward EA. Pathological relationships involving iron and myelin may constitute a shared mechanism linking various rare and common brain diseases. Rare Dis 2016; 4:e1198458. [PMID: 27500074 PMCID: PMC4961263 DOI: 10.1080/21675511.2016.1198458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/02/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated elevated brain iron levels in myelinated structures and associated cells in a hemochromatosis Hfe−/−xTfr2mut mouse model. This was accompanied by altered expression of a group of myelin-related genes, including a suite of genes causatively linked to the rare disease family ‘neurodegeneration with brain iron accumulation’ (NBIA). Expanded data mining and ontological analyses have now identified additional myelin-related transcriptome changes in response to brain iron loading. Concordance between the mouse transcriptome changes and human myelin-related gene expression networks in normal and NBIA basal ganglia testifies to potential clinical relevance. These analyses implicate, among others, genes linked to various rare central hypomyelinating leukodystrophies and peripheral neuropathies including Pelizaeus-Merzbacher-like disease and Charcot-Marie-Tooth disease as well as genes linked to other rare neurological diseases such as Niemann-Pick disease. The findings may help understand interrelationships of iron and myelin in more common conditions such as hemochromatosis, multiple sclerosis and various psychiatric disorders.
Collapse
Affiliation(s)
- Moones Heidari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle , Callaghan, NSW, Australia
| | - Sam H Gerami
- School of Biomedical Sciences and Pharmacy, The University of Newcastle , Callaghan, NSW, Australia
| | - Brianna Bassett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle , Callaghan, NSW, Australia
| | - Ross M Graham
- School of Biomedical Sciences & Curtin Health Innovation Research Institute - Biosciences, Curtin University of Technology , Bentley, WA, Australia
| | - Anita C G Chua
- School of Medicine and Pharmacology, University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia; Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
| | - Ritambhara Aryal
- School of Biomedical Sciences and Pharmacy, The University of Newcastle , Callaghan, NSW, Australia
| | - Michael J House
- School of Physics, University of Western Australia , Crawley, WA, Australia
| | - Joanna F Collingwood
- Warwick Engineering in Biomedicine, School of Engineering, University of Warwick , Coventry, UK
| | - Conceição Bettencourt
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology , London, UK
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Department of Medical and Molecular Genetics, King's College London, London, UK
| | | | - John K Olynyk
- School of Biomedical Sciences & Curtin Health Innovation Research Institute - Biosciences, Curtin University of Technology, Bentley, WA, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia; Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Department of Gastroenterology and Hepatology, Fremantle Hospital, Fremantle, WA, Australia
| | - Debbie Trinder
- School of Medicine and Pharmacology, University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia; Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
| | - Daniel M Johnstone
- Bosch Institute and Discipline of Physiology, University of Sydney , Sydney, NSW, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, The University of Newcastle , Callaghan, NSW, Australia
| |
Collapse
|
5
|
Bettencourt C, Forabosco P, Wiethoff S, Heidari M, Johnstone DM, Botía JA, Collingwood JF, Hardy J, Milward EA, Ryten M, Houlden H. Gene co-expression networks shed light into diseases of brain iron accumulation. Neurobiol Dis 2016; 87:59-68. [PMID: 26707700 PMCID: PMC4731015 DOI: 10.1016/j.nbd.2015.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention.
Collapse
Affiliation(s)
- Conceição Bettencourt
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| | - Paola Forabosco
- Istituto di Ricerca Genetica e Biomedica CNR, Cagliari, Italy
| | - Sarah Wiethoff
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Moones Heidari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Daniel M Johnstone
- Bosch Institute and Discipline of Physiology, University of Sydney, NSW, Australia
| | - Juan A Botía
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | | | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
6
|
Ye Q, Kim J. Effect of olfactory manganese exposure on anxiety-related behavior in a mouse model of iron overload hemochromatosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:333-41. [PMID: 26189056 PMCID: PMC4522346 DOI: 10.1016/j.etap.2015.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 05/09/2023]
Abstract
Manganese in excess promotes unstable emotional behavior. Our previous study showed that olfactory manganese uptake into the brain is altered in Hfe(-/-) mice, a model of iron overload hemochromatosis, suggesting that Hfe deficiency could modify the neurotoxicity of airborne manganese. We determined anxiety-related behavior and monoaminergic protein expression after repeated intranasal instillation of MnCl2 to Hfe(-/-) mice. Compared with manganese-instilled wild-type mice, Hfe(-/-) mice showed decreased manganese accumulation in the cerebellum. Hfe(-/-) mice also exhibited increased anxiety with decreased exploratory activity and elevated dopamine D1 receptor and norepinephrine transporter in the striatum. Moreover, Hfe deficiency attenuated manganese-associated impulsivity and modified the effect of manganese on the expression of tyrosine hydroxylase, vesicular monoamine transporter and serotonin transporter. Together, our data indicate that loss of HFE function alters manganese-associated emotional behavior and further suggest that HFE could be a potential molecular target to alleviate affective disorders induced by manganese inhalation.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Sudden sensorineural hearing loss and polymorphisms in iron homeostasis genes: new insights from a case-control study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834736. [PMID: 25789325 PMCID: PMC4348611 DOI: 10.1155/2015/834736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022]
Abstract
Background. Even if various pathophysiological events have been proposed as explanations, the putative cause of sudden hearing loss remains unclear. Objectives. To investigate and to reveal associations (if any) between the main iron-related gene variants and idiopathic sudden sensorineural hearing loss. Study Design. Case-control study. Materials and Methods. A total of 200 sudden sensorineural hearing loss patients (median age 63.65 years; range 10-92) were compared with 400 healthy control subjects. The following genetic variants were investigated: the polymorphism c.-8CG in the promoter of the ferroportin gene (FPN1; SLC40A1), the two isoforms C1 and C2 (p.P570S) of the transferrin protein (TF), the amino acidic substitutions p.H63D and p.C282Y in the hereditary hemochromatosis protein (HFE), and the polymorphism c.-582AG in the promoter of the HEPC gene, which encodes the protein hepcidin (HAMP). Results. The homozygous genotype c.-8GG of the SLC40A1 gene revealed an OR for ISSNHL risk of 4.27 (CI 95%, 2.65-6.89; P = 0.001), being overrepresented among cases. Conclusions. Our study indicates that the homozygous genotype FPN1 -8GG was significantly associated with increased risk of developing sudden hearing loss. These findings suggest new research should be conducted in the field of iron homeostasis in the inner ear.
