1
|
Lee JM, Yoo MC, Kim YJ, Kim SS, Yeo SG. Expression of ChAT, Iba-1, and nNOS in the Central Nervous System following Facial Nerve Injury. Antioxidants (Basel) 2024; 13:595. [PMID: 38790700 PMCID: PMC11118893 DOI: 10.3390/antiox13050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Facial nerve injury can cause significant functional impairment, impacting both the peripheral and central nervous systems. The present study evaluated changes in facial motor function, numbers of cholinergic neurons and microglia, and nNOS levels in the facial nucleus of the central nervous system (CNS) following peripheral facial nerve injury. Facial nerve function, as determined by eyeblink and whisker-movement reflexes, was evaluated at baseline and 1, 2, 3, 4, 8, and 12 weeks after inducing facial nerve injury through compression or axotomy. The expression of choline acetyltransferase (ChAT), ionized calcium-binding adaptor molecule 1 (Iba-1), and neuronal nitric oxide synthase (nNOS) in the facial nucleus of the CNS was analyzed 2, 4, and 12 weeks after peripheral facial nerve injury. Compression-induced facial nerve injury was found to lead to temporary facial motor impairment, whereas axotomy resulted in persistent impairment. Moreover, both compression and axotomy reduced ChAT expression and increased Iba-1 and nNOS expression in the facial nucleus, indicating upregulation of an inflammatory response and neurodegeneration. These results indicate that, compared with compression-induced injury, axotomy-induced facial nerve injury results in greater facial motor dysfunction and more persistent microglial and nitric oxide activation in the facial nucleus of the CNS.
Collapse
Affiliation(s)
- Jae Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
2
|
Ishijima T, Nakajima K. Restoration of injured motoneurons reduces microglial proliferation in the adult rat facial nucleus. J Neuropathol Exp Neurol 2024; 83:168-180. [PMID: 38263471 DOI: 10.1093/jnen/nlad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
In the axotomized facial nucleus (axotFN), the levels of choline acetyltransferase, vesicular acetylcholine transporter, and gamma amino butyric acid A receptor α1 are decreased, after which the microglia begin to proliferate around injured motoneuron cell bodies. We conjectured that an injury signal released from the injured motoneurons triggers the microglial proliferation in the axotFN. However, it is unclear whether the level of microglial proliferation is dependent on the degree of motoneuronal insult. In this study, we investigated the relationship between the extents of motoneuronal injury and microglial proliferation in a rat axotFN model. Administration of glial cell line-derived neurotrophic factor, N-acetyl L-cysteine, or salubrinal at the transection site ameliorated the increase in c-Jun and the reductions in levels of phosphorylated cAMP response element binding protein (p-CREB) and functional molecules in the injured motoneurons. Concurrently, the levels of the microglial marker ionized calcium-binding adapter molecule 1 and of macrophage colony-stimulating factor (cFms), proliferating cell nuclear antigen, and p-p38/p38 were significantly downregulated in microglia. These results demonstrate that the recovery of motoneuron function resulted in the reduction in microglial proliferation. We conclude that the degree of neuronal injury regulates the levels of microglial proliferation in the axotFN.
Collapse
Affiliation(s)
- Takashi Ishijima
- Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| | - Kazuyuki Nakajima
- Graduate School of Science and Engineering, Soka University, Tokyo, Japan
- Glycan & Life Systems Integration Center, Soka University, Tokyo, Japan
| |
Collapse
|
3
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Changes of signaling molecules in the axotomized rat facial nucleus. J Chem Neuroanat 2022; 126:102179. [DOI: 10.1016/j.jchemneu.2022.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 12/15/2022]
|
5
|
Events Occurring in the Axotomized Facial Nucleus. Cells 2022; 11:cells11132068. [PMID: 35805151 PMCID: PMC9266054 DOI: 10.3390/cells11132068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Transection of the rat facial nerve leads to a variety of alterations not only in motoneurons, but also in glial cells and inhibitory neurons in the ipsilateral facial nucleus. In injured motoneurons, the levels of energy metabolism-related molecules are elevated, while those of neurofunction-related molecules are decreased. In tandem with these motoneuron changes, microglia are activated and start to proliferate around injured motoneurons, and astrocytes become activated for a long period without mitosis. Inhibitory GABAergic neurons reduce the levels of neurofunction-related molecules. These facts indicate that injured motoneurons somehow closely interact with glial cells and inhibitory neurons. At the same time, these events allow us to predict the occurrence of tissue remodeling in the axotomized facial nucleus. This review summarizes the events occurring in the axotomized facial nucleus and the cellular and molecular mechanisms associated with each event.
