1
|
Zhang T, Xia F, Wan Y, Xi G, Ya H, Keep RF. Complement Inhibition Reduces Early Erythrolysis, Attenuates Brain Injury, Hydrocephalus, and Iron Accumulation after Intraventricular Hemorrhage in Aged Rats. Transl Stroke Res 2025; 16:882-895. [PMID: 38943026 DOI: 10.1007/s12975-024-01273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Blood components released by erythrolysis play an important role in secondary brain injury and posthemorrhagic hydrocephalus (PHH) after intraventricular hemorrhage (IVH). The current study examined the impact of N-acetylheparin (NAH), a complement inhibitor, on early erythrolysis, PHH and iron accumulation in aged rats following IVH. This study, on 18-months-old male Fischer 344 rats, was in 3 parts. First, rats had an intracerebroventricular injection of autologous blood (IVH) mixed with NAH or saline, or saline alone. After MRI at four hours, Western blot and immunohistochemistry examined complement activation and electron microscopy choroid plexus and periventricular damage. Second, rats had an IVH with NAH or vehicle, or saline. Rats underwent serial MRI at 4 h and 1 day to assess ventricular volume and erythrolysis. Immunohistochemistry and H&E staining examined secondary brain injury. Third, rats had an IVH with NAH or vehicle. Serial MRIs on day 1 and 28 assessed ventricular volume and iron accumulation. H&E staining and immunofluorescence evaluated choroid plexus phagocytes. Complement activation was found 4 h after IVH, and co-injection of NAH inhibited that activation. NAH administration attenuated erythrolysis, reduced ventricular volume, alleviated periventricular and choroid plexus injury at 4 h and 1 day after IVH. NAH decreased iron accumulation, the number of choroid plexus phagocytes, and attenuated hydrocephalus at 28 days after IVH. Inhibiting complement can reduce early erythrolysis, attenuates hydrocephalus and iron accumulation after IVH in aged animals.
Collapse
Affiliation(s)
- Tianjie Zhang
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yingfeng Wan
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Hua Ya
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Deng X, Chen Y, Duan Q, Ding J, Wang Z, Wang J, Chen X, Zhou L, Zhao L. Genetic and molecular mechanisms of hydrocephalus. Front Mol Neurosci 2025; 17:1512455. [PMID: 39839745 PMCID: PMC11746911 DOI: 10.3389/fnmol.2024.1512455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yiqian Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Junchi Wang
- School of Dentistry, North Sichuan Medical College, Nanchong, China
| | - Xinlong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Wu W, Li Q. Mechanisms of hydrocephalus after intraventricular haemorrhage: a review. Childs Nerv Syst 2024; 41:49. [PMID: 39674974 DOI: 10.1007/s00381-024-06711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Intraventricular haemorrhage (IVH) is bleeding within the ventricular system, which in adults is usually mainly secondary to cerebral haemorrhage and subarachnoid haemorrhage. Hydrocephalus is one of the most common complications of intraventricular haemorrhage, which is characterised by an increase in intracranial pressure due to an increased accumulation of cerebrospinal fluid within the ventricular system, and is closely related to the patient's prognosis. Surgical methods such as shunt surgery have been used to treat secondary hydrocephalus in recent years and have been effective in improving the survival and prognosis of patients with hydrocephalus. However, complications such as shunt blockage and intracranial infection are often faced after surgery. Moreover, little is known about the mechanism of hydrocephalus secondary to intraventricular haemorrhage. This review discusses the mechanisms regarding the occurrence of secondary hydrocephalus after intraventricular haemorrhage in adults in terms of blood clot obstruction, altered cerebrospinal fluid dynamics, inflammation, and blood composition.