Collapse
|
8
|
Grubman A, Pollari E, Duncan C, Caragounis A, Blom T, Volitakis I, Wong A, Cooper J, Crouch PJ, Koistinaho J, Jalanko A, White AR, Kanninen KM. Deregulation of biometal homeostasis: the missing link for neuronal ceroid lipofuscinoses? Metallomics 2014; 6:932-43. [PMID: 24804307 DOI: 10.1039/c4mt00032c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs), a group of genetically distinct fatal neurodegenerative disorders with no treatment or cure, are clinically characterised by progressive motor and visual decline leading to premature death. While the underlying pathological mechanisms are yet to be precisely determined, the diseases share several common features including inflammation, lysosomal lipofuscin deposits and lipid abnormalities. An important hallmark of most common neurodegenerative disorders including Alzheimer's, Parkinson's and motor neuron diseases is deregulation of biologically active metal homeostasis. Metals such as zinc, copper and iron are critical enzyme cofactors and are important for synaptic transmission in the brain, but can mediate oxidative neurotoxicity when homeostatic regulatory mechanisms fail. We previously demonstrated biometal accumulation and altered biometal transporter expression in 3 animal models of CLN6 NCL disease. In this study we investigated the hypothesis that altered biometal homeostasis may be a feature of NCLs in general using 3 additional animal models of CLN1, CLN3 and CLN5 disease. We demonstrated significant accumulation of the biometals zinc, copper, manganese, iron and cobalt in these mice. Patterns of biometal accumulation in each model preceded significant neurodegeneration, and paralleled the relative severity of disease previously described for each model. Additionally, we observed deregulation of transcripts encoding the anti-oxidant protein, metallothionein (Mt), indicative of disruptions to biometal homeostasis. These results demonstrate that altered biometal homeostasis is a key feature of at least 4 genetically distinct forms of NCL disease.
Collapse
|
9
|
A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice. Biochim Biophys Acta Mol Basis Dis 2013; 1832:729-41. [PMID: 23429074 DOI: 10.1016/j.bbadis.2013.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 12/12/2022]
Abstract
Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases.
Collapse
|
10
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Acikyol B, Graham RM, Trinder D, House MJ, Olynyk JK, Scott RJ, Milward EA, Johnstone DM. Brain transcriptome perturbations in the transferrin receptor 2 mutant mouse support the case for brain changes in iron loading disorders, including effects relating to long-term depression and long-term potentiation. Neuroscience 2013; 235:119-28. [PMID: 23333676 DOI: 10.1016/j.neuroscience.2013.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/14/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022]
Abstract
Iron abnormalities within the brain are associated with several rare but severe neurodegenerative conditions. There is growing evidence that more common systemic iron loading disorders such as hemochromatosis can also have important effects on the brain. To identify features that are common across different forms of hemochromatosis, we used microarray and real-time reverse transcription polymerase chain reaction (RT-PCR) to assess brain transcriptome profiles of transferrin receptor 2 mutant mice (Tfr2(mut)), a model of a rare type of hereditary hemochromatosis, relative to wildtype control mice. The results were compared with our previous findings in dietary iron-supplemented wildtype mice and Hfe(-/-) mice, a model of a common type of hereditary hemochromatosis. For transcripts showing significant changes relative to controls across all three models, there was perfect (100%) directional concordance (i.e. transcripts were increased in all models or decreased in all models). Comparison of the two models of hereditary hemochromatosis, which showed more pronounced changes than the dietary iron-supplemented mice, revealed numerous common molecular effects. Pathway analyses highlighted changes for genes relating to long-term depression (6.8-fold enrichment, p=5.4×10(-7)) and, to a lesser extent, long-term potentiation (3.7-fold enrichment, p=0.01), with generalized reductions in transcription of key genes from these pathways, which are involved in modulating synaptic strength and efficacy and are essential for memory and learning. The agreement across the models suggests the findings are robust and strengthens previous evidence that iron loading disorders affect the brain. Perturbations of brain phenomena such as long-term depression and long-term potentiation might partly explain neurologic symptoms reported for some hemochromatosis patients.
Collapse
Affiliation(s)
- B Acikyol
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|