Collapse
|
6
|
Tian Y, Geng D, Wang Y, Shi L, Yu H, He W, Zhu Y, Jun S, Fu C, Wang X, Zhang X, Yuan F, Wang S. Contribution of retrotrapezoid nucleus neurons to CO 2 -amplified cardiorespiratory activity in spontaneously hypertensive rats. J Physiol 2020; 599:1115-1130. [PMID: 33347681 DOI: 10.1113/jp280246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This study demonstrates that both CO2 -induced respiratory and cardiovascular responses are augmented in spontaneously hypertensive rats (SHRs). Genetic ablation of the retrotrapezoid nucleus (RTN) neurons depresses enhanced hypercapnic ventilatory response and eliminates CO2 -stimulated increase in arterial pressure and heart rate in SHRs. SHRs have a high protein level of pH-sensitive channels in the RTN, including the TASK-2 channel, Kv12.1 channel and acid-sensing ion channel 3. The inhibition of putative TASK-2 channel activity by clofilium diminishes amplified hypercapnic ventilatory and cardiovascular responses, and reduces the number of CO2 -activated RTN neurons in SHRs. These results indicate that RTN neurons contribute to enhanced CO2 -stimulated respiratory and cardiovascular responses in SHRs. ABSTRACT The respiratory regulation of cardiovascular activity is essential for maintaining an efficient ventilation and perfusion ratio. Activation of central respiratory chemoreceptors not only elicits a ventilatory response but also regulates sympathetic nerve activity and arterial blood pressure (ABP). The retrotrapezoid nucleus (RTN) is the most completely characterized cluster of central respiratory chemoreceptors. We hypothesize that RTN neurons contribute to augmented CO2 -stimulated respiratory and cardiovascular responses in adult spontaneously hypertensive rats (SHRs). Our findings indicate that SHRs exhibit more enhanced hypercapnic cardiorespiratory responses than age-matched normotensive Wistar-Kyoto rats. Genetic ablation of RTN neurons notably depresses an enhanced hypercapnic ventilatory response (HCVR) and eliminates a CO2 -stimulated greater increase in ABP and heart rate in SHRs. In addition, SHRs have a higher protein level of pH-sensitive channels in the RTN, including TASK-2 channels, Kv12.1 channels and acid-sensing ion channel 3. Administration of clofilium (i.p.), an unselective inhibitor of TASK-2 channels, not only significantly reduces the enhanced HCVR but also inhibits CO2 -amplified increases in ABP and heart rate in SHRs. Moreover, clofilium significantly decreases the number of CO2 -activated RTN neurons in SHRs. Taken together, we suggest that RTN neurons play an important role in enhanced hypercapnic ventilatory and cardiovascular responses in SHRs and the putative mechanism involved is associated with TASK-2 channel activity in the RTN.