Collapse
Affiliation(s)
- Wenchao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China
| | - Qingsong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China.
| |
Collapse
|
4
|
Wang K, Tang Z, Yang Y, Guo Y, Liu Z, Su Z, Li X, Xiao G. Zebrafish as a Model Organism for Congenital Hydrocephalus: Characteristics and Insights. Zebrafish 2024; 21:361-384. [PMID: 39510565 DOI: 10.1089/zeb.2024.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Hydrocephalus is a cerebrospinal fluid-related disease that usually manifests as abnormal dilation of the ventricles, with a triad of clinical findings including walking difficulty, reduced attention span, and urinary frequency or incontinence. The onset of congenital hydrocephalus is closely related to mutations in genes that regulate brain development. Currently, our understanding of the mechanisms of congenital hydrocephalus remains limited, and the prognosis of existing treatments is unsatisfactory. Additionally, there are no suitable or dedicated model organisms for congenital hydrocephalus. Therefore, it is significant to determine the mechanism and develop special animal models of congenital hydrocephalus. Recently, zebrafish have emerged as a popular model organism in many fields, including developmental biology, genetics, and toxicology. Its genome shares high similarity with that of humans, and it has fast and low-cost reproduction. These advantages make it suitable for studying the pathogenesis and therapeutic approaches for various diseases, specifically congenital diseases. This study explored the possibility of using zebrafish as a model organism for congenital hydrocephalus. This review describes the characteristics of zebrafish and discusses specific congenital hydrocephalus models. The advantages and limitations of using zebrafish for hydrocephalus research are highlighted, and insights for further model development are provided.
Collapse
Affiliation(s)
- Kaiyue Wang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yating Guo
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, United Kingdom
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
5
|
Nour Eldine M, Alhousseini M, Nour-Eldine W, Noureldine H, Vakharia KV, Krafft PR, Noureldine MHA. The Role of Oxidative Stress in the Progression of Secondary Brain Injury Following Germinal Matrix Hemorrhage. Transl Stroke Res 2024; 15:647-658. [PMID: 36930383 DOI: 10.1007/s12975-023-01147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Germinal matrix hemorrhage (GMH) can be a fatal condition responsible for the death of 1.7% of all neonates in the USA. The majority of GMH survivors develop long-term sequalae with debilitating comorbidities. Higher grade GMH is associated with higher mortality rates and higher prevalence of comorbidities. The pathophysiology of GMH can be broken down into two main titles: faulty hemodynamic autoregulation and structural weakness at the level of tissues and cells. Prematurity is the most significant risk factor for GMH, and it predisposes to both major pathophysiological mechanisms of the condition. Secondary brain injury is an important determinant of survival and comorbidities following GMH. Mechanisms of brain injury secondary to GMH include apoptosis, necrosis, neuroinflammation, and oxidative stress. This review will have a special focus on the mechanisms of oxidative stress following GMH, including but not limited to inflammation, mitochondrial reactive oxygen species, glutamate toxicity, and hemoglobin metabolic products. In addition, this review will explore treatment options of GMH, especially targeted therapy.
Collapse
Affiliation(s)
- Mariam Nour Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hussein Noureldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Kunal V Vakharia
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Paul R Krafft
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Mohammad Hassan A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
6
|
Li Y, Nan D, Liu R, Li J, Zhang Z, Deng J, Zhang Y, Yan Z, Hou C, Yao E, Sun W, Wang Z, Huang Y. Aquaporin 4 Mediates the Effect of Iron Overload on Hydrocephalus After Intraventricular Hemorrhage. Neurocrit Care 2024; 40:225-236. [PMID: 37208490 PMCID: PMC10861395 DOI: 10.1007/s12028-023-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Iron overload plays an important role in hydrocephalus development following intraventricular hemorrhage (IVH). Aquaporin 4 (AQP4) participates in the balance of cerebrospinal fluid secretion and absorption. The current study investigated the role of AQP4 in the formation of hydrocephalus caused by iron overload after IVH. METHODS There were three parts to this study. First, Sprague-Dawley rats received an intraventricular injection of 100 µl autologous blood or saline control. Second, rats had IVH and were treated with deferoxamine (DFX), an iron chelator, or vehicle. Third, rats had IVH and were treated with 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a specific AQP4 inhibitor, or vehicle. Rats underwent T2-weighted and T2* gradient-echo magnetic resonance imaging to assess lateral ventricular volume and intraventricular iron deposition at 7, 14, and 28 days after intraventricular injection and were then euthanized. