1
|
Itokazu Y, Beck WD, Terry AV. GM1 and GD3 Gangliosides Attenuate NGF-TrkA and BDNF-TrkB Signaling Dysfunction Associated with Acute Diisopropylfluorophosphate Exposure in Mouse Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646417. [PMID: 40235968 PMCID: PMC11996371 DOI: 10.1101/2025.03.31.646417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The prevalence of neurodegenerative diseases and mental health disorders has been increasing over the past few decades. While genetic and lifestyle factors are important to the etiology of these illnesses, the pathogenic role of environmental factors, especially toxicants such as pesticides encountered over the life span, is receiving increased attention. As an environmental factor, organophosphates pose a constant threat to human health due to their widespread use as pesticides, their deployment by rogue militaries, and their use in terrorist attacks. The standard organophosphate-antidotal regimen provides modest efficacy against lethality, although morbidity remains high, and there is little evidence that it attenuates long-term neurobehavioral sequelae. Here we show that a novel intranasally administered treatment strategy with specific gangliosides can prevent the organophosphate-related alterations in important neurotrophin pathways that are involved in cognition and depression. We found that a single toxic dose of the organophosphate diisopropylfluorophosphate (DFP) in mice leads to persistent decreases in the neurotrophins NGF and BDNF and their receptors, TrkA and TrkB. Moreover, seven days of repeated intranasal administration of gangliosides GM1 or GD3 24 hours after the DFP injection prevented the neurotrophin receptor alterations. As NGF and BDNF signaling are involved in cognitive function and depression symptoms, respectively, intranasal administration of GM1 or GD3 can prevent the organophosphate-related alterations in those brain functions. Our study thus supports the potential of a novel therapeutic strategy for neurological deficits associated with a class of poisons that endangers millions of people worldwide. Highlights A single exposure to DFP, which causes cognitive deficits, dysregulates NGF and BDNF signalingGM1 or GD3 24 hours after DFP injection prevents the alteration of the neurotrophin signalingIntranasal ganglioside treatment provides neuroprotective effects against persistent organophosphate toxicity.
Collapse
|
2
|
Shi M, Yang J, Liu Y, Zhao H, Li M, Yang D, Xie Q. Huanglian Wendan Decoction Improves Insomnia in Rats by Regulating BDNF/TrkB Signaling Pathway Through Gut Microbiota-Mediated SCFAs and Affecting Microglia Polarization. Mol Neurobiol 2025; 62:1047-1066. [PMID: 38954253 DOI: 10.1007/s12035-024-04330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Insomnia is a typical type of sleep disorder. Huanglian Wendan Decoction (HWD) is a traditional Chinese medicine (TCM) with the effects of regulating Qi, drying dampness and resolving phlegm, calming the mind, and relieving irritation. This study aims to investigate the effect of HWD on insomnia in rats and its mechanism. Para-chlorophenylalanine (PCPA)-induced insomnia in rats was used for in vivo experiments and then treated with HWD. Behavioral tests, Western blot, real-time PCR, immunofluorescent staining, 16S rRNA sequencing were conducted. The content of SCFAs was determined by GC-MS. Acetic acid-pretreated rat hippocampal nerve cells were used for in vitro experiments. The results showed that HWD significantly improved the learning memory ability, decreased sleep latency, and prolonged sleep duration in insomniac rats. HWD reduced TNF-α and IL-6 levels and increased IL-10 and Foxp3 levels. HWD also promoted the polarization of macrophages from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. In addition, HWD increased the expression levels of BDNF and TrkB in the hippocampus. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone (7,8-DHF) confirmed the mechanism by which HWD activates BDNF/TrkB signaling to ameliorate insomnia. Furthermore, HWD restored gut microbiota richness and diversity and promoted short-chain fatty acid (SCFA) production in insomniac rats. In vitro experiments confirmed that the acetic acid-treated SCFA group could activate the BDNF/TrkB signaling pathway in neuronal cells, further promoting neuronal cell growth. In conclusion, HWD alleviated insomnia by maintaining gut microbiota homeostasis, promoting SCFA production, reducing neuroinflammatory response and microglia activation, and activating BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Min Shi
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China
| | - Jie Yang
- Traditional Chinese Medicine Department, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Ying Liu
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Huan Zhao
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China
| | - Man Li
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China.
| | - Quan Xie
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
3
|
Sharma S, Dasgupta M, Vadaga BS, Kodgire P. Unfolding the symbiosis of AID, chromatin remodelers, and epigenetics-The ACE phenomenon of antibody diversity. Immunol Lett 2024; 269:106909. [PMID: 39128629 DOI: 10.1016/j.imlet.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Activation-induced cytidine deaminase (AID) is responsible for the initiation of somatic hypermutation (SHM) and class-switch recombination (CSR), which result in antibody affinity maturation and isotype switching, thus producing pathogen-specific antibodies. Chromatin dynamics and accessibility play a significant role in determining AID expression and its targeting. Chromatin remodelers contribute to the accessibility of the chromatin structure, thereby influencing the targeting of AID to Ig genes. Epigenetic modifications, including DNA methylation, histone modifications, and miRNA expression, profoundly impact the regulation of AID and chromatin remodelers targeting Ig genes. Additionally, epigenetic modifications lead to chromatin rearrangement and thereby can change AID expression levels and its preferential targeting to Ig genes. This interplay is symbolized as the ACE phenomenon encapsulates three interconnected aspects: AID, Chromatin remodelers, and Epigenetic modifications. This review emphasizes the importance of understanding the intricate relationship between these aspects to unlock the therapeutic potential of these molecular processes and molecules.
Collapse
Affiliation(s)
- Saurav Sharma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mallar Dasgupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Bindu Sai Vadaga
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
4
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Valvassori SS, da Rosa RT, Dal-Pont GC, Varela RB, Mastella GA, Daminelli T, Fries GR, Quevedo J, Zugno AI. Haloperidol alters neurotrophic factors and epigenetic parameters in an animal model of schizophrenia induced by ketamine. Int J Dev Neurosci 2023; 83:691-702. [PMID: 37635268 DOI: 10.1002/jdn.10296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to evaluate Haloperidol's (Hal) effects on the behavioral, neurotrophic factors, and epigenetic parameters in an animal model of schizophrenia (SCZ) induced by ketamine (Ket). Injections of Ket or saline were administered intraperitoneal (once a day) between the 1st and 14th days of the experiment. Water or Hal was administered via gavage between the 8th and 14th experimental days. Thirty minutes after the last injection, the animals were subjected to behavioral analysis. The activity of DNA methyltransferase (DNMT), histone deacetylase (HDAC), and histone acetyltransferase and levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. Ket increased the covered distance and time spent in the central area of the open field, and Hal did not reverse these behavioral alterations. Significant increases in the DNMT and HDAC activities were detected in the frontal cortex and striatum from rats that received Ket, Hal, or a combination thereof. Besides, Hal per se increased the activity of DNMT and HDAC in the hippocampus of rats. Hal per se or the association of Ket plus Hal decreased BDNF, NGF, NT-3, and GDNF, depending on the brain region and treatment regimen. The administration of Hal can alter the levels of neurotrophic factors and the activity of epigenetic enzymes, which can be a factor in the development of effect collateral in SCZ patients. However, the precise mechanisms involved in these alterations are still unclear.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Richard T da Rosa
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gustavo A Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Neuroscience Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
7
|
Kwon H, Lee EH, Park SY, Park JY, Hong JH, Kim EK, Shin TS, Kim YK, Han PL. Lactobacillus-derived extracellular vesicles counteract Aβ42-induced abnormal transcriptional changes through the upregulation of MeCP2 and Sirt1 and improve Aβ pathology in Tg-APP/PS1 mice. Exp Mol Med 2023; 55:2067-2082. [PMID: 37704750 PMCID: PMC10545704 DOI: 10.1038/s12276-023-01084-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 09/15/2023] Open
Abstract
Mounting evidence suggests that probiotics are beneficial for treating Alzheimer's disease (AD). However, the mechanisms by which specific probiotics modify AD pathophysiology are not clearly understood. In this study, we investigated whether Lactobacillus paracasei-derived extracellular vesicles (Lpc-EV) can directly act on neuronal cells to modify amyloid-beta (Aβ)-induced transcriptional changes and Aβ pathology in the brains of Tg-APP/PS1 mice. Lpc-EV treatment in HT22 neuronal cells counteracts Aβ-induced downregulation of Brain-derived neurotrophic factor (Bdnf), Neurotrophin 3 (Nt3), Nt4/5, and TrkB receptor, and reverses Aβ-induced altered expression of diverse nuclear factors, including the downregulation of Methyl-CpG binding protein 2 (Mecp2) and Sirtuin 1 (Sirt1). Systematic siRNA-mediated knockdown experiments indicate that the upregulation of Bdnf, Nt3, Nt4/5, and TrkB by Lpc-EV is mediated via multiple epigenetic factors whose activation converges on Mecp2 and Sirt1. In addition, Lpc-EV reverses Aβ-induced downregulation of the Aβ-degrading proteases Matrix metalloproteinase 2 (Mmp-2), Mmp-9, and Neprilysin (Nep), whose upregulation is also controlled by MeCP2 and Sirt1. Lpc-EV treatment restores the downregulated expression of Bdnf, Nt4/5, TrkB, Mmp-2, Mmp-9, and Nep; induces the upregulation of MeCP2 and Sirt1 in the hippocampus; alleviates Aβ accumulation and neuroinflammatory responses in the brain; and mitigates cognitive decline in Tg-APP/PS1 mice. These results suggest that Lpc-EV cargo contains a neuroactive component that upregulates the expression of neurotrophic factors and Aβ-degrading proteases (Mmp-2, Mmp-9, and Nep) through the upregulation of MeCP2 and Sirt1, and ameliorates Aβ pathology and cognitive deficits in Tg-APP/PS1 mice.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - So-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Hwan Hong
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Kyung Kim
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea
| | - Tae-Seop Shin
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea
| | - Yoon-Keun Kim
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea.
