1
|
Einenkel AM, Salameh A. Selective vulnerability of hippocampal CA1 and CA3 pyramidal cells: What are possible pathomechanisms and should more attention be paid to the CA3 region in future studies? J Neurosci Res 2024; 102:e25276. [PMID: 38284845 DOI: 10.1002/jnr.25276] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Transient ischemia and reperfusion selectively damage neurons in brain, with hippocampal pyramidal cells being particularly vulnerable. Even within hippocampus, heterogeneous susceptibility is evident, with higher vulnerability of CA1 versus CA3 neurons described for several decades. Therefore, numerous studies have focused exclusively on CA1. Pediatric cardiac surgery is increasingly focusing on studies of hippocampal structures, and a negative impact of cardiopulmonary bypass on the hippocampus cannot be denied. Recent studies show a shift in selective vulnerability from neurons of CA1 to CA3. This review shows that cell damage is increased in CA3, sometimes stronger than in CA1, depending on several factors (method, species, age, observation period). Despite a highly variable pattern, several markers illustrate greater damage to CA3 neurons than previously assumed. Nevertheless, the underlying cellular mechanisms have not been fully deciphered to date. The complexity is reflected in possible pathomechanisms discussed here, with numerous factors (NMDA, kainate and AMPA receptors, intrinsic oxidative stress potential and various radicals, AKT isoforms, differences in vascular architecture, ratio of pro- and anti-apoptotic Bcl-2 factors, vulnerability of interneurons, mitochondrial dysregulation) contributing to either enhanced CA1 or CA3 vulnerability. Furthermore, differences in expressed genome, proteome, metabolome, and transcriptome in CA1 and CA3 appear to influence differential behavior after damaging stimuli, thus metabolomics-, transcriptomics-, and proteomics-based analyses represent a viable option to identify pathways of selective vulnerability in hippocampal neurons. These results emphasize that future studies should focus on the CA3 field in addition to CA1, especially with regard to improving therapeutic strategies after ischemic/hypoxic brain injury.
Collapse
Affiliation(s)
- Anne-Marie Einenkel
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Aida Salameh
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| |
Collapse
|
2
|
Homayouni R, Canada KL, Saifullah S, Foster D, Thill C, Raz N, Daugherty AM, Ofen N. Age-related differences in hippocampal subfield volumes across the human lifespan: A meta-analysis. Hippocampus 2023; 33:1292-1315. [PMID: 37881160 PMCID: PMC10841547 DOI: 10.1002/hipo.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The human hippocampus (Hc) is critical for memory function across the lifespan. It is comprised of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors (CA) 1-4, and subiculum, each of which may be differentially susceptible to neurodevelopmental and neurodegenerative mechanisms. Identifying age-related differences in Hc subfield volumes can provide insights into neural mechanisms of memory function across the lifespan. Limited evidence suggests that DG and CA3 volumes differ across development while other regions remain relatively stable, and studies of adulthood implicate a downward trend in all subfield volumes with prominent age effects on CA1. Due to differences in methods and limited sampling for any single study, the magnitude of age effects on Hc subfield volumes and their probable lifespan trajectories remain unclear. Here, we conducted a meta-analysis on cross-sectional studies (n = 48,278 participants, ages = 4-94 years) to examine the association between age and Hc subfield volumes in development (n = 11 studies), adulthood (n = 30 studies), and a combined lifespan sample (n = 41 studies) while adjusting estimates for sample sizes. In development, age was positively associated with DG and CA3-4 volumes, whereas in adulthood a negative association was observed with all subfield volumes. Notably, the observed age effects were not different across subfield volumes within each age group. All subfield volumes showed a nonlinear age pattern across the lifespan with DG and CA3-4 volumes showing a more distinct age trajectory as compared to the other subfields. Lastly, among all the study-level variables, only female percentage of the study sample moderated the age effect on CA1 volume: a higher female-to-male ratio in the study sample was linked to the greater negative association between age and CA1 volume. These results document that Hc subfield volumes differ as a function of age offering broader implications for constructing theoretical models of lifespan memory development.