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence analyses were conducted on the rat brains to evaluate the expression of AQP4 at different time points. Hematoxylin and eosin-stained brain sections were obtained to assess the ventricular wall damage on day 28. RESULTS Intraventricular injection of autologous blood caused a significant ventricular dilatation, iron deposition, and ventricular wall damage. There was increased AQP4 mRNA and protein expression in the periventricular tissue in IVH rats through day 7 to day 28. The DFX treatment group had a lower lateral ventricular volume and less intraventricular iron deposition and ventricular wall damage than the vehicle-treated group after IVH. The expression of AQP4 protein in periventricular tissue was also inhibited by DFX on days 14 and 28 after IVH. The use of TGN-020 attenuated hydrocephalus development after IVH and inhibited the expression of AQP4 protein in the periventricular tissue between day 14 and day 28 without a significant effect on intraventricular iron deposition or ventricular wall damage. CONCLUSIONS AQP4 located in the periventricular area mediated the effect of iron overload on hydrocephalus after IVH.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jieyu Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhuangzhuang Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Ziguang Yan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Chao Hou
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ensheng Yao
- Department of Neurology, First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
7
|
Dabbagh Ohadi MA, Maroufi SF, Mohammadi MR, Hosseini Siyanaki MR, Khorasanizadeh M, Kellner CP. Ferroptosis as a Therapeutic Target in Subarachnoid Hemorrhage. World Neurosurg 2024; 182:52-57. [PMID: 37979679 DOI: 10.1016/j.wneu.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular disorder with significant mortality and morbidity. Neural injury in SAH is mediated through a variety of pathophysiological processes. Currently available treatments are either nonspecific in targeting the basic pathophysiological mechanisms that result in neural damage in SAH, or merely focus on vasospasm. Ferroptosis is a type of programmed iron dependent cell death, which has received attention due to its possible role in neural injury in SAH. Herein, we review how intracellular iron overload mediates the production of reactive free radicals and lipid peroxidation through a variety of biochemical pathways in SAH. This in turn results in induction of ferroptosis, as well as exacerbation of vasospasm. We also discuss several therapeutic agents that have been shown to inhibit ferroptosis through targeting different steps of the process. Such agents have proven effective in ameliorating vasospasm, neural damage, and neurobehavioral outcomes in animal models of SAH. Human studies to test the safety and efficacy of intrathecal or parenteral administration of the inhibitors of ferroptosis in improving outcomes of SAH patients are warranted. There are currently a few ongoing clinical trials pursuing this therapeutic concept, the results of which will be critical to determine the value of ferroptosis as a novel therapeutic target in SAH.
Collapse
Affiliation(s)
- Mohammad Amin Dabbagh Ohadi
- Departments of Pediatric Neurosurgery Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Farzad Maroufi
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - MirHojjat Khorasanizadeh
- Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, New York, USA.
| | - Christopher P Kellner
- Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, New York, USA
| |
Collapse
|
8
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
9
|
Sanker V, Kundu M, El Kassem S, El Nouiri A, Emara M, Maaz ZA, Nazir A, Bekele BK, Uwishema O. Posttraumatic hydrocephalus: Recent advances and new therapeutic strategies. Health Sci Rep 2023; 6:e1713. [PMID: 38028696 PMCID: PMC10652704 DOI: 10.1002/hsr2.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hydrocephalus or ventriculomegaly is a condition brought on by an overabundance of cerebrospinal fluid (CSF) in the ventricular system. The major contributor to posttraumatic hydrocephalus (PTH) is traumatic brain injuries (TBIs), especially in individuals with occupations set in industrial settings. A variety of criteria have been employed for the diagnosis of PTH, including the combination of neurological symptoms like nerve deficits and headache, as well as an initial improvement followed by a worsened relapse of altered consciousness and neurological deterioration, which is detected by computed tomography-brain imaging that reveals gradual ventriculomegaly. Aim In this article, we discuss and summarize briefly the current understandings and advancements in the management of PTH. Methods The available literature for this review was searched on various bibliographic databases using an individually verified, prespecified approach. The level of evidence of the included studies was considered as per the Centre for Evidence-Based Medicine recommendations. Results The commonly practiced current treatment modality involves shunting CSF but is often associated with complications and recurrence. The lack of a definitive management strategy for PTH warrants the utilization of novel and innovative modalities such as stem cell transplantations and antioxidative stress therapies. Conclusion One of the worst complications of a TBI is PTH, which has a high morbidity and mortality rate. Even though there hasn't been a successful method in stopping PTH from happening, hemorrhage-derived blood, and its metabolic by-products, like iron, hemoglobin, free radicals, thrombin, and red blood cells, may be potential targets for PTH hindrance and management. Also, using stem cell transplantations in animal models and antioxidative stress therapies in future studies can lower PTH occurrence and improve its outcome. Moreover, the integration of clinical trials and theoretical knowledge should be encouraged in future research projects to establish effective and updated management guidelines for PTH.