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
8
|
de Lucca MS, Pimentel MEO, Raimundo CKO, Henriques BD, Moreira TR, Cardoso SA, de Miranda DM. Brain-derived neurotrophic factor (BDNF) levels in children and adolescents before and after stimulant use a systematic review and metanalysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110761. [PMID: 37044279 DOI: 10.1016/j.pnpbp.2023.110761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with cognitive, social, and academic impairment. Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), have been implicated in the pathophysiology of ADHD and response to stimulant treatment. This review aims to investigate the relationship between BDNF levels in ADHD before and after treatment with stimulants in childhood. METHODS This systematic review followed PRISMA-P guidelines and included 19 studies from PubMed, EMBASE, Cochrane, Capes Periodic, and Lilacs databases. The studies were evaluated for risk of bias and level of evidence. RESULTS There was no significant difference in peripheral BDNF levels in ADHD children before or after methylphenidate treatment. Additionally, there was no statistically significant difference in BDNF levels between children with ADHD and controls. DISCUSSION Understanding the role of BDNF in ADHD may provide insight into the disorder's pathophysiology and facilitate the development of biological markers for clinical use. CONCLUSION Our findings suggest that BDNF levels are not significantly affected by methylphenidate treatment in ADHD children and do not differ from controls. SYSTEMATIC REVIEW REGISTRATION "Brain-derived neurotrophic factor (BDNF) levels in children and adolescents before and after stimulant use: a systematic review". Number CRD42021261519.
Collapse
Affiliation(s)
- Marina Silva de Lucca
- Department of Medicine and Nursing, Federal University of Viçosa, MG CEP 36.570 -900, Brazil; Postgraduate Program in Health Sciences at the Federal University of Minas Gerais, MG CEP 30.130-100, Brazil.
| | | | | | - Bruno David Henriques
- Department of Medicine and Nursing, Federal University of Viçosa, MG CEP 36.570 -900, Brazil
| | - Tiago Ricardo Moreira
- Department of Medicine and Nursing, Federal University of Viçosa, MG CEP 36.570 -900, Brazil
| | - Sílvia Almeida Cardoso
- Department of Medicine and Nursing, Federal University of Viçosa, MG CEP 36.570 -900, Brazil.
| | - Débora Marques de Miranda
- Postgraduate Program in Health Sciences at the Federal University of Minas Gerais, MG CEP 30.130-100, Brazil
| |
Collapse
|
9
|
Understanding ayahuasca effects in major depressive disorder treatment through in vitro metabolomics and bioinformatics. Anal Bioanal Chem 2023:10.1007/s00216-023-04556-3. [PMID: 36717401 DOI: 10.1007/s00216-023-04556-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Emerging insights from metabolomic-based studies of major depression disorder (MDD) are mainly related to biochemical processes such as energy or oxidative stress, in addition to neurotransmission linked to specific metabolite intermediates. Hub metabolites represent nodes in the biochemical network playing a critical role in integrating the information flow in cells between metabolism and signaling pathways. Limited technical-scientific studies have been conducted to understand the effects of ayahuasca (Aya) administration in the metabolism considering MDD molecular context. Therefore, this work aims to investigate an in vitro primary astrocyte model by untargeted metabolomics of two cellular subfractions: secretome and intracellular content after pre-defined Aya treatments, based on DMT concentration. Mass spectrometry (MS)-based metabolomics data revealed significant hub metabolites, which were used to predict biochemical pathway alterations. Branched-chain amino acid (BCAA) metabolism, and vitamin B6 and B3 metabolism were associated to Aya treatment, as "housekeeping" pathways. Dopamine synthesis was overrepresented in the network results when considering the lowest tested DMT concentration (1 µmol L-1). Building reaction networks containing significant and differential metabolites, such as nicotinamide, L-DOPA, and L-leucine, is a useful approach to guide on dose decision and pathway selection in further analytical and molecular studies.
Collapse
|
10
|
Scotti-Muzzi E, Chile T, Vallada H, Otaduy MCG, Soeiro-de-Souza MG. BDNF rs6265 differentially influences neurometabolites in the anterior cingulate of healthy and bipolar disorder subjects. Brain Imaging Behav 2023; 17:282-293. [PMID: 36630045 DOI: 10.1007/s11682-023-00757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant brain neurotrophin and plays a critical role in neuronal growth, survival and plasticity, implicated in the pathophysiology of Bipolar Disorders (BD). The single-nucleotide polymorphism in the BDNF gene (BDNF rs6265) has been associated with decreased hippocampal BDNF secretion and volume in met carriers in different populations, although the val allele has been reported to be more frequent in BD patients. The anterior cingulate cortex (ACC) is a key center integrating cognitive and affective neuronal connections, where consistent alterations in brain metabolites such as Glx (Glutamate + Glutamine) and N-acetylaspartate (NAA) have been consistently reported in BD. However, little is known about the influence of BDNF rs6265 on neurochemical profile in the ACC of Healthy Controls (HC) and BD subjects. The aim of this study was to assess the influence of BDNF rs6265 on ACC neurometabolites (Glx, NAA and total creatine- Cr) in 124 euthymic BD type I patients and 76 HC, who were genotyped for BDNF rs6265 and underwent a 3-Tesla proton magnetic resonance imaging and spectroscopy scan (1 H-MRS) using a PRESS ACC single-voxel (8cm3) sequence. BDNF rs6265 polymorphism showed a significant two-way interaction (diagnosis × genotype) in relation to NAA/Cr and total Cr. While met carriers presented increased NAA/Cr in HC, BD-I subjects with the val allele revealed higher total Cr, denoting an enhanced ACC metabolism likely associated with increased glutamatergic metabolites observed in BD-I val carriers. However, these results were replicated only in men. Therefore, our results support evidences that the BDNF rs6265 polymorphism exerts a complex pleiotropic effect on ACC metabolites influenced by the diagnosis and sex.
Collapse
Affiliation(s)
- Estêvão Scotti-Muzzi
- Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil.
| | - Thais Chile
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Homero Vallada
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Maria Concepción Garcia Otaduy
- Laboratory of Magnetic Resonance in Neuroradiology LIM44, Department and Institute of Radiology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | | |
Collapse
|
11
|
Johnston KJ, Huckins LM. Chronic Pain and Psychiatric Conditions. Complex Psychiatry 2023; 9:24-43. [PMID: 37034825 PMCID: PMC10080192 DOI: 10.1159/000527041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Chronic pain is a common condition with high socioeconomic and public health burden. A wide range of psychiatric conditions are often comorbid with chronic pain and chronic pain conditions, negatively impacting successful treatment of either condition. The psychiatric condition receiving most attention in the past with regard to chronic pain comorbidity has been major depressive disorder, despite the fact that many other psychiatric conditions also demonstrate epidemiological and genetic overlap with chronic pain. Further understanding potential mechanisms involved in psychiatric and chronic pain comorbidity could lead to new treatment strategies both for each type of disorder in isolation and in scenarios of comorbidity. Methods This article provides an overview of relationships between DSM-5 psychiatric diagnoses and chronic pain, with particular focus on PTSD, ADHD, and BPD, disorders which are less commonly studied in conjunction with chronic pain. We also discuss potential mechanisms that may drive comorbidity, and present new findings on the genetic overlap of chronic pain and ADHD, and chronic pain and BPD using linkage disequilibrium score regression analyses. Results Almost all psychiatric conditions listed in the DSM-5 are associated with increased rates of chronic pain. ADHD and BPD are significantly genetically correlated with chronic pain. Psychiatric conditions aside from major depression are often under-researched with respect to their relationship with chronic pain. Conclusion Further understanding relationships between psychiatric conditions other than major depression (such as ADHD, BPD, and PTSD as exemplified here) and chronic pain can positively impact understanding of these disorders, and treatment of both psychiatric conditions and chronic pain.
Collapse
Affiliation(s)
- Keira J.A. Johnston
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Pathak H, Borchert A, Garaali S, Burkert A, Frieling H. BDNF exon IV promoter methylation and antidepressant action: a complex interplay. Clin Epigenetics 2022; 14:187. [PMID: 36572893 PMCID: PMC9793565 DOI: 10.1186/s13148-022-01415-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND BDNF exon IV promoter methylation is a potential biomarker for treatment response to antidepressants in MDD. We have previously shown CpG-87 methylation as a successful biomarker for the prediction of non-response to monoaminergic antidepressants like the SSRI Fluoxetine or the SNRI Venlafaxine. This study aimed to dissect the biological evidence and mechanisms for the functionality of CpG-87 methylation in a cell culture model. RESULTS We observed a significant interaction between methylation and antidepressant-mediated transcriptional activity in BDNF exon IV promoter. In addition, antidepressant treatment increased the promoter methylation in a concentration-dependent manner. Further single CpG methylation of -87 did not change the promoter activity, but methylation of CREB domain CpG-39 increased the transcriptional activity in an antidepressant-dependent manner. Interestingly, DNMT3a overexpression also increases the BDNF exon IV transcription and more so in Venlafaxine-treated cells. CONCLUSIONS The study strengthens the previously reported association between antidepressant treatment and BDNF exon IV promoter methylation as well as hints toward the mechanism of action. We argue that potential CpG methylation biomarkers display a complex synergy with the molecular changes at the neighboring CpG positions, thus highlighting the importance of epiallele analyses.