Collapse
Affiliation(s)
- Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | | | | | - Da’Jonae Foster
- Department of Psychology, Wayne State University, Detroit, MI
| | | | - Naftali Raz
- Department of Psychology, Stony Brook University, Stony Brook, NY
- Max Planck Institute for Human Development, Berlin, Germany
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| |
Collapse
|
3
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
4
|
Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
5
|
Smirnov DS, Salmon DP, Galasko D, Goodwill VS, Hansen LA, Zhao Y, Edland SD, Léger GC, Peavy GM, Jacobs DM, Rissman R, Pizzo DP, Hiniker A. Association of Neurofibrillary Tangle Distribution With Age at Onset-Related Clinical Heterogeneity in Alzheimer Disease: An Autopsy Study. Neurology 2022; 98:e506-e517. [PMID: 34810247 PMCID: PMC8826459 DOI: 10.1212/wnl.0000000000013107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Patients with earlier age at onset of sporadic Alzheimer disease (AD) are more likely than those with later onset to present with atypical clinical and cognitive features. We sought to determine whether this age-related clinical and cognitive heterogeneity is mediated by different topographic distributions of tau-aggregate neurofibrillary tangles (NFTs) or by variable amounts of concomitant non-AD neuropathology. METHODS The relative distribution of NFT density in hippocampus and midfrontal neocortex was calculated, and α-synuclein, TAR DNA binding protein 43 (TDP-43), and microvascular copathologies were staged, in patients with severe AD and age at onset of 51-60 (n = 40), 61-70 (n = 41), and >70 (n = 40) years. Regression, mediation, and mixed effects models examined relationships of pathologic findings with clinical features and longitudinal cognitive decline. RESULTS Patients with later age at onset of AD were less likely to present with nonmemory complaints (odds ratio [OR] 0.46 per decade, 95% confidence interval [CI] 0.22-0.88), psychiatric symptoms (β = -0.66, 95% CI -1.15 to -0.17), and functional impairment (β = -1.25, 95% CI -2.34 to -0.16). TDP-43 (OR 2.00, 95% CI 1.23-3.35) and microvascular copathology (OR 2.02, 95% CI 1.24-3.40) were more common in later onset AD, and α-synuclein copathology was not related to age at onset. NFT density in midfrontal cortex (β = -0.51, 95% CI -0.72 to -0.31) and midfrontal/hippocampal NFT ratio (β = -0.18, 95% CI -0.26 to -0.10) were lower in those with later age at onset. Executive function (β = 0.48, 95% CI 0.09-0.90) and visuospatial cognitive deficits (β = 0.97, 95% CI 0.46-1.46) were less impaired in patients with later age at onset. Mediation analyses showed that the effect of age at onset on severity of executive function deficits was mediated by midfrontal/hippocampal NFT ratio (β = 0.21, 95% CI 0.08-0.38) and not by concomitant non-AD pathologies. Midfrontal/hippocampal NFT ratio also mediated an association between earlier age at onset and faster decline on tests of global cognition, executive function, and visuospatial abilities. DISCUSSION Worse executive dysfunction and faster cognitive decline in people with sporadic AD with earlier rather than later age at onset is mediated by greater relative midfrontal neocortical to hippocampal NFT burden and not by concomitant non-AD neuropathology.
Collapse
Affiliation(s)
- Denis S Smirnov
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - David P Salmon
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Douglas Galasko
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Vanessa S Goodwill
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Lawrence A Hansen
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Yu Zhao
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Steven D Edland
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Gabriel C Léger
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Guerry M Peavy
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Diane M Jacobs
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Robert Rissman
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Donald P Pizzo
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA
| | - Annie Hiniker
- From the Departments of Neurosciences (D.S.S., D.P.S., D.G., G.C.L., G.M.P., D.M.J., R.R., A.H.), Pathology (V.S.G., L.A.H., D.P.P., A.H.), and Family Medicine and Public Health (Y.Z., S.D.E.), University of California, San Diego; and VA San Diego Healthcare System (D.G., R.R., A.H.), CA.