Collapse
Affiliation(s)
- Vivek Sanker
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Society of Brain Mapping and TherapeuticsLos AngelesCaliforniaUSA
| | - Mrinmoy Kundu
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Institute of Medical Sciences and SUM HospitalBhubaneswarIndia
| | - Sarah El Kassem
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Ahmad El Nouiri
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Mohamed Emara
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Zeina Al Maaz
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
| | - Bezawit Kassahun Bekele
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- School of MedicineAddis Ababa UniversityAddis AbabaEthiopia
- Milken Institute of Public HealthGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of medicineClinton Global Initiative UniversityNew YorkNew YorkUSA
- Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| |
Collapse
|
10
|
Wahjoepramono POP, Sasongko AB, Halim D, Aviani JK, Lukito PP, Adam A, Tsai YT, Wahjoepramono EJ, July J, Achmad TH. Hydrocephalus is an independent factor affecting morbidity and mortality of ICH patients: Systematic review and meta-analysis. World Neurosurg X 2023; 19:100194. [PMID: 37359762 PMCID: PMC10288487 DOI: 10.1016/j.wnsx.2023.100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/04/2023] [Indexed: 06/28/2023] Open
Abstract
Background Despite advances in our knowledge of the causes, preventions, and treatments of stroke, it continues to be a leading cause of death and disability. The most common type of stroke-related morbidity and mortality is intracerebral haemorrhage (ICH). Many prognostication scores include an intraventricular extension (IVH) after ICH because it affects mortality independently. Although it is a direct result of IVH and results in significant damage, hydrocephalus (HC) has never been taken into account when calculating prognostication scores. This study aimed to evaluate the significance of hydrocephalus on the outcomes of ICH patients by meta-analysis. Methods Studies that compared the rates of mortality and/or morbidity in patients with ICH, ICH with IVH (ICH + IVH), and ICH with IVH and HC (ICH + IVH + HC) were identified. A meta-analysis was performed by using Mantel-Haezel Risk Ratio at 95% significance. Results This meta-analysis included thirteen studies. The findings indicate that ICH + IVH + HC has higher long-term (90-day) and short-term (30-day) mortality risks than ICH (4.26 and 2.30 higher risks, respectively) and ICH + IVH (1.96 and 1.54 higher risks). Patients with ICH + IVH + HC have lower rates of short-term (3 months) and long-term (6 months) good functional outcomes than those with ICH (0.66 and 0.38 times) or ICH + IVH (0.76 and 0.54 times). Confounding variables included vascular comorbidities, haemorrhage volume, midline shift, and an initial GCS score below 8. Conclusion Hydrocephalus causes a poorer prognosis in ICH patients. Thus, it is reasonable to suggest the inclusion of hydrocephalus in ICH prognostication scoring systems.