Collapse
Affiliation(s)
- Hansi Pathak
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Anton Borchert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Sara Garaali
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Alexandra Burkert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| |
Collapse
|
14
|
Early Life Stress Affects Bdnf Regulation: A Role for Exercise Interventions. Int J Mol Sci 2022; 23:ijms231911729. [PMID: 36233029 PMCID: PMC9569911 DOI: 10.3390/ijms231911729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Early life stress (ELS) encompasses exposure to aversive experiences during early development, such as neglect or maltreatment. Animal and human studies indicate that ELS has maladaptive effects on brain development, leaving individuals more vulnerable to developing behavioral and neuropsychiatric disorders later in life. This result occurs in part to disruptions in Brain derived neurotrophic factor (Bdnf) gene regulation, which plays a vital role in early neural programming and brain health in adulthood. A potential treatment mechanism to reverse the effects of ELS on Bdnf expression is aerobic exercise due to its neuroprotective properties and positive impact on Bdnf expression. Aerobic exercise opens the door to exciting and novel potential treatment strategies because it is a behavioral intervention readily and freely available to the public. In this review, we discuss the current literature investigating the use of exercise interventions in animal models of ELS to reverse or mitigate ELS-induced changes in Bdnf expression. We also encourage future studies to investigate sensitive periods of exercise exposure, as well as sufficient duration of exposure, on epigenetic and behavioral outcomes to help lead to standardized practices in the exercise intervention field.
Collapse
|
15
|
de Abreu MS, Giacomini ACVV, Genario R, Demin KA, Amstislavskaya TG, Costa F, Rosemberg DB, Sneddon LU, Strekalova T, Soares MC, Kalueff AV. Understanding early-life pain and its effects on adult human and animal emotionality: Translational lessons from rodent and zebrafish models. Neurosci Lett 2022; 768:136382. [PMID: 34861343 DOI: 10.1016/j.neulet.2021.136382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Critical for organismal survival, pain evokes strong physiological and behavioral responses in various sentient species. Clinical and preclinical (animal) studies markedly increase our understanding of biological consequences of developmental (early-life) adversity, as well as acute and chronic pain. However, the long-term effects of early-life pain exposure on human and animal emotional responses remain poorly understood. Here, we discuss experimental models of nociception in rodents and zebrafish, and summarize mounting evidence of the role of early-life pain in shaping emotional traits later in life. We also call for further development of animal models to probe the impact of early-life pain exposure on behavioral traits, brain disorders and novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscreening Platform, School of Pharmacy, Southwest University, Chongqing, China; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Fabiano Costa
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Brazil; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Denis B Rosemberg
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Institute of General Pathology and Pathophysiology, Moscow, Russia; Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands
| | - Marta C Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
16
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
17
|
Padmakumar S, Jones G, Khorkova O, Hsiao J, Kim J, Bleier BS, Amiji MM. Osmotic core-shell polymeric implant for sustained BDNF AntagoNAT delivery in CNS using minimally invasive nasal depot (MIND) approach. Biomaterials 2021; 276:120989. [PMID: 34252799 PMCID: PMC8607190 DOI: 10.1016/j.biomaterials.2021.120989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
The development of drug delivery strategies for efficacious therapeutic administration directly into the central nervous system (CNS) in a minimally invasive manner remains a major obstacle hindering the clinical translation of biological disease-modifying therapeutics. A novel direct trans-nasal delivery method, termed 'Minimally-Invasive Nasal Depot' (MIND), has proved to be successful in providing high CNS uptake and brain distribution of blood-brain barrier (BBB) impermeant therapeutics via direct administration to the olfactory submucosal space in a rodent model. The present study describes the engineering of custom-made implants with a unique architecture of an "osmotically-active core" entrapping the therapeutic and a "biodegradable polymeric shell" to enable long-acting delivery using the MIND procedure. The MIND-administered implant provided sustained CNS delivery of brain derived neurotrophic factor (BDNF) AntagoNATs for up to 4 weeks in Sprague Dawley rats resulting in significant endogenous BDNF protein upregulation in several brain tissues. The biocompatibility of such core-shell implants coupled with their substantial pharmacokinetic advantages and safety of the MIND procedure highlights the practical utility and translational potential of this synergistic approach for treatment of chronic age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Gregory Jones
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | | | | | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mansoor M Amiji
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA.
| |
Collapse
|
18
|
Iamjan SA, Thanoi S, Watiktinkorn P, Fachim H, Dalton CF, Nudmamud-Thanoi S, Reynolds GP. Changes of BDNF exon IV DNA methylation are associated with methamphetamine dependence. Epigenomics 2021; 13:953-965. [PMID: 34008409 DOI: 10.2217/epi-2020-0463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: We investigated DNA methylation of BDNF in methamphetamine (METH) dependence in humans and an animal model. Materials & methods: BDNF methylation at exon IV was determined by pyrosequencing of blood DNA from METH-dependent and control subjects, and from rat brain following an escalating dose of METH or vehicle. Bdnf expression was determined in rat brain. Results: BDNF methylation was increased in human METH dependence, greatest in subjects with psychosis and in prefrontal cortex of METH-administered rats; rat hippocampus showed reduced Bdnf methylation and increased gene expression. Conclusion: BDNF methylation is abnormal in human METH dependence, especially METH-dependent psychosis, and in METH-administered rats. This may influence BDNF expression and contribute to the neurotoxic effects of METH exposure.
Collapse
Affiliation(s)
- Sri-Arun Iamjan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.,Department of Biomedical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Helene Fachim
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.,Department of Endocrinology and Metabolism, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Gavin P Reynolds
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
19
|
Kumar A, Misra S, Nair P, Algahtany M. Epigenetics Mechanisms in Ischemic Stroke: A Promising Avenue? J Stroke Cerebrovasc Dis 2021; 30:105690. [PMID: 33684709 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
Stroke has emerged as the second most common cause of mortality worldwide and is a major public health problem. It is a multi-factorial disease and genetics plays an important role in its pathophysiology, however, mechanisms of genome involvement in the disease remain unclear. Both genetic and epigenetic mechanisms could play a role in the development of stroke disease. Although epigenetic characteristics may also be heritable, they can be modified during the lifetime under different environmental exposure in response to lifestyle. Recent studies provide clear evidence that epigenetic factors play an important role in the pathological mechanisms leading to an elevated risk of cardiovascular diseases and stroke. Epigenetic changes are reversible therefore; studying epigenetic factors may serve as a marker for disease progression, biomarker for disease diagnosis, and development of novel targets for therapeutic intervention. Identifying the factors which predispose the risk of stroke provides information for the mechanism of stroke and the design of new drug targets where epigenetic modifications play a significant role. Epigenetic modifications play an essential role in a large variety of multifactorial diseases. This review will focus on the evidence that epigenetic mechanisms play a crucial role in the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Shubham Misra
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Pallavi Nair
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
20
|
Padmakumar S, Jones G, Pawar G, Khorkova O, Hsiao J, Kim J, Amiji MM, Bleier BS. Minimally Invasive Nasal Depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J Control Release 2021; 331:176-186. [PMID: 33484777 DOI: 10.1016/j.jconrel.2021.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
The limitations of central nervous system (CNS) drug delivery conferred by the blood-brain barrier (BBB) have been a significant obstacle in the development of large molecule therapeutics for CNS disease. Though significantly safer than direct CNS administration via intrathecal (IT) or intracerebroventricular (ICV) injection, the topical intranasal delivery of CNS therapeutics has failed to become clinically useful due to a variety of practical and physiologic drawbacks leading to high dose variability and poor bioavailability. This study describes the minimally invasive nasal depot (MIND) technique, a novel method of direct trans-nasal CNS drug delivery which overcomes the dosing variability and efficiency challenges of traditional topical trans-nasal, trans-olfactory strategies by delivering the entire therapeutic dose directly to the olfactory submucosal space. We found that the implantation of a depot containing an AntagoNAT (AT) capable of de-repressing brain derived neurotrophic factor (BDNF) expression enabled CNS distribution of ATs with significant and sustained upregulation of BDNF with efficiencies approaching 40% of ICV delivery. As the MIND technique is derived from common outpatient rhinological procedures routinely performed in Ear, Nose and Throat (ENT) clinics, our findings support the significant translational potential of this novel minimally invasive strategy as a reliable therapeutic delivery approach for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | - Gregory Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | - Grishma Pawar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | | | - Jane Hsiao
- Opko Health, Miami, FL, United States of America
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
21
|
Real AG, Fontanari AMV, Costa AB, Soll BMB, Bristot G, de Oliveira LF, Kamphorst AM, Schneider MA, Lobato MIR. Gender dysphoria: prejudice from childhood to adulthood, but no impact on inflammation. A cross-sectional controlled study. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2021; 43:37-46. [PMID: 33681906 PMCID: PMC7932037 DOI: 10.47626/2237-6089-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Gender dysphoria (GD) is characterized by a marked incongruence between experienced gender and one's gender assigned at birth. Transsexual individuals present a higher prevalence of psychiatric disorders when compared to non-transsexual populations, and it has been proposed that minority stress, i.e., discrimination or prejudice, has a relevant impact on these outcomes. Transsexuals also show increased chances of having experienced maltreatment during childhood. Interleukin (IL)-1β, IL-6, IL-10 and tumor necrosis factor-alpha (TNF-α) are inflammatory cytokines that regulate our immune system. Imbalanced levels in such cytokines are linked to history of childhood maltreatment and psychiatric disorders. We compared differences in IL-1β, IL-6, IL-10 and TNF-α levels and exposure to traumatic events in childhood and adulthood in individuals with and without GD (DSM-5). METHODS Cross-sectional controlled study comparing 34 transsexual women and 31 non-transsexual men. They underwent a thorough structured interview, assessing sociodemographic information, mood and anxiety symptoms, childhood maltreatment, explicit discrimination and suicidal ideation. Inflammatory cytokine levels (IL-1β, IL-6, IL-10 and TNF-α) were measured by multiplex immunoassay. RESULTS Individuals with GD experienced more discrimination (p = 0.002) and childhood maltreatment (p = 0.046) than non-transsexual men. Higher suicidal ideation (p < 0.001) and previous suicide attempt (p = 0.001) rates were observed in transsexual women. However, no differences were observed in the levels of any cytokine. CONCLUSIONS These results suggest that transsexual women are more exposed to stressful events from childhood to adulthood than non-transsexual men and that GD per se does not play a role in inflammatory markers.