| |
Collapse
|
6
|
Bormann D, Stojanovic T, Cicvaric A, Schuld GJ, Cabatic M, Ankersmit HJ, Monje FJ. miRNA-132/212 Gene-Deletion Aggravates the Effect of Oxygen-Glucose Deprivation on Synaptic Functions in the Female Mouse Hippocampus. Cells 2021; 10:1709. [PMID: 34359879 PMCID: PMC8306255 DOI: 10.3390/cells10071709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Cerebral ischemia and its sequelae, which include memory impairment, constitute a leading cause of disability worldwide. Micro-RNAs (miRNA) are evolutionarily conserved short-length/noncoding RNA molecules recently implicated in adaptive/maladaptive neuronal responses to ischemia. Previous research independently implicated the miRNA-132/212 cluster in cholinergic signaling and synaptic transmission, and in adaptive/protective mechanisms of neuronal responses to hypoxia. However, the putative role of miRNA-132/212 in the response of synaptic transmission to ischemia remained unexplored. Using hippocampal slices from female miRNA-132/212 double-knockout mice in an established electrophysiological model of ischemia, we here describe that miRNA-132/212 gene-deletion aggravated the deleterious effect of repeated oxygen-glucose deprivation insults on synaptic transmission in the dentate gyrus, a brain region crucial for learning and memory functions. We also examined the effect of miRNA-132/212 gene-deletion on the expression of key mediators in cholinergic signaling that are implicated in both adaptive responses to ischemia and hippocampal neural signaling. miRNA-132/212 gene-deletion significantly altered hippocampal AChE and mAChR-M1, but not α7-nAChR or MeCP2 expression. The effects of miRNA-132/212 gene-deletion on hippocampal synaptic transmission and levels of cholinergic-signaling elements suggest the existence of a miRNA-132/212-dependent adaptive mechanism safeguarding the functional integrity of synaptic functions in the acute phase of cerebral ischemia.
Collapse
Affiliation(s)
- Daniel Bormann
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
- Laboratory for Cardiac and Thoracic Diagnosis, Department of Surgery, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Ana Cicvaric
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Gabor J. Schuld
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Department of Surgery, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Aposcience AG, Dresdner Straße 87/A 21, 1200 Vienna, Austria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; (D.B.); (T.S.); (G.J.S.); (M.C.)
| |
Collapse
|
7
|
Cheng J, Liu D, Zhao L, Zhao Q, Zhang X, Wang B, Bai D. Potentilla anserine L. polysaccharide inhibits cadmium-induced neurotoxicity by attenuating autophagy. Neurochem Int 2021; 147:105045. [PMID: 33887379 DOI: 10.1016/j.neuint.2021.105045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Cadmium (Cd), a heavy metal with cytotoxicity, can activate autophagy. This study aimed to explore the effects and mechanisms of Potentilla anserine L. polysaccharide (PAP) on autophagy in N2a cells, primary neurons, and the brain of BALB/c mice exposed to Cd. The CCK-8 assay results showed that the cell viability decreased and the number of acidic vesicular organelles, autophagic vacuoles, lysosomes, and dysfunctional mitochondria increased in the cytoplasm of Cd-exposed N2a cells and primary neurons, as revealed by acridine orange staining, monodansylcadaverine staining, and transmission electron microscopy. PAP mitigated Cd-induced neuronal death and characteristic changes in autophagy. The expression of LC3 IILC3 II, Bcl-2, p62, Beclin-1, and PI3K class III was examined by Western blot analysis. Furthermore, the PI3K inhibitor (LY294002 or 3-MA) and/or PAP reversed the Cd-induced upregulated expression of LC3 II, Beclin-1, and PI3K class III, with a synergy between PI3K inhibitor and PAP against Cd-induced autophagy. The findings suggested that PAP partially prevented Cd-induced autophagic cell death in neurons by inhibiting the PI3K class III/Beclin-1 signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Ju Cheng
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Di Liu
- Keylaboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, 730000, China
| | - Lixia Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qianqian Zhao
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bei Wang
- Laboratory Center for Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Decheng Bai
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
8
|