Collapse
Affiliation(s)
- Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Danyang Geng
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yakun Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Luo Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Hongxiao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wei He
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yufang Zhu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shirui Jun
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Congrui Fu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xin Wang
- Physiology Laboratory of Teaching Experiment Center, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, 050000, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
7
|
Diazoxide blocks or reduces microgliosis when applied prior or subsequent to motor neuron injury in mice. Brain Res 2020; 1741:146875. [PMID: 32389588 DOI: 10.1016/j.brainres.2020.146875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Diazoxide (DZX), an anti-hypertonic and anti-hypoglycemic drug, was shown to have anti-inflammatory effects in several injured cell types outside the central nervous system. In the brain, the neuroprotective potential of DZX is well described, however, its anticipated anti-inflammatory effect after acute injury has not been systematically analyzed. To disclose the anti-inflammatory effect of DZX in the central nervous system, an injury was induced in the hypoglossal and facial nuclei and in the oculomotor nucleus by unilateral axonal transection and unilateral target deprivation (enucleation), respectively. On the fourth day after surgery, microglial analysis was performed on tissue in which microglia were DAB-labeled and motoneurons were labeled with immunofluorescence. DZX treatment was given either prophylactically, starting 7 days prior to the injury and continuing until the animals were sacrificed, or postoperatively only, with daily intraperitoneal injections (1.25 mg/kg; in 10 mg/ml dimethyl sulfoxide in distilled water). Prophylactically + postoperatively applied DZX completely eliminated the microglial reaction in each motor nuclei. If DZX was applied only postoperatively, some microglial activation could be detected, but its magnitude was still significantly smaller than the non-DZX-treated controls. The effect of DZX could also be demonstrated through an extended period, as tested in the hypoglossal nucleus on day 7 after the operation. Neuronal counts, determined at day 4 after the operation in the hypoglossal nucleus, demonstrated no loss of motor neurons, however, an increased Feret's diameter of mitochondria could be measured, suggesting increased oxidative stress in the injured cells. The increase of mitochondrial Feret's diameter could also be prevented with DZX treatment.
Collapse
|
8
|
Akhter ET, Griffith RW, English AW, Alvarez FJ. Removal of the Potassium Chloride Co-Transporter from the Somatodendritic Membrane of Axotomized Motoneurons Is Independent of BDNF/TrkB Signaling But Is Controlled by Neuromuscular Innervation. eNeuro 2019; 6:ENEURO.0172-19.2019. [PMID: 31541001 PMCID: PMC6795555 DOI: 10.1523/eneuro.0172-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023] Open
Abstract
The potassium-chloride cotransporter (KCC2) maintains the low intracellular chloride found in mature central neurons and controls the strength and direction of GABA/glycine synapses. We found that following axotomy as a consequence of peripheral nerve injuries (PNIs), KCC2 protein is lost throughout the somatodendritic membrane of axotomized spinal cord motoneurons after downregulation of kcc2 mRNA expression. This large loss likely depolarizes the reversal potential of GABA/glycine synapses, resulting in GABAergic-driven spontaneous activity in spinal motoneurons similar to previous reports in brainstem motoneurons. We hypothesized that the mechanism inducing KCC2 downregulation in spinal motoneurons following peripheral axotomy might be mediated by microglia or motoneuron release of BDNF and TrkB activation as has been reported on spinal cord dorsal horn neurons after nerve injury, motoneurons after spinal cord injury (SCI), and in many other central neurons throughout development or a variety of pathologies. To test this hypothesis, we used genetic approaches to interfere with microglia activation or delete bdnf from specifically microglia or motoneurons, as well as pharmacology (ANA-12) and pharmacogenetics (F616A mice) to block TrkB activation. We show that KCC2 dysregulation in axotomized motoneurons is independent of microglia, BDNF, and TrkB. KCC2 is instead dependent on neuromuscular innervation; KCC2 levels are restored only when motoneurons reinnervate muscle. Thus, downregulation of KCC2 occurs specifically while injured motoneurons are regenerating and might be controlled by target-derived signals. GABAergic and glycinergic synapses might therefore depolarize motoneurons disconnected from their targets and contribute to augment motoneuron activity known to promote motor axon regeneration.