Collapse
Affiliation(s)
- André Gonzales Real
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Anna Martha Vaitses Fontanari
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Angelo Brandelli Costa
- Departamento de PsicologiaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreRSBrazilDepartamento de Psicologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | - Bianca Machado Borba Soll
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Giovana Bristot
- INCT Translacional em MedicinaHospital de Clinicas de Porto AlegreUFRGSPorto AlegreRSBrazil Laboratório de Psiquiatria Molecular, INCT Translacional em Medicina, Hospital de Clinicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em BioquímicaUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Bioquímica, UFRGS, Porto Alegre, RS, Brazil.
| | - Larissa Fagundes de Oliveira
- INCT Translacional em MedicinaHospital de Clinicas de Porto AlegreUFRGSPorto AlegreRSBrazil Laboratório de Psiquiatria Molecular, INCT Translacional em Medicina, Hospital de Clinicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil.
| | - Ana Maria Kamphorst
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Maiko Abel Schneider
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Maria Inês Rodrigues Lobato
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Zappella M, Biamonte F, Balzamino BO, Manieri R, Cortes M, Santucci D, Di Stasio E, Rizzuto M, Micera A. Relaxation Response in Stressed Volunteers: Psychometric Tests and Neurotrophin Changes in Biological Fluids. Front Psychiatry 2021; 12:655453. [PMID: 34220571 PMCID: PMC8247444 DOI: 10.3389/fpsyt.2021.655453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: To evaluate the beneficial effects of relaxation response (RR) training in adult stressed subjects by evaluating the psychometric response recorded at relaxation session. Cortisol as well as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) mediators were quantified in both saliva and tears, and their levels were related to each other and to the psychometric response. Methods: Stressed subjects (n = 23; 10M/13F; age range 21-53 years old) were voluntarily enrolled in the study. RR training sessions were carried out for 2 months, 1 day per week, at the same time (3-5 p.m.). Two different psychological questionnaires, the Perceived Stress Scale-10 (PSS-10) and the Beck Depression Inventory - Short Form (BDI-SF) and Ocular Surface Disease Index (OSDI) tests, were administered before each session. Saliva and tears were sampled for cortisol (EIA), NGF (ELISA), and BDNF (ELISA) quantifications. Questionnaires' data were analyzed and compared to biochemical ones. Results: All subjects reported beneficial effects from training. RR significantly reduced the psychological stress indexes (p = 0.039 for PSS-10 and p = 0.001 for BDI-SF). Specifically, RR training lowered the perception of Perceived Helplessness (items 1, 3, 10; p < 0.05) in PSS-10 and increased the Perceived Self-Efficacy (p < 0.05). OSDI score was in the normal range (0-25). Biochemically, a decrease in cortisol, a trend to a decrease in NGF, and an increase in BDNF levels were observed in saliva samples after RR treatment. Furthermore, a trend to a decrease in NGF and an increase in BDNF were quantified in tear samples. A correlation between PSS-10 total score and saliva NGF variation (%) as well as between BDI-SF total score and BDNF tear levels were also observed. Conclusion: RR training appeared useful to lowering psychological, mental, and physical stress, as supported by both psychological total and single scores. The finding on biochemical levels of BDNF in saliva and tears are sustained by previous studies while those of NGF require further investigation. Overall, these data on a small population highlight the potential use of RR training and potential neurotrophic changes in biological fluids, in stressed volunteers.
Collapse
Affiliation(s)
- Miriam Zappella
- Department of Psychology, Salesian University of Rome, Rome, Italy.,Department of Neuroscience, IRCCS Children's Hospital Bambino Gesù, Rome, Italy
| | - Filippo Biamonte
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences; IRCCS - Fondazione Bietti, Rome, Italy
| | - Rocco Manieri
- Department of Laboratory and Infectivological Sciences, UOC Chemistry, Biochemistry and Molecular Biology Clinic, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Magdalena Cortes
- Hebrew Hospital Rome Ophthalmology Department, Rome, Italy.,Prevention and Health Care Department, Campus Bio Medico University, Rome, Italy
| | - Daniela Santucci
- Cellular Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | - Enrico Di Stasio
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy.,Department of Laboratory and Infectivological Sciences, UOC Chemistry, Biochemistry and Molecular Biology Clinic, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maurizio Rizzuto
- Department of Psychology, Salesian University of Rome, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences; IRCCS - Fondazione Bietti, Rome, Italy
| |
Collapse
|
23
|
Poddar I, Callahan PM, Hernandez CM, Pillai A, Yang X, Bartlett MG, Terry AV. Oral quetiapine treatment results in time-dependent alterations of recognition memory and brain-derived neurotrophic factor-related signaling molecules in the hippocampus of rats. Pharmacol Biochem Behav 2020; 197:172999. [PMID: 32702397 DOI: 10.1016/j.pbb.2020.172999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Antipsychotic drugs (APDs) have a variety of important therapeutic applications for neuropsychiatric disorders. However, they are routinely prescribed off-label across all age categories, a controversial practice given their potential for producing metabolic and extrapyramidal side effects. Evidence also suggests that chronic treatment with some APDs may lead to impairments in cognition and decreases in brain volume, although these findings are controversial. The purpose of the studies described here was to evaluate one of the most commonly prescribed APDs, quetiapine, for chronic effects on recognition memory, brain-derived neurotrophic factor (BDNF), its precursor proBDNF, as well as relevant downstream signaling molecules that are known to influence neuronal plasticity and cognition. Multiple cohorts of adult rats were treated with quetiapine (25.0 mg/kg/day) for 30 or 90 days in their drinking water then evaluated for drug effects on motor function in a catalepsy assessment, recognition memory in a spontaneous novel object recognition (NOR) task, and BDNF-related signaling molecules in the post mortem hippocampus via Western Blot. The results indicated that oral quetiapine at a dose that did not induce catalepsy, led to time-dependent impairments in NOR performance, increases in the proBDNF/BDNF ratio, and decreases in Akt and CREB phosphorylation in the hippocampus. These results indicate that chronic treatment with quetiapine has the potential to adversely affect recognition memory and neurotrophin-related signaling molecules that support synaptic plasticity and cognitive function. Given the widespread use this APD across multiple conditions and patient populations, such long-term effects observed in animals should be considered.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
24
|
Ieraci A, Beggiato S, Ferraro L, Barbieri SS, Popoli M. Kynurenine pathway is altered in BDNF Val66Met knock-in mice: Effect of physical exercise. Brain Behav Immun 2020; 89:440-450. [PMID: 32726686 DOI: 10.1016/j.bbi.2020.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism has been correlated with increased predisposition to develop cognitive and psychiatric disorders, and with a reduced response to some therapeutic treatments. However, the mechanisms underlying these impairments are currently not completely understood. Remarkably, kynurenine pathway alterations have also been implicated in cognitive and psychiatric disorders. Moreover, recent evidence suggests that physical exercise may promote beneficial effects by controlling kynurenine metabolism in the muscle. The aim of the present study was to assess whether the kynurenine pathway was differentially regulated in sedentary and exercising wild-type (BDNFVal/Val) and homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. We found that plasma and hippocampal levels of kynurenic acid and the hippocampal mRNA levels of IDO1 and KAT2 protein levels were increased in BDNFMet/Met mice and were not modulated by physical exercise. On the contrary, KAT1 protein levels in the gastrocnemius muscle were reduced, whereas MCP1 mRNA in the gastrocnemius muscle and GFAP protein in the hippocampus were increased in BDNFMet/Met mice compared to BDNFVal/Val mice, and reduced by physical exercise. Physical exercise increased plasmatic kynurenine levels only in BDNFMet/Met mice, and protein levels of KAT1 and KAT4 in the gastrocnemius muscle and hippocampus respectively, regardless of the genotype. Finally, we found that physical exercise was able to enhance the hippocampal-dependent memory only in the BDNFVal/Val mice. Overall our results showing an overactivation of the kynurenine pathway in the BDNFMet/Met mice may suggest a possible mechanism underlying the cognitive deficits reported in the BDNF Val66Met carriers.
Collapse
Affiliation(s)
- Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmaceutiche, Sezione di Fisiologia e Farmacologia, Università di Milano, Milano, Italy.