Lai Z, Gu L, Yu L, Chen H, Yu Z, Zhang C, Xu X, Zhang M, Zhang M, Ma M, Zhao Z, Zhang J. Delta opioid peptide [d-Ala2, d-Leu5] enkephalin confers neuroprotection by activating delta opioid receptor-AMPK-autophagy axis against global ischemia. Cell Biosci 2020; 10:79. [PMID: 32549974 PMCID: PMC7294676 DOI: 10.1186/s13578-020-00441-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Background Ischemic stroke poses a severe risk to human health worldwide, and currently, clinical therapies for the disease are limited. Delta opioid receptor (DOR)-mediated neuroprotective effects against ischemia have attracted increasing attention in recent years. Our previous studies revealed that DOR activation by [d-Ala2, d-Leu5] enkephalin (DADLE), a selective DOR agonist, can promote hippocampal neuronal survival on day 3 after ischemia. However, the specific molecular and cellular mechanisms underlying the DOR-induced improvements in ischemic neuronal survival remain unclear. Results We first detected the cytoprotective effects of DADLE in an oxygen–glucose deprivation/reperfusion (OGD/R) model and observed increased viability of OGD/R SH-SY5Y neuronal cells. We also evaluated changes in the DOR level following ischemia/reperfusion (I/R) injury and DADLE treatment and found that DADLE increased DOR levels after ischemia in vivo and vitro. The effects of DOR activation on postischemic autophagy were then investigated, and the results of the animal experiment showed that DOR activation by DADLE enhanced autophagy after ischemia, as indicated by elevated LC3 II/I levels and reduced P62 levels. Furthermore, the DOR-mediated protective effects on ischemic CA1 neurons were abolished by the autophagy inhibitor 3-methyladenine (3-MA). Moreover, the results of the cell experiments revealed that DOR activation not only augmented autophagy after OGD/R injury but also alleviated autophagic flux dysfunction. The molecular pathway underlying DOR-mediated autophagy under ischemic conditions was subsequently studied, and the in vivo and vitro data showed that DOR activation elevated autophagy postischemia by triggering the AMPK/mTOR/ULK1 signaling pathway, while the addition of the AMPK inhibitor compound C eliminated the protective effects of DOR against I/R injury. Conclusion DADLE-evoked DOR activation enhanced neuronal autophagy through activating the AMPK/mTOR/ULK1 signaling pathway to improve neuronal survival and exert neuroprotective effects against ischemia.
Collapse
Affiliation(s)
- Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Lingling Gu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Zhenhua Yu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Cheng Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Xiaoqing Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Mutian Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, 201508 China
| | - Mingliang Ma
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China.,Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, 201508 China
| |
Collapse
|
9
|
Ernst L, David B, Gaubatz J, Domínguez-Narciso I, Lüchters G, Becker AJ, Weber B, Hattingen E, Elger CE, Rüber T. Volumetry of Mesiotemporal Structures Reflects Serostatus in Patients with Limbic Encephalitis. AJNR Am J Neuroradiol 2019; 40:2081-2089. [PMID: 31727746 DOI: 10.3174/ajnr.a6289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Limbic encephalitis is an autoimmune disease. A variety of autoantibodies have been associated with different subtypes of limbic encephalitis, whereas its MR imaging signature is uniformly characterized by mesiotemporal abnormalities across subtypes. Here, we hypothesized that patients with limbic encephalitis would show subtype-specific mesiotemporal structural correlates, which could be classified by supervised machine learning on an individual level. MATERIALS AND METHODS T1WI MPRAGE scans from 46 patients with antibodies against glutamic acid decarboxylase and 34 patients with antibodies against the voltage-gated potassium channel complex (including 10 patients with leucine-rich glioma-inactivated 1 autoantibodies) and 48 healthy controls were retrospectively ascertained. Parcellation of the amygdala, hippocampus, and hippocampal subfields was performed using FreeSurfer. Volumes were extracted and compared between groups using unpaired, 2-tailed t tests. The volumes of hippocampal subfields were analyzed using a multivariate linear model and a binary decision tree classifier. RESULTS Temporomesial volume alterations were most pronounced in an early stage and in the affected hemispheric side of patients. Statistical analysis revealed antibody-specific hippocampal fingerprints with a higher volume of CA1 in patients with glutamic acid decarboxylase-associated limbic encephalitis (P = .02), compared with controls, whereas CA1 did not differ from that in controls in patients with voltage-gated potassium channel complex autoantibodies. The classifier could successfully distinguish between patients with autoantibodies against leucine-rich glioma-inactivated 1 and glutamic acid decarboxylase with a specificity of 87% and a sensitivity of 80%. CONCLUSIONS Our results suggest stage-, side- and antibody-specific structural correlates of limbic encephalitis; thus, they create a perspective toward an MR imaging-based diagnosis.