Collapse
Affiliation(s)
- Erica Tracey Akhter
- Departments of Physiology, Emory University, Atlanta, GA 30322
- Cell Biology, Emory University, Atlanta, GA 30322
| | | | | | | |
Collapse
|
9
|
Kim J, Kobayashi S, Shimizu-Okabe C, Okabe A, Moon C, Shin T, Takayama C. Changes in the expression and localization of signaling molecules in mouse facial motor neurons during regeneration of facial nerves. J Chem Neuroanat 2018; 88:13-21. [PMID: 29113945 DOI: 10.1016/j.jchemneu.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/20/2022]
Abstract
After injury, peripheral axons usually re-extend toward their target, and neuronal functions recover. Previous studies have reported that expression of various molecules are transiently altered in motor neurons after nerve injury, but the time course of these changes and their relationship with functional recovery have not been clearly demonstrated. We used the mouse facial nerve transection and suturing model, and examined the changes in expression of five molecules, choline acetyl transferase (ChAT), galanin, calcitonin gene-related protein (CGRP), gephyrin, and potassium chloride co-transporter 2 (KCC2) in the facial motor neurons after surgery until recovery. Number of ChAT-positive neurons was markedly decreased at days 3 and 7, and recovered to the normal level by day 60, when facial motor functions recovered. Localization of two neuropeptides, CGRP and galanin, was increased in the perikarya and axons during regeneration, and returned to the normal levels by days 60 and 28, respectively. Expression of two postsynaptic elements of γ-amino butyric acid synapses, gephyrin and KCC2, was decreased at days 3 and 7, and recovered by day 60. These results suggest that ChAT, CGRP, and KCC2 may be objective indicators of regeneration, and altering their expression may be related to the functional recovery and axonal re-extension.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan; Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Taekyun Shin
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
10
|
Response of the GABAergic System to Axotomy of the Rat Facial Nerve. Neurochem Res 2017; 43:324-339. [PMID: 29164431 DOI: 10.1007/s11064-017-2427-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/24/2017] [Accepted: 10/21/2017] [Indexed: 12/31/2022]
Abstract
The responses of inhibitory neurons/synapses to motoneuron injury in the cranial nervous system remain to be elucidated. In this study, we analyzed GABAA receptor (GABAAR) and GABAergic neurons at the protein level in the transected rat facial nucleus. Immunoblotting revealed that the GABAARα1 protein levels in the axotomized facial nucleus decreased significantly 5-14 days post-insult, and these levels remained low for 5 weeks. Immunohistochemical analysis indicated that the GABAARα1-expressing cells were motoneurons. We next examined the specific components of GABAergic neurons, including glutamate decarboxylase (GAD), vesicular GABA transporter (VGAT) and GABA transporter-1 (GAT-1). Immunoblotting indicated that the protein levels of GAD, VGAT and GAT-1 decreased transiently in the transected facial nucleus from 5 to 14 days post-insult, but returned to the control levels at 5 weeks post-insult. Although GABAARα1 protein levels in the transected nucleus did not return to their control levels for 5 weeks post-insult, the administration of glial cell line-derived neurotrophic factor at the cut site significantly ameliorated the reductions. Through these findings, we verified that the injured facial motoneurons suppressed the levels of GABAARα1 protein over the 5 weeks post-insult, presumably due to the deprivation of neurotrophic factor. On the other hand, the levels of the GAD, VGAT and GAT-1 proteins in GABAergic neurons were transiently reduced in the axotomized facial nucleus at 5-14 days post-insult, but recovered at 4-5 weeks post-insult.
Collapse
|
11
|
Abstract
Traumatic injury to the temporal bone can lead to significant morbidity or mortality and knowledge of the pertinent anatomy, pathophysiology of injury, and appropriate management strategies is critical for successful recovery and rehabilitation of such injured patients. Most temporal bone fractures are caused by motor vehicle accidents. Temporal bone fractures are best classified as either otic capsule sparing or otic capsule disrupting-type fractures, as such classification correlates well with risk of concomitant functional complications. The most common complications of temporal bone fractures are facial nerve injury, cerebrospinal fluid (CSF) leak, and hearing loss. Assessment of facial nerve function as soon as possible following injury greatly facilitates clinical decision making. Use of prophylactic antibiotics in the setting of CSF leak is controversial; however, following critical analysis and interpretation of the existing classic and contemporary literature, we believe its use is absolutely warranted.