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | | | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmaceutiche, Sezione di Fisiologia e Farmacologia, Università di Milano, Milano, Italy
| |
Collapse
|
25
|
Zhou Y, Zhang M, Liu W, Li Y, Qin Y, Xu Y. Transgenerational transmission of neurodevelopmental disorders induced by maternal exposure to PM2.5. CHEMOSPHERE 2020; 255:126920. [PMID: 32387734 DOI: 10.1016/j.chemosphere.2020.126920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The pathological traits or diseases susceptibility caused by maternal exposure to environmental adverse insults (infection, malnutrition, environmental toxicants) could be transmitted across generations. It remains uncertain, however, whether the neurodevelopmental disturbances of offspring induced by maternal exposure to PM2.5 during early life can be inherited by subsequent generations without further exposure. In the current study, using transgenerational animal models, we found that F1 female showed poorer performance in Morris Water Maze (MWM), and the deficits in spatial learning and memory similarly presented in F2-F3 female. The transgenerationally-transmitted neurobehavioral disorders were mediated both via maternal and paternal lineage. Since the epigenetic modifications have been reported to be involved in the disturbed neurodevelopment induced by maternal exposure to detrimental environmental factors during early life, we further explored the possible epigenetic mechanism of the transgenerational effects. Intriguingly, the results displayed the significant increase in expression of Dnmt3a in F1 female offspring. And the hypermethylation of Bdnf promoter Ⅳ and downregulated expression of Bdnf in hippocampus were stably transmitted across the generations until the third generation. There was another interesting finding that the transgenerational effects were sex-specific and only emerged in female offspring. Together, our study indicated for the first time that maternal exposure to PM2.5 during early life could detrimentally affect neurobehaviors in multiple generations, and the declined expression of Bdnf induced by hypermethylation of Bdnf promoter Ⅳ mediated by Dnmts might be the potential molecular mechanism.
Collapse
Affiliation(s)
- Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Minjia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China.
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, NO.38 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
26
|
Deng W, Fan C, Zhao Y, Mao Y, Li J, Zhang Y, Teng J. MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP. J Cell Mol Med 2020; 24:10987-11000. [PMID: 32790238 PMCID: PMC7521252 DOI: 10.1111/jcmm.15732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs (miRNAs) have already been proposed to be implicated in the development of ischaemic stroke. We aim to investigate the role of miR-130a in the neurological deficit and angiogenesis in rats with ischaemic stroke by regulating X-linked inhibitor of apoptosis protein (XIAP). Middle cerebral artery occlusion (MCAO) models were established by suture-occluded method, and MCAO rats were then treated with miR-130a mimics/inhibitors or/and altered XIAP for detection of changes of rats' neurological function, nerve damage and angiogenesis in MCAO rats. The oxygen-glucose deprivation (OGD) cellular models were established and respectively treated to determine the roles of miR-130a and XIAP in neuronal viability and apoptosis. The expression levels of miR-130a and XIAP in brain tissues of MCAO rats and OGD-treated neurons were detected. The binding site between miR-130a and XIAP was verified by luciferase activity assay. MiR-130a was overexpressed while XIAP was down-regulated in MCAO rats and OGD-treated neurons. In animal models, suppressed miR-130a improved neurological function, alleviated nerve damage and increased new vessels in brain tissues of rats with MCAO. In cellular models, miR-130a inhibition promoted neuronal viability and suppressed apoptosis. Inhibited XIAP reversed the effect of inhibited miR-130a in both MCAO rats and OGD-treated neurons. XIAP was identified as a target of miR-130a. Our study reveals that miR-130a regulates neurological deficit and angiogenesis in rats with MCAO by targeting XIAP.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Yanan Zhao
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Yuewei Mao
- The Vascular Surgery Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China
| | - Jiajia Li
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China
| | - Yonggan Zhang
- The Vascular Surgery Department, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| |
Collapse
|
27
|
Drinking Pattern in Intermittent Access Two-Bottle-Choice Paradigm in Male Wistar Rats Is Associated with Exon-Specific BDNF Expression in the Hippocampus During Early Abstinence. J Mol Neurosci 2020; 71:262-275. [DOI: 10.1007/s12031-020-01645-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
|
28
|
Chen HJ, Lee YJ, Huang CC, Lin YF, Li ST. Serum brain-derived neurotrophic factor and neurocognitive function in children with type 1 diabetes. J Formos Med Assoc 2020; 120:157-164. [PMID: 32360176 DOI: 10.1016/j.jfma.2020.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/PURPOSE This study aimed to clarify whether brain-derived neurotrophic factor (BDNF) is a biomarker for cognitive dysfunction in children with type 1 diabetes. METHODS We conducted a cross-sectional case-control study of children aged between 6 and 18 years with type 1 diabetes and healthy volunteers. Serum BDNF level was measured in all of the studied children, and they all underwent intelligence tests with the Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV). We further compared the cognitive function and BDNF levels in the diabetic children with positive glutamic acid decarboxylase 65 antibody (GAD65-Ab) and those with negative GAD65-Ab. RESULTS Forty-five children with type 1 diabetes (mean age 14.0 ± 2.6 years, 42% male) and 50 normal controls (mean age 13.2 ± 2.3 years, 54% male) were recruited. The serum BDNF level was significantly lower in the diabetes group than in the controls (15.92 ± 7.2 vs. 18.5 ± 5.1 ng/mL, respectively, t = -2.03, p = 0.045) and much lower in the subgroup with GAD65-Ab positive type 1 diabetes. The average Full-Scale IQ, verbal comprehension, perceptual reasoning and working memory scores in the diabetes group were significantly lower than in the controls (all p < 0.05). Among the children with type 1 diabetes, poor glycemic control was related to lower general cognitive abilities (r = -0.34, p < 0.02), lower verbal comprehension (r = -0.305, p < 0.05), and lower perceptual reasoning scores (r = -0.346, p = 0.02). CONCLUSION The children with type 1 diabetes had a lower serum BDNF level and poorer neurocognitive function than normal healthy children, especially those with GAD65-Ab positive diabetes. Poor glycemic control was correlated with worse cognitive performance.
Collapse
Affiliation(s)
- Hui-Ju Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pediatric Neurology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yann-Jinn Lee
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng University, Tainan, Taiwan.
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sung-Tse Li
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan; Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| |
Collapse
|
29
|
Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2020; 396:115002. [PMID: 32277946 DOI: 10.1016/j.taap.2020.115002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
The ability of environmental pollutants to alter the epigenome with resultant development of behavioral alterations has received more attention in recent years. These alterations can be transmitted and affect later generations that have not been directly in contact with the contaminant. Arsenic (As) is a neurotoxicant and potent epigenetic disruptor that is widespread in the environment; however, the precise potential of As to produce transgenerational effects is unknown. Our study focused on the possible transgenerational effects on behavior by ancestral exposure to doses relevant to the environment of As, and the epigenetic mechanisms that could be involved. Embryos of F0 (ancestral generation) were directly exposed to 50 or 500 ppb of As for 150 days. F0 adults were raised to produce the F1 generation (intergeneration) and subsequently the F2 generation (transgeneration). We evaluated motor and cognitive behavior, neurodevelopment-related genes, and epigenetic markers on the F0 and F2 generation. As proposed in our hypothesis, ancestral arsenic exposure altered motor activity through the development and increased anxiety-like behaviors which were transmitted to the F2 generation. Additionally, we found a reduction in brain-derived neurotrophic factor expression between the F0 and F2 generation, and an increase in methylation on histone H3K4me3 in the nervous system.
Collapse
|
30
|
Lin CC, Huang TL. Brain-derived neurotrophic factor and mental disorders. Biomed J 2020; 43:134-142. [PMID: 32386841 PMCID: PMC7283564 DOI: 10.1016/j.bj.2020.01.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that modulates neuroplasticity in the brain, and is one of the most widely investigated molecule in psychiatric disorders. The researches of BDNF emcompassed the advance of investigative techniques of past decades. BDNF researches ranged from protein quantilization, to RNA expression measurements, to DNA sequencing, and lately but not lastly, epigenetic studies. In this review, we will briefly address findings on BDNF protein levels, mRNA expression, Val66Met polymorphism, and epigenetic modifications, in schizophrenia, major depressive disorder (MDD), and bipolar disorder.