Collapse
Affiliation(s)
- L Ernst
- From the Department of Epileptology (L.E., B.D., J.G., I.D.-N., C.E.E., T.R.)
| | - B David
- From the Department of Epileptology (L.E., B.D., J.G., I.D.-N., C.E.E., T.R.)
| | - J Gaubatz
- From the Department of Epileptology (L.E., B.D., J.G., I.D.-N., C.E.E., T.R.)
| | - I Domínguez-Narciso
- From the Department of Epileptology (L.E., B.D., J.G., I.D.-N., C.E.E., T.R.)
| | - G Lüchters
- Center for Development Research (G.L.), University of Bonn, Bonn, Germany
| | | | - B Weber
- Institute for Experimental Epileptology and Cognition Research (B.W.)
| | - E Hattingen
- Department of Radiology (E.H.), University of Bonn Medical Center, Bonn, Germany
- Department of Neuroradiology (E.H.), Goethe University Frankfurt, Frankfurt, Germany
| | - C E Elger
- From the Department of Epileptology (L.E., B.D., J.G., I.D.-N., C.E.E., T.R.)
| | - T Rüber
- From the Department of Epileptology (L.E., B.D., J.G., I.D.-N., C.E.E., T.R.)
- Epilepsy Center Frankfurt Rhine-Main (T.R.)
- Department of Neurology, and Center for Personalized Translational Epilepsy Research (T.R.), Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Cellular and Molecular Differences Between Area CA1 and the Dentate Gyrus of the Hippocampus. Mol Neurobiol 2019; 56:6566-6580. [PMID: 30874972 DOI: 10.1007/s12035-019-1541-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
A distinct feature of the hippocampus of the brain is its unidirectional tri-synaptic pathway originating from the entorhinal cortex and projecting to the dentate gyrus (DG) then to area CA3 and subsequently, area CA1 of the Ammon's horn. Each of these areas of the hippocampus has its own cellular structure and distinctive function. The principal neurons in these areas are granule cells in the DG and pyramidal cells in the Ammon's horn's CA1 and CA3 areas with a vast network of interneurons. This review discusses the fundamental differences between the CA1 and DG areas regarding cell morphology, synaptic plasticity, signaling molecules, ability for neurogenesis, vulnerability to various insults and pathologies, and response to pharmacological agents.
Collapse
|
11
|
Zhao Q, Chen A, Wang X, Zhang Z, Zhao Y, Huang Y, Ren S, Zhu Y. Protective effects of dehydrocostuslactone on rat hippocampal slice injury induced by oxygen‑glucose deprivation/reoxygenation. Int J Mol Med 2018; 42:1190-1198. [PMID: 29786748 DOI: 10.3892/ijmm.2018.3691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 05/15/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the protective effects of dehydrocostuslactone (DHL) against rat hippocampal slice injury caused by oxygen‑glucose deprivation/reoxygenation (OGD/R). Rat hippocampal slice injury was induced by OGD/R in vitro, and the degree of injury was evaluated through a lactate dehydrogenase (LDH) assay and 2,3,5‑triphenyltetrazolium chloride (TTC) staining. The protein expression levels of B‑cell lymphoma-2 (Bcl‑2), Bcl‑2‑associated X protein (Bax), cytochrome c (cyt‑c), apoptotic protease activating factor 1 (apaf‑1), caspase‑9, caspase‑7, caspase‑3, sequestosome 1 (SQSTM1) and microtubule‑associated protein 1 light chain 3 (LC3) were analyzed through western blot analysis. The results showed that 1, 5 and 10 µM DHL decreased the levels of LDH (P<0.05) and increased the A490 value of TTC (P<0.05). Furthermore, the expression of Bcl‑2 was enhanced, and the protein expression levels of Bax, cyt‑c, apaf‑1, caspase‑9, caspase‑7, caspase‑3, SQSTM1 and LC3 were significantly inhibited (P<0.05), compared with those in the OGD/R group. These results suggested that DHL elicited protective effects against hippocampal OGD/R injury, and its underlying mechanism may be associated with inhibiting apoptosis.