Collapse
Affiliation(s)
- Rodney C Diaz
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis Medical Center, Sacramento, California, United States
| | - Brian Cervenka
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis Medical Center, Sacramento, California, United States
| | - Hilary A Brodie
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis Medical Center, Sacramento, California, United States
| |
Collapse
|
12
|
Sudo K, Takezawa Y, Kohsaka S, Nakajima K. Involvement of nitric oxide in the induction of interleukin-1 beta in microglia. Brain Res 2015; 1625:121-34. [PMID: 26335060 DOI: 10.1016/j.brainres.2015.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 12/29/2022]
Abstract
In response to in vitro stimulation with lipopolysaccharide (LPS), microglia induce the production of the inflammatory cytokine interleukin-1 beta (IL-1β) together with nitric oxide (NO) and superoxide anion (O2(-)). Here we investigated the role of NO and O2(-) in the signaling mechanism by which IL-1β is induced in microglia. The LPS-inducible IL-1β was significantly suppressed by pretreatment with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, but not by pretreatment with the O2(-) scavenger N-acetyl cysteine, suggesting the close association of NO with IL-1β induction. The pretreatment of microglia with the inducible NO synthase inhibitor 1400W prior to LPS stimulation significantly reduced the production of IL-1β, and the addition of the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) into microglia led to the induction of IL-1β. These results suggested that NO induces IL-1β through a specific signaling cascade. LPS-dependent IL-1β induction was significantly suppressed by inhibitors of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor kappaB (NFκB), indicating that ERK/JNK and NFκB serve in the cascade of IL-1β induction. As expected, ERK/JNK and NFκB were all activated in the SNAP-stimulated microglia. Taken together, these results indicate that NO is an important signaling molecule for the ERK/JNK and NFκB activations, which are requisite to the induction of IL-1β in microglia.
Collapse
Affiliation(s)
- Kenji Sudo
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan
| | - Yosuke Takezawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan
| | | | - Kazuyuki Nakajima
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan.
| |
Collapse
|
13
|
Takezawa Y, Baba O, Kohsaka S, Nakajima K. Accumulation of glycogen in axotomized adult rat facial motoneurons. J Neurosci Res 2015; 93:913-21. [DOI: 10.1002/jnr.23546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/25/2014] [Accepted: 11/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Yosuke Takezawa
- Department of Bioinformatics; Faculty of Engineering, Soka University; Tokyo Japan
| | - Otto Baba
- Department of Oral Function and Molecular Biology; School of Dentistry, Ohu University; Koriyamashi Japan
| | - Shinichi Kohsaka
- Department of Neurochemistry; National Institute of Neuroscience; Tokyo Japan
| | - Kazuyuki Nakajima
- Department of Bioinformatics; Faculty of Engineering, Soka University; Tokyo Japan
| |
Collapse
|
14
|
Takezawa Y, Kohsaka S, Nakajima K. Transient down-regulation and restoration of glycogen synthase levels in axotomized rat facial motoneurons. Brain Res 2014; 1586:34-45. [PMID: 25152465 DOI: 10.1016/j.brainres.2014.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022]
Abstract
In adult rats, transection of the facial nerve causes a functional down-regulation of motoneurons and glial activation/proliferation. It has not been clear how energy-supplying systems are regulated in an axotomized facial nucleus. Here we investigated the regulation of molecules involved in glycogen degradation/synthesis in axotomized facial nuclei in rats. Immunoblotting revealed that the amounts of glycogen phosphorylase in the contralateral and ipsilateral nuclei were unchanged for the first 14 days, whereas the amount of glycogen synthase in the axotomized facial nuclei was significantly decreased from days 7-14 post-insult. A quantitative analysis estimated that the glycogen synthase levels in the transected nucleus were reduced to approx. 50% at 14 days post-injury. An immunohistochemical study showed that the injured motoneurons had decreased expressions of glycogen synthase proteins. The glycogen synthase levels in the axotomized facial nucleus had returned to control levels by 5 weeks post-insult, as had the cholinergic markers. The immunohistochemical study also revealed the recovery of glycogen synthase levels at the later stage. The glycogen phosphorylase levels in the injured nucleus were not significantly changed during weeks 3-5 post-insult. Taken together, these results demonstrated that the injured facial motoneurons transiently reduced glycogen synthase levels at around 1-2 weeks post-insult, but restored the levels at 4-5 weeks post-insult.
Collapse
Affiliation(s)
- Yosuke Takezawa
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo 192-8577, Japan
| | - Shinichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo 187-8502, Japan
| | - Kazuyuki Nakajima
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo 192-8577, Japan.
| |
Collapse
|