Collapse
Affiliation(s)
- Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
32
|
Poddar I, Callahan PM, Hernandez CM, Pillai A, Yang X, Bartlett MG, Terry AV. Chronic oral treatment with risperidone impairs recognition memory and alters brain-derived neurotrophic factor and related signaling molecules in rats. Pharmacol Biochem Behav 2020; 189:172853. [PMID: 31945381 DOI: 10.1016/j.pbb.2020.172853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 01/09/2023]
Abstract
Antipsychotic drugs (APDs) are essential for the treatment of schizophrenia and other neuropsychiatric illnesses such as bipolar disease. However, they are also extensively prescribed off-label for many other conditions, a practice that is controversial given their potential for long-term side effects. There is clinical and preclinical evidence that chronic treatment with some APDs may lead to impairments in cognition and decreases in brain volume, although the molecular mechanisms of these effects are unknown. The purpose of the rodent studies described here was to evaluate a commonly prescribed APD, risperidone, for chronic effects on recognition memory, brain-derived neurotrophic factor (BDNF), its precursor proBDNF, as well as relevant downstream signaling molecules that are known to influence neuronal plasticity and cognition. Multiple cohorts of adult rats were treated with risperidone (2.5 mg/kg/day) or vehicle (dilute acetic acid solution) in their drinking water for 30 or 90 days. Subjects were then evaluated for drug effects on recognition memory in a spontaneous novel object recognition task and protein levels of BDNF-related signaling molecules in the hippocampus and prefrontal cortex. The results indicated that depending on the treatment period, a therapeutically relevant daily dose of risperidone impaired recognition memory and increased the proBDNF/BDNF ratio in the hippocampus and prefrontal cortex. Risperidone treatment also led to a decrease in Akt and CREB phosphorylation in the prefrontal cortex. These results indicate that chronic treatment with a commonly prescribed APD, risperidone, has the potential to adversely affect recognition memory and neurotrophin-related signaling molecules that support synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, United States of America
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
33
|
Mehren A, Reichert M, Coghill D, Müller HHO, Braun N, Philipsen A. Physical exercise in attention deficit hyperactivity disorder - evidence and implications for the treatment of borderline personality disorder. Borderline Personal Disord Emot Dysregul 2020; 7:1. [PMID: 31921425 PMCID: PMC6945516 DOI: 10.1186/s40479-019-0115-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
A growing body of literature indicates a potential role for physical exercise in the treatment of attention deficit hyperactivity disorder (ADHD). Suggested effects include the reduction of ADHD core symptoms as well as improvements in executive functions. In the current review, we provide a short overview on the neurophysiological mechanisms assumed to underlie the beneficial effects of exercise. Further, we review the current evidence from experimental studies regarding both acute exercise and long-term interventions in ADHD. While the positive effects observed after acute aerobic exercise are promising, very few well-designed long-term intervention studies have been conducted yet. Moreover, although exercise effects have not yet been studied in borderline personality disorder (BPD), in the end of this paper we derive hypotheses why exercise could also be beneficial for this patient population.
Collapse
Affiliation(s)
- Aylin Mehren
- 1Department of Psychology, Biological Psychology Lab, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Markus Reichert
- 2Department of Applied Psychology, Mental mHealth Lab, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,3Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Coghill
- 4Royal Children's Hospital, Melbourne, Victoria Australia
| | - Helge H O Müller
- 5Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Niclas Braun
- 5Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Alexandra Philipsen
- 5Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Frenkel S, Bernstein CN, Sargent M, Jiang W, Kuang Q, Xu W, Hu P. Copy number variation-based gene set analysis reveals cytokine signalling pathways associated with psychiatric comorbidity in patients with inflammatory bowel disease. Genomics 2020; 112:683-693. [DOI: 10.1016/j.ygeno.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/22/2019] [Accepted: 05/05/2019] [Indexed: 01/01/2023]
|
35
|
Zhou X, Tao L, Zhao M, Wu S, Obeng E, Wang D, Zhang W. Wnt/ β-catenin signaling regulates brain-derived neurotrophic factor release from spinal microglia to mediate HIV 1 gp120-induced neuropathic pain. Mol Pain 2020; 16:1744806920922100. [PMID: 32354292 PMCID: PMC7227158 DOI: 10.1177/1744806920922100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
HIV-associated neuropathic pain (HNP) is a common complication for AIDS patients. The pathological mechanism governing HNP has not been elucidated, and HNP has no effective analgesic treatment. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family related to the plasticity of the central nervous system. BDNF dysregulation is involved in many neurological diseases, including neuropathic pain. However, to the best of our knowledge, the role and mechanism of BDNF in HNP have not been elucidated. In this study, we explored this condition in an HNP mouse model induced by intrathecal injection of gp120. We found that Wnt3a and β-catenin expression levels increased in the spinal cord of HNP mice, consequently regulating the expression of BDNF and affecting hypersensitivity. In addition, the blockade of Wing-Int/β-catenin signaling, BDNF/TrkB or the BDNF/p75NTR pathway alleviated mechanical allodynia. BDNF immunoreactivity was colocalized with spinal microglial cells, which were activated in HNP mice. Inhibition of spinal microglial cell activation by minocycline relieved mechanical allodynia in HNP mice. This study helped to elucidate the role of the Wing-Int/β-catenin/BDNF signaling axis in HNP and may establish a foundation for further research investigating the Wing-Int/β-catenin/BDNF signaling axis as a target for HNP treatment.
Collapse
Affiliation(s)
- Xinxin Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei Tao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengru Zhao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shengjun Wu
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Enoch Obeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
36
|
Zeng K, Xie A, Dong X, Jiang J, Hao W, Jiang M, Liu X. GABA-Aα5 Might Be Involved in Learning-Memory Dysfunction in the Offsprings of Chronic Ethanol-Treated Rats via GABA-Aα5 Histone H3K9 Acetylation. Front Neurosci 2019; 13:1076. [PMID: 31680816 PMCID: PMC6813853 DOI: 10.3389/fnins.2019.01076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, numerous studies have been focused on the relationship between GABA-A receptors and alcohol-induced spatial learning and memory deficits. GABA-Aα5, a subunit of GABA-A receptors, is considered to play an important role in alcohol-induced cognitive impairment, however, the mechanism remains obscure. In this study, we found that the expression of GABA-Aα5 increased in rats treated with chronic ethanol via histone H3K9 acetylation. Furthermore, this epigenetic modification could be inherited by the next generations, which eventually exhibit similar spatial learning and memory deficits in the offsprings. In summary, our results suggested that GABA-Aα5 might be involved in chronic ethanol treatment-induced learning-memory dysfunction and for the first time proved that learning-memory dysfunction could be inherited by the offsprings via histone H3K9 acetylation. Hopefully, in the near future, GABA-Aα5 inhibitors would be an effective way to treat alcohol-induced cognition impairment.
Collapse
Affiliation(s)
- Kuan Zeng
- Wuhan Mental Health Center, Wuhan, China.,Applied Psychology, Marx College, China University of Geosciences, Wuhan, China
| | - Aimin Xie
- Wuhan Mental Health Center, Wuhan, China.,Applied Psychology, Marx College, China University of Geosciences, Wuhan, China
| | | | - Jia Jiang
- Applied Psychology, Marx College, China University of Geosciences, Wuhan, China
| | - Wei Hao
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Clinical Research Center for Mental Disorders, Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Central South University, Changsha, China
| | - Min Jiang
- Wuhan Mental Health Center, Wuhan, China
| | - Xuebing Liu
- Wuhan Mental Health Center, Wuhan, China.,Applied Psychology, Marx College, China University of Geosciences, Wuhan, China
| |
Collapse
|
37
|
Chase KA, Feiner B, Ramaker MJ, Hu E, Rosen C, Sharma RP. Examining the effects of the histone methyltransferase inhibitor BIX-01294 on histone modifications and gene expression in both a clinical population and mouse models. PLoS One 2019; 14:e0216463. [PMID: 31185023 PMCID: PMC6559633 DOI: 10.1371/journal.pone.0216463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 01/03/2023] Open
Abstract
Schizophrenia has been consistently characterized by abnormal patterns of gene down-regulation, increased restrictive chromatin assemblies, and reduced transcriptional activity. Histone methyltransferase (HMT) mRNA and H3K9me2 levels are elevated in postmortem brain and peripheral blood cells of persons with schizophrenia. Moreover, this epigenomic state likely contributes to the disease, as HMT levels correlate with clinical symptomatology. This manuscript sought to establish the potential therapeutic value of the HMT inhibitor BIX-01294 (BIX). Human peripheral mononuclear cells (PBMC) from 24 individuals with schizophrenia and 24 healthy individuals were cultured in the presence of BIX (5uM or 10uM). Mice were given once daily intraperitoneal injections of BIX (0.5 or 1mg/kg) for one week. Cultured cells, mouse cortex, or striatum was harvested, RNA extracted and RT-PCR conducted for several schizophrenia candidate genes: IL-6, Gad1, Nanog, KLF4, Reln, and Bdnf9a. Total H3K9me2 levels were measured using western blot while H3K9me2 binding to selected genes of interest was conducted using chromatin immunoprecipitation (ChIP). Neuronal subtype-specific BDNF conditional knockdown was conducted using the cre/lox system of mutant animals. Treatment with BIX decreased H3K9me2 and increased selected mRNA levels in cultured PBMCs from both normal controls and participants with schizophrenia. In mice, peripheral administration of BIX decreased cortical H3K9me2 levels and increased schizophrenia candidate gene expression. In BDNF conditional knockdown animals, BIX administration was able to significantly rescue Bdnf9a mRNA levels in ChAT and D1 Bdnf conditional knockdown mice. The results presented in this manuscript demonstrate a potential for further research into the clinical effectiveness of histone modifying pharmacology in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Kayla A. Chase
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States of America
| | - Benjamin Feiner
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Marcia J. Ramaker
- Department of Psychiatry, University of California, La Jolla, CA, United States of America
| | - Edward Hu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Cherise Rosen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rajiv P. Sharma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
38
|
Karen C, Rajan KE. Social Behaviour and Epigenetic Status in Adolescent and Adult Rats: The Contribution of Early-Life Stressful Social Experience. Cell Mol Neurobiol 2019; 39:371-385. [PMID: 30710320 PMCID: PMC11479603 DOI: 10.1007/s10571-019-00655-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/24/2019] [Indexed: 01/14/2023]
Abstract
Early-life experiences have been linked to individual's epigenetic status and social behaviour. Therefore, the present study aims to test whether the presence of mother suppress the early-life stressful social experience (SSE)-induced effect on social behaviour of adolescent and adult rats, and associated epigenetic changes. To test this, experimental groups [maternally separated pups (MSP)/pups with their mother (M+P)] were allowed to experience the presence of a stranger (ST), and then their social behaviour was compared with the maternal separated (MS) and control (Con) group. We observed that MS, MSP-ST group showed less social interaction with the unknown conspecifics than known conspecifics compared to other groups. Subsequently, we found that SSE elevated the level of DNA methyltransferases (Dnmt3a), ten-eleven translocation (Tet3), methyl-CpG-binding protein-2 (MeCP2) and Repressor Element-1 Silencing Transcription Factor (REST) in amygdala of adolescent and adult MS, MSP-ST groups compared to other groups. As expected, SSE altered the histone (H3) lysine (K14/K9) acetylation (ac) and H3K4/K9 methylation (me2/me3). SSE decreased the level of H3K14ac and H3K9ac in adolescents and then increased in adults. Interestingly, H3K4me2/me3 levels were elevated in adolescent and adults. Whereas H3K9me2/me3 shows contrasting pattern in adolescent, but H3K9me2/me3 levels were increased in adults. In addition, the expression of brain-derived neurotrophic factor (BDNF) was reduced in MS, MSP-ST groups' adolescent and adult rats. Observed correlation between epigenetic changes and social behaviour possibly contributed by early-life SSE in the absence of mother, but mother's presence suppresses the effect of early-life SSE.