Collapse
Affiliation(s)
- Qipeng Zhao
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Ailing Chen
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaobo Wang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhuanzhuan Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yunsheng Zhao
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yu Huang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shuanglai Ren
- Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yafei Zhu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
12
|
Chen X, Jiang XM, Zhao LJ, Sun LL, Yan ML, Tian Y, Zhang S, Duan MJ, Zhao HM, Li WR, Hao YY, Wang LB, Xiong QJ, Ai J. MicroRNA-195 prevents dendritic degeneration and neuron death in rats following chronic brain hypoperfusion. Cell Death Dis 2017; 8:e2850. [PMID: 28569780 PMCID: PMC5520902 DOI: 10.1038/cddis.2017.243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/16/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
Abstract
Impaired synaptic plasticity and neuron loss are hallmarks of Alzheimer’s disease and vascular dementia. Here, we found that chronic brain hypoperfusion (CBH) by bilateral common carotid artery occlusion (2VO) decreased the total length, numbers and crossings of dendrites and caused neuron death in rat hippocampi and cortices. It also led to increase in N-terminalβ-amyloid precursor protein (N-APP) and death receptor-6 (DR6) protein levels and in the activation of caspase-3 and caspase-6. Further study showed that DR6 protein was downregulated bymiR-195overexpression, upregulated bymiR-195inhibition, and unchanged by binding-site mutation and miR-masks. Knockdown of endogenousmiR-195by lentiviral vector-mediated overexpression of its antisense molecule (lenti-pre-AMO-miR-195) decreased the total length, numbers and crossings of dendrites and neuron death, upregulated N-APP and DR6 levels, and elevated cleaved caspase-3 and caspase-6 levels. Overexpression ofmiR-195using lenti-pre-miR-195prevented these changes triggered by 2VO. We conclude thatmiR-195is involved in CBH-induced dendritic degeneration and neuron death through activation of the N-APP/DR6/caspase pathway.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China.,Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue-Mei Jiang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Lin-Jing Zhao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Lin-Lin Sun
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Mei-Ling Yan
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - You Tian
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Shuai Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Ming-Jing Duan
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Hong-Mei Zhao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Wen-Rui Li
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Yang-Yang Hao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Li-Bo Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| | - Qiao-Jie Xiong
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, NY 1794, USA
| | - Jing Ai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
13
|
Martín-Aragón Baudel MAS, Poole AV, Darlison MG. Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 2016; 140:195-209. [PMID: 27861901 DOI: 10.1111/jnc.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of death and disability worldwide. The major type of stroke is an ischaemic one, which is caused by a blockage that interrupts blood flow to the brain. There are currently very few pharmacological strategies to reduce the damage and social burden triggered by this pathology. The harm caused by the interruption of blood flow to the brain unfolds in the subsequent hours and days, so it is critical to identify new therapeutic targets that could reduce neuronal death associated with the spread of the damage. Here, we review some of the key molecular mechanisms involved in the progression of neuronal death, focusing on some new and promising studies. In particular, we focus on the potential of the chloride co-transporter (CCC) family of proteins, mediators of the GABAergic response, both during the early and later stages of stroke, to promote neuroprotection and recovery. Different studies of CCCs during the chronic and recovery phases post-stroke reveal the importance of timing when considering CCCs as potential neuroprotective and/or neuromodulator targets. The molecular regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are further discussed as an indirect approach for promoting neuroprotection and neurorehabilitation following an ischaemic insult. Finally, we mention the likely importance of combining different strategies in order to achieve more effective therapies.
Collapse
Affiliation(s)
| | - Amy V Poole
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Mark G Darlison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| |
Collapse
|
14
|
Öz P, Saybaşılı H. In vitro detection of oxygen and glucose deprivation-induced neurodegeneration and pharmacological neuroprotection based on hippocampal stratum pyramidale width. Neurosci Lett 2016; 636:196-204. [PMID: 27845243 DOI: 10.1016/j.neulet.2016.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/23/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022]
Abstract
Ischemia is one of the most prominent risk factors of neurodegenerative diseases such as Alzheimer's disease. The effects of oxygen and glucose depletion in hippocampal tissue due to ischemia can be mimicked in vitro using the oxygen and glucose deprivation (OGD) model. In this study, we applied OGD on acute rat hippocampal slices in order to design an elementary yet quantitative histological technique that compares the neuroprotective effects of (l)-carnitine to known neuroprotectors, such as the N-methyl-d-aspartate (NMDA) receptor antagonist memantine and the gamma-aminobutyric acid (GABA)-B receptor agonist baclofen. The level of neurodegeneration and the efficiency of pharmacological applications were estimated via stratum pyramidale width measurements in CA1 and CA3 regions of Nissl-stained 200-μm thick hippocampal slices. We demonstrated that (l)-carnitine is an effective pharmacological target against the neurodegeneration induced by in vitro ischemia in a narrow range of concentrations. Even though the effect of chemical neuroprotection was significant, full recovery was not achieved in the dose interval of 5-100μM. In addition to chemical applications, hypothermia was used as a physical neuroprotection against ischemia-related neurodegeneration. Our results showed that incubation of slices for 60min at 4°C provided the same level of neuroprotection as the most effective doses of memantine, baclofen, and (l)-carnitine.