Collapse
Affiliation(s)
- Christopher Karen
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
39
|
Changes in neuroplasticity following early-life social adversities: the possible role of brain-derived neurotrophic factor. Pediatr Res 2019; 85:225-233. [PMID: 30341412 DOI: 10.1038/s41390-018-0205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Social adversities experienced in childhood can have a profound impact on the developing brain, leading to the emergence of psychopathologies in adulthood. Despite the burden this places on both the individual and society, the neurobiological aspects mediating this transition remain unclear. Recent advances in preclinical and clinical research have begun examining neuroplasticity-the nervous system's ability to form adaptive changes in response to new experience-in the context of early-life vulnerability to social adversities and plasticity-related alterations following such traumatic events. A key mediator of plasticity-related molecular processes is the brain-derived neurotrophic factor (BDNF), which has also been implicated in various psychiatric disorders related to childhood social adversities. Preclinical and clinical data suggest early-life social adversities (ELSA) might be associated with accelerated maturation of social network circuitry, a possible ontogenic adaptation to the adverse environment. Neural plasticity decreases by adulthood, lessening the efficacy of treatment in ELSA-related psychiatric disorders. However, literature data suggest that by increasing BDNF/TrkB signalling through antidepressant treatment a juvenile-like plasticity state can be induced, which allows for reorganization of the social circuitry when guided by psychotherapy and surrounded by a safe and positive environment.
Collapse
|
40
|
Santos HP, Nephew BC, Bhattacharya A, Tan X, Smith L, Alyamani RAS, Martin EM, Perreira K, Fry RC, Murgatroyd C. Discrimination exposure and DNA methylation of stress-related genes in Latina mothers. Psychoneuroendocrinology 2018; 98:131-138. [PMID: 30144780 PMCID: PMC6204298 DOI: 10.1016/j.psyneuen.2018.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Latina mothers, who have the highest fertility rate among all ethnic groups in the US, are often exposed to discrimination. The epigenetic changes related to this discrimination are largely unknown. This study is the first to explore the relationship between discrimination and DNA methylation of stress regulatory genes in Latinas. Our sample was Latina women (n = 147) with a mean age of 27.6 years who were assessed at 24-32 weeks' gestation (T1) and 4-6 weeks postpartum (T2) and reside in the U.S. Blood was collected at T1, and the Everyday Discrimination Scale (EDS) was administered at T1 and T2. DNA Methylation at candidate gene regions was determined by bisulphite pyrosequencing. Associations between EDS and DNA methylation were assessed via zero-inflated Poisson models, adjusting for covariates and multiple-test comparisons. Discrimination was negatively associated with methylation at CpG sites within the glucocorticoid receptor (NR3C1) and brain-derived neurotrophic factor (BDNF) genes that were consistent over time. In addition, discrimination was negatively associated with methylation of a CpG in the glucocorticoid binding protein (FKBP5) at T1 but not at T2. This study underscores associations between discrimination and epigenetic markers of DNA methylation in Latinas that warrant further investigation to better understand the biological pathways and psychopathological effects of discrimination on Latina mothers and their families.
Collapse
Affiliation(s)
- Hudson P Santos
- School of Nursing, University of North Carolina at Chapel Hill, North Carolina, United States.
| | - Benjamin C Nephew
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Arjun Bhattacharya
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Xianming Tan
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Laura Smith
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Krista Perreira
- Department of Social Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Christopher Murgatroyd
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
41
|
Thomas M, Knoblich N, Wallisch A, Glowacz K, Becker-Sadzio J, Gundel F, Brückmann C, Nieratschker V. Increased BDNF methylation in saliva, but not blood, of patients with borderline personality disorder. Clin Epigenetics 2018; 10:109. [PMID: 30134995 PMCID: PMC6106893 DOI: 10.1186/s13148-018-0544-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background The importance of epigenetic alterations in psychiatric disorders is increasingly acknowledged and the use of DNA methylation patterns as markers of disease is a topic of ongoing investigation. Recent studies suggest that patients suffering from Borderline Personality Disorder (BPD) display differential DNA methylation of various genes relevant for neuropsychiatric conditions. For example, several studies report differential methylation in the promoter region of the brain-derived neurotrophic factor gene (BDNF) in blood. However, little is known about BDNF methylation in other tissues. Results In the present study, we analyzed DNA methylation of the BDNF IV promoter in saliva and blood of 41 BPD patients and 41 matched healthy controls and found significant hypermethylation in the BPD patient’s saliva, but not blood. Further, we report that BDNF methylation in saliva of BPD patients significantly decreased after a 12-week psychotherapeutic intervention. Conclusions Providing a direct comparison of BDNF methylation in blood and saliva of the same individuals, our results demonstrate the importance of choice of tissue for the study of DNA methylation. In addition, they indicate a better suitability of saliva for the study of differential BDNF methylation in BPD patients. Further, our data appear to indicate a reversal of disease-specific alterations in BDNF methylation in response to psychotherapy, though further experiments are necessary to validate these results and determine the specificity of the effect. Electronic supplementary material The online version of this article (10.1186/s13148-018-0544-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mara Thomas
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nora Knoblich
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Annalena Wallisch
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Katarzyna Glowacz
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Julia Becker-Sadzio
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Friederike Gundel
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Christof Brückmann
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW We review the existing literature on gene-environment interactions (G×E) and epigenetic changes primarily in borderline personality disorder (BPD) but also in antisocial, schizotypal, and avoidant personality disorders. RECENT FINDINGS Research supports that susceptibility genes to BPD or its underlying traits may be expressed under certain environmental conditions such as physical or childhood sexual abuse. Epigenetic modifications of neurodevelopment- and stress-related genes are suggested to underlie the relationship between early life adversary and borderline personality disorder. Only limited studies have investigated the role of gene-environment interactions and epigenetic changes in the genesis of antisocial, schizotypal, and avoidant personality disorders. Considering the lack of pharmacological treatment for most personality disorders, the emerging evidence on the critical role of G×E and epigenetic changes in the genesis of personality disorders could help develop more biologically oriented therapeutic approaches. Future studies should explore the potential of this new therapeutic dimension.
Collapse
|
43
|
Abstract
OBJECTIVES The main aims of this paper are to review and evaluate the neurobiology of the depressive syndrome from a neurodevelopmental perspective. METHODS An English language literature search was performed using PubMed. RESULTS Depression is a complex syndrome that involves anatomical and functional changes that have an early origin in brain development. In subjects with genetic risk for depression, early stress factors are able to mediate not only the genetic risk but also gene expression. There is evidence that endocrine and immune interactions have an important impact on monoamine function and that the altered monoamine signalling observed in the depressive syndrome has a neuro-endocrino-immunological origin early in the development. CONCLUSIONS Neurodevelopment is a key aspect to understand the whole neurobiology of depression.
Collapse
Affiliation(s)
- Juan M Lima-Ojeda
- a Department of Psychiatry and Psychotherapy , University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- a Department of Psychiatry and Psychotherapy , University of Regensburg, Regensburg, Germany
| | - Thomas C Baghai
- a Department of Psychiatry and Psychotherapy , University of Regensburg, Regensburg, Germany
| |
Collapse
|
44
|
Peedicayil J, Kumar A. Epigenetic Drugs for Mood Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:151-174. [PMID: 29933949 DOI: 10.1016/bs.pmbts.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that changes in epigenetic mechanisms of gene expression are involved in the pathogenesis of mood disorders. Such evidence stems from studies conducted on postmortem brain tissues and peripheral cells or tissues of patients with mood disorders. This article describes and discusses the epigenetic changes in the mood disorders (major depressive disorder and bipolar disorder) found to date. The article also describes and discusses preclinical drug trials of epigenetic drugs for treating mood disorders. In addition, nonrandomized and randomized controlled trials of nutritional drugs with effects on epigenetic mechanisms of gene expression in patients with major depressive disorder and bipolar disorder are discussed. Trials of epigenetic drugs and nutritional drugs with epigenetic effects are showing promising results for the treatment of mood disorders. Thus, epigenetic drugs and nutritional drugs with epigenetic effects could be useful in the treatment of patients with these disorders.