Collapse
Affiliation(s)
- Pınar Öz
- Neuropsychopharmacology Application and Research Center, Üsküdar University Central Campus, Altunizade Mah. Haluk Türksoy Sk. No:14 34662, Istanbul, Turkey; Institute of Biomedical Engineering, Boğaziçi Üniversity Kandilli Campus, Kandilli Mah., 34684 Istanbul, Turkey
| | - Hale Saybaşılı
- Institute of Biomedical Engineering, Boğaziçi Üniversity Kandilli Campus, Kandilli Mah., 34684 Istanbul, Turkey.
| |
Collapse
|
15
|
Wang Q, Yin J, Wang S, Cui D, Lin H, Ge M, Dai Z, Xie L, Si J, Ma K, Li L, Zhao L. Effects of activin A and its downstream ERK1/2 in oxygen and glucose deprivation after isoflurane-induced postconditioning. Biomed Pharmacother 2016; 84:535-543. [PMID: 27693962 DOI: 10.1016/j.biopha.2016.09.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Isoflurane postconditioning (ISPOC) plays a neuroprotection role in the brain. Previous studies confirmed that isoflurane postconditioning can provide better protection than preconditioning in acute hypoxic-ischemic brain damage, such as acute craniocerebral trauma and ischemic stroke. Numerous studies have reported that activin A can protect rat's brain from cell injury. However, whether activin A and its downstream ERK1/2 were involved in isoflurane postconditioning-induced neuroprotection is unknown. METHODS A total of 80 healthy Sprague-Dawley rats weighing 50-70g were randomly divided into 10 groups of 8: normal control, oxygen and glucose deprivation (OGD), 1.5% ISPOC, 3.0% ISPOC, 4.5% ISPOC, blocker of activin A (SB431542), blocker of ERK1/2 (U0126), 3.0% ISPOC+SB431542, 3.0% ISPOC+U0126, and vehicle (dimethyl sulfoxide(DMSO)) group. Blockers (SB431542 and U0126) were used in each concentration of isoflurane before OGD. Hematoxylin-eosin staining, 2,3,5-triphenyl tetrazolium chloride staining, and propidium iodide (PI) staining were conducted to assess the reliability in the brain slices. Immunofluorescence, Western blot, and quantitative real-time PCR(Q-PCR) were performed to validate the protein expression levels of activin A, Smad2/3, P-Smad2/3, ERK1/2, and phosphorylation ERK1/2 (P-ERK1/2). RESULTS The number of damaged neurons and mean fluorescence intensity(MFI) of PI staining increased, but formazan generation, expression levels of activin A and P-ERK1/2 protein, and mRNA synthesis level of activin A decreased in the OGD group compared with the normal control group (p<0.05). The number of damaged neurons and MFI of PI staining decreased, but formazan production, expression levels of activin A, P-Smad2/3, and P-ERK1/2, and mRNA synthesis level of activin A increased significantly in the 1.5% ISPOC and 3.0% ISPOC groups (p<0.05) compared with the OGD group. The result in the 4.5% ISPOC group, was completely opposite to the 1.5% ISPOC and 3.0% ISPOC groups. The number of damage neuron and MFI of PI staining increased, but formazan production, expression levels of activin A, P-Smad2/3, and P-ERK1/2, and mRNA synthesis level of activin A decreased in the 4.5% ISPOC group. However, the expression levels of activin A, P-Smad2/3, and P-ERK1/2, and mRNA synthesis level of activin A in the 4.5% ISPOC group were higher than the OGD group (p<0.05). The other results were compared between the SB431542 group/the U0126 group and 3.0% ISPOC group. The MFI of PI staining increased, but the expression levels of activin A, P-Smad2/3, and P-ERK1/2 decreased (p<0.05). The expression level of ERK1/2 protein in all groups exhibited no change (p>0.05). CONCLUSION Results of this study showed that 3.0% concentration of isoflurane postconditioning provided better neuroprotection than 1.5% and 4.5% concentrations of isoflurane. Activin A/Smad 2/3 and activin A/ERK1/2 signaling pathway may be involved in ISPOC-induced neuroprotection.