Collapse
|
45
|
Page GG, Corwin EJ, Dorsey SG, Redeker NS, McCloskey DJ, Austin JK, Guthrie BJ, Moore SM, Barton D, Kim MT, Docherty SL, Waldrop-Valverde D, Bailey DE, Schiffman RF, Starkweather A, Ward TM, Bakken S, Hickey KT, Renn CL, Grady P. Biomarkers as Common Data Elements for Symptom and Self-Management Science. J Nurs Scholarsh 2018; 50:276-286. [PMID: 29575635 DOI: 10.1111/jnu.12378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Biomarkers as common data elements (CDEs) are important for the characterization of biobehavioral symptoms given that once a biologic moderator or mediator is identified, biologically based strategies can be investigated for treatment efforts. Just as a symptom inventory reflects a symptom experience, a biomarker is an indicator of the symptom, though not the symptom per se. The purposes of this position paper are to (a) identify a "minimum set" of biomarkers for consideration as CDEs in symptom and self-management science, specifically biochemical biomarkers; (b) evaluate the benefits and limitations of such a limited array of biomarkers with implications for symptom science; (c) propose a strategy for the collection of the endorsed minimum set of biologic samples to be employed as CDEs for symptom science; and (d) conceptualize this minimum set of biomarkers consistent with National Institute of Nursing Research (NINR) symptoms of fatigue, depression, cognition, pain, and sleep disturbance. DESIGN AND METHODS From May 2016 through January 2017, a working group consisting of a subset of the Directors of the NINR Centers of Excellence funded by P20 or P30 mechanisms and NINR staff met bimonthly via telephone to develop this position paper suggesting the addition of biomarkers as CDEs. The full group of Directors reviewed drafts, provided critiques and suggestions, recommended the minimum set of biomarkers, and approved the completed document. Best practices for selecting, identifying, and using biological CDEs as well as challenges to the use of biological CDEs for symptom and self-management science are described. Current platforms for sample outcome sharing are presented. Finally, biological CDEs for symptom and self-management science are proposed along with implications for future research and use of CDEs in these areas. FINDINGS The recommended minimum set of biomarker CDEs include pro- and anti-inflammatory cytokines, a hypothalamic-pituitary-adrenal axis marker, cortisol, the neuropeptide brain-derived neurotrophic factor, and DNA polymorphisms. CONCLUSIONS It is anticipated that this minimum set of biomarker CDEs will be refined as knowledge regarding biologic mechanisms underlying symptom and self-management science further develop. The incorporation of biological CDEs may provide insights into mechanisms of symptoms, effectiveness of proposed interventions, and applicability of chosen theoretical frameworks. Similarly, as for the previously suggested NINR CDEs for behavioral symptoms and self-management of chronic conditions, biological CDEs offer the potential for collaborative efforts that will strengthen symptom and self-management science. CLINICAL RELEVANCE The use of biomarker CDEs in biobehavioral symptoms research will facilitate the reproducibility and generalizability of research findings and benefit symptom and self-management science.
Collapse
Affiliation(s)
- Gayle G Page
- Nu Beta, Professor and Independence Foundation Chair in Nursing Education, Johns Hopkins University School of Nursing, Baltimore, MD, USA
| | - Elizabeth J Corwin
- Alpha Epsilon, Professor and Associate Dean for Research, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Susan G Dorsey
- Pi, Professor and Chair, Department of Pain and Translational Symptom Science, University of Maryland Baltimore, Baltimore, MD, USA
| | - Nancy S Redeker
- Delta Mu, Beatrice Renfield Term Professor of Nursing, Professor, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University, New Haven, CT
| | - Donna Jo McCloskey
- Clinical Advisor, Contractor, National Institute of Nursing Research, NIH, Bethesda, MD, USA
| | - Joan K Austin
- Alpha, Distinguished Professor Emerita, Indiana University School of Nursing, Indianapolis, IN and National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Guthrie
- Professor, Director of the PhD Program, Northeastern University, Boston, MA, USA
| | - Shirley M Moore
- Delta Xi, Edward J. and Louise Mellen Professor of Nursing, Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Debra Barton
- Mary Lou Willard French Professor of Oncology Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Miyong T Kim
- Epsilon Theta, Professor, Associate Vice President for Community Health Engagement, University of Texas at Austin, Austin, TX, USA
| | - Sharron L Docherty
- Iota Omicron, Associate Professor, School of Nursing; Associate Professor, Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Drenna Waldrop-Valverde
- Associate Professor and Assistant Dean for Research, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Donald E Bailey
- Beta Epsilon and Theta Iota, Associate Professor, Duke University, Durham, NC, USA
| | - Rachel F Schiffman
- Alpha Chi and Eta Nu, Professor and Associate Dean for Research, College of Nursing, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Teresa M Ward
- Psi-at-Large, Associate Professor, University of Washington School of Nursing, Seattle, WA, USA
| | - Suzanne Bakken
- Alpha Eta, The Alumni Professor of Nursing and Professor of Biomedical Informatics Director, Columbia University, New York, NY, USA
| | - Kathleen T Hickey
- Alpha Eta, Professor of Nursing at Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Cynthia L Renn
- Pi, Associate Professor Department of Pain and Translational Symptom Science, University of Maryland Baltimore, Baltimore, MD, USA
| | - Patricia Grady
- Tau, Director, National Institute of Nursing Research, National Institutes or Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Dandi Ε, Kalamari A, Touloumi O, Lagoudaki R, Nousiopoulou E, Simeonidou C, Spandou E, Tata DA. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. Int J Dev Neurosci 2018; 67:19-32. [PMID: 29545098 DOI: 10.1016/j.ijdevneu.2018.03.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
Exposure to environmental enrichment can beneficially influence the behavior and enhance synaptic plasticity. The aim of the present study was to investigate the mediated effects of environmental enrichment on postnatal stress-associated impact with regard to behavior, stress reactivity as well as synaptic plasticity changes in the dorsal hippocampus. Wistar rat pups were submitted to a 3 h maternal separation (MS) protocol during postnatal days 1-21, while another group was left undisturbed. On postnatal day 23, a subgroup from each rearing condition (maternal separation, no-maternal separation) was housed in enriched environmental conditions until postnatal day 65 (6 weeks duration). At approximately three months of age, adult rats underwent behavioral testing to evaluate anxiety (Elevated Plus Maze), locomotion (Open Field Test), spatial learning and memory (Morris Water Maze) as well as non-spatial recognition memory (Novel Object Recognition Test). After completion of behavioral testing, blood samples were taken for evaluation of stress-induced plasma corticosterone using an enzyme-linked immunosorbent assay (ELISA), while immunofluorescence was applied to evaluate hippocampal BDNF and synaptophysin expression in dorsal hippocampus. We found that environmental enrichment protected against the effects of maternal separation as indicated by the lower anxiety levels and the reversal of spatial memory deficits compared to animals housed in standard conditions. These changes were associated with increased BDNF and synaptophysin expression in the hippocampus. Regarding the neuroendocrine response to stress, while exposure to an acute stressor potentiated corticosterone increases in maternally-separated rats, environmental enrichment of these rats prevented this effect. The current study aimed at investigating the compensatory role of enriched environment against the negative outcomes of adverse experiences early in life concurrently on emotional and cognitive behaviors, HPA function and neuroplasticity markers.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Aikaterini Kalamari
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Olga Touloumi
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Rosa Lagoudaki
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece.
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece.
| |
Collapse
|
47
|
Cao T, Zhen XC. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci Ther 2018. [PMID: 29529357 DOI: 10.1111/cns.12840] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although it is generally believed that genetic and developmental factors play critical roles in pathogenesis of schizophrenia, however, the precise etiological mechanism of schizophrenia remains largely unknown. Over past decades, miRNAs have emerged as an essential post-transcriptional regulator in gene expression regulation. The importance of miRNA in brain development and neuroplasticity has been well-established. Abnormal expression and dysfunction of miRNAs are known to involve in the pathophysiology of many neuropsychiatric diseases including schizophrenia. In this review, we summarized the recent findings in the schizophrenia-associated dysregulation of miRNA and functional roles in the development and pathogenesis of schizophrenia. We also discussed the potential therapeutic implications of miRNA regulation in the illness.
Collapse
Affiliation(s)
- Ting Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,The Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,The Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
48
|
Huang H, Zhu Y, Eliot MN, Knopik VS, McGeary JE, Carskadon MA, Hart AC. Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep. Sleep 2018; 40:3738764. [PMID: 28431118 DOI: 10.1093/sleep/zsx063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Study Objectives We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. Methods We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Results Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Conclusions Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species.
Collapse
Affiliation(s)
- Huiyan Huang
- Department of Neuroscience, Brown University, Providence, RI
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT
| | - Melissa N Eliot
- Department of Epidemiology, Brown University, Providence, RI
| | - Valerie S Knopik
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, RI.,Department of Psychiatry and Human Behavior, Brown University, Providence, RI
| | - John E McGeary
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, RI.,Department of Psychiatry and Human Behavior, Brown University, Providence, RI.,Providence Veterans Affairs Medical Center, Providence, RI
| | - Mary A Carskadon
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI.,E.P. Bradley Hospital Sleep Research Laboratory, Providence, RI.,Center for Sleep Research, University of South Australia, Adelaide, Australia
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, RI
| |
Collapse
|
49
|
Peedicayil J, Grayson DR. An epigenetic basis for an omnigenic model of psychiatric disorders. J Theor Biol 2018; 443:52-55. [PMID: 29378208 DOI: 10.1016/j.jtbi.2018.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India.
| | - Dennis R Grayson
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, The Psychiatric Institute, College of Medicine, University of Illinois, Chicago 60612, USA.
| |
Collapse
|
50
|
Low Vs. High Alcohol: Central Benefits Vs. Detriments. Neurotox Res 2018; 34:860-869. [DOI: 10.1007/s12640-017-9859-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023]
|