Collapse
Affiliation(s)
- Qin Wang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China.
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China.
| | - Di Cui
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Hong Lin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Mingyue Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Zhigang Dai
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Liping Xie
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Junqiang Si
- Department of Physiology, School of Medicine, Shihezi University and the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832002, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Shihezi University and the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832002, China
| | - Li Li
- Department of Physiology, School of Medicine, Shihezi University and the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832002, China
| | - Lei Zhao
- Department of Physiology, School of Medicine, Shihezi University and the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832002, China
| |
Collapse
|
16
|
Selective neuronal vulnerability of human hippocampal CA1 neurons: lesion evolution, temporal course, and pattern of hippocampal damage in diffusion-weighted MR imaging. J Cereb Blood Flow Metab 2015; 35:1836-45. [PMID: 26082014 PMCID: PMC4635239 DOI: 10.1038/jcbfm.2015.137] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 01/30/2023]
Abstract
The CA1 (cornu ammonis) region of hippocampus is selectively vulnerable to a variety of metabolic and cytotoxic insults, which is mirrored in a delayed neuronal death of CA1 neurons. The basis and mechanisms of this regional susceptibility of CA1 neurons are poorly understood, and the correlates in human diseases affecting the hippocampus are not clear. Adopting a translational approach, the lesion evolution, temporal course, pattern of diffusion changes, and damage in hippocampal CA1 in acute neurologic disorders were studied using high-resolution magnetic resonance imaging. In patients with hippocampal ischemia (n=50), limbic encephalitis (n=30), after status epilepticus (n=17), and transient global amnesia (n=53), the CA1 region was selectively affected compared with other CA regions of the hippocampus. CA1 neurons exhibited a maximum decrease of apparent diffusion coefficient (ADC) 48 to 72 hours after the insult, irrespective of the nature of the insult. Hypoxic-ischemic insults led to a significant lower ADC suggesting that the ischemic insult results in a stronger impairment of cellular metabolism. The evolution of diffusion changes show that CA1 diffusion lesions mirror the delayed time course of the pathophysiologic cascade typically observed in animal models. Studying the imaging correlates of hippocampal damage in humans provides valuable insight into the pathophysiology and neurobiology of the hippocampus.
Collapse
|
17
|
Anuncibay-Soto B, Pérez-Rodríguez D, Llorente IL, Regueiro-Purriños M, Gonzalo-Orden JM, Fernández-López A. Age-dependent modifications in vascular adhesion molecules and apoptosis after 48-h reperfusion in a rat global cerebral ischemia model. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9703. [PMID: 25182537 PMCID: PMC4453934 DOI: 10.1007/s11357-014-9703-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
Stroke is one of the leading causes of death and permanent disability in the elderly. However, most of the experimental studies on stroke are based on young animals, and we hypothesised that age can substantially affect the stroke response. The two-vessel occlusion model of global ischemia by occluding the common carotid arteries for 15 min at 40 mmHg of blood pressure was carried out in 3- and 18-month-old male Sprague-Dawley rats. The adhesion molecules E- and P-selectin, cell adhesion molecules (CAMs), both intercellular (ICAM-1) and vascular (VCAM-1), as well as glial fibrillary acidic protein (GFAP), and cleaved caspase-3 were measured at 48 h after ischemia in the cerebral cortex and hippocampus using Western blot, qPCR and immunofluorescence techniques. Diametric expression of GFAP and a different morphological pattern of caspase-3 labelling, although no changes in the cell number, were observed in the neurons of young and old animals. Expression of E-selectin and CAMs was also modified in an age- and ischemia/reperfusion-dependent manner. The hippocampus and cerebral cortex had similar response patterns for most of the markers studied. Our data suggest that old and young animals present different time-courses of neuroinflammation and apoptosis after ischemic damage. On the other hand, these results suggest that neuroinflammation is dependent on age rather than on the different vulnerability described for the hippocampus and cerebral cortex. These differences should be taken into account in searching for therapeutic targets.
Collapse
Affiliation(s)
- Berta Anuncibay-Soto
- />Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Diego Pérez-Rodríguez
- />Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Irene L Llorente
- />Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Marta Regueiro-Purriños
- />Área de Medicina, Cirugía y Anatomía Veterinaria, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - José Manuel Gonzalo-Orden
- />Área de Medicina, Cirugía y Anatomía Veterinaria, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | | |
Collapse
|