Collapse
Affiliation(s)
- Petra Octavian Perdana Wahjoepramono
- Department of Neurosurgery, Faculty of Medicine, Pelita Harapan University/Siloam Hospitals, Tangerang, Banten, Indonesia
- Post Graduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Aloysius Bagus Sasongko
- Department of Neurosurgery, Faculty of Medicine, Pelita Harapan University/Siloam Hospitals, Tangerang, Banten, Indonesia
- Post Graduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Danny Halim
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Jenifer Kiem Aviani
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Patrick Putra Lukito
- Department of Neurosurgery, Faculty of Medicine, Pelita Harapan University/Siloam Hospitals, Tangerang, Banten, Indonesia
| | - Achmad Adam
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Yeo Tseng Tsai
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore
| | - Eka Julianta Wahjoepramono
- Department of Neurosurgery, Faculty of Medicine, Pelita Harapan University/Siloam Hospitals, Tangerang, Banten, Indonesia
| | - Julius July
- Department of Neurosurgery, Faculty of Medicine, Pelita Harapan University/Siloam Hospitals, Tangerang, Banten, Indonesia
| | - Tri Hanggono Achmad
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Basic Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
11
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
12
|
Bian C, Wan Y, Koduri S, Hua Y, Keep RF, Xi G. Iron-Induced Hydrocephalus: the Role of Choroid Plexus Stromal Macrophages. Transl Stroke Res 2023; 14:238-249. [PMID: 35543803 PMCID: PMC9794223 DOI: 10.1007/s12975-022-01031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/30/2022]
Abstract
Evidence indicates that erythrocyte-derived iron and inflammation both play a role in intraventricular hemorrhage-induced brain injury including hydrocephalus. Many immune-associated cells, primarily stromal macrophages, reside at the choroid plexus where they are involved in inflammatory responses and antigen presentation. However, whether intraventricular iron impacts those stromal cells is unknown. The aim of this study was to evaluate the relationship between choroid plexus stromal macrophages and iron-induced hydrocephalus in rats and the impact of minocycline and clodronate liposomes on those changes. Aged (18-month-old) and young (3-month-old) male Fischer 344 rats were used to study choroid plexus stromal macrophages. Rats underwent intraventricular iron injection to induce hydrocephalus and treated with either minocycline, a microglia/macrophage inhibitor, or clodronate liposomes, a macrophage depleting agent. Ventricular volume was measured using magnetic resonance imaging, and stromal macrophages were quantified by immunofluorescence staining. We found that stromal macrophages accounted for about 10% of the total choroid plexus cells with more in aged rats. In both aged and young rats, intraventricular iron injection resulted in hydrocephalus and increased stromal macrophage number. Minocycline or clodronate liposomes ameliorated iron-induced hydrocephalus and the increase in stromal macrophages. In conclusion, stromal macrophages account for ~10% of all choroid plexus cells, with more in aged rats. Treatments targeting macrophages (minocycline and clodronate liposomes) are associated with reduced iron-induced hydrocephalus.
Collapse
Affiliation(s)
- Chaoyi Bian
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Sravanthi Koduri
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Femi-Akinlosotu OM, Olopade FE, Obiako J, Olopade JO, Shokunbi MT. Vanadium improves memory and spatial learning and protects the pyramidal cells of the hippocampus in juvenile hydrocephalic mice. Front Neurol 2023; 14:1116727. [PMID: 36846142 PMCID: PMC9947794 DOI: 10.3389/fneur.2023.1116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Background Hydrocephalus is a neurological condition known to cause learning and memory disabilities due to its damaging effect on the hippocampal neurons, especially pyramidal neurons. Vanadium at low doses has been observed to improve learning and memory abilities in neurological disorders but it is uncertain whether such protection will be provided in hydrocephalus. We investigated the morphology of hippocampal pyramidal neurons and neurobehavior in vanadium-treated and control juvenile hydrocephalic mice. Methods Hydrocephalus was induced by intra-cisternal injection of sterile-kaolin into juvenile mice which were then allocated into 4 groups of 10 pups each, with one group serving as an untreated hydrocephalic control while others were treated with 0.15, 0.3 and 3 mg/kg i.p of vanadium compound respectively, starting 7 days post-induction for 28 days. Non-hydrocephalic sham controls (n = 10) were sham operated without any treatment. Mice were weighed before dosing and sacrifice. Y-maze, Morris Water Maze and Novel Object Recognition tests were carried out before the sacrifice, the brains harvested, and processed for Cresyl Violet and immunohistochemistry for neurons (NeuN) and astrocytes (GFAP). The pyramidal neurons of the CA1 and CA3 regions of the hippocampus were assessed qualitatively and quantitatively. Data were analyzed using GraphPad prism 8. Results Escape latencies of vanadium-treated groups were significantly shorter (45.30 ± 26.30 s, 46.50 ± 26.35 s, 42.99 ± 18.44 s) than untreated group (62.06 ± 24.02 s) suggesting improvements in learning abilities. Time spent in the correct quadrant was significantly shorter in the untreated group (21.19 ± 4.15 s) compared to control (34.15 ± 9.44 s) and 3 mg/kg vanadium-treated group (34.35 ± 9.74 s). Recognition index and mean % alternation were lowest in untreated group (p = 0.0431, p=0.0158) suggesting memory impairments, with insignificant improvements in vanadium-treated groups. NeuN immuno-stained CA1 revealed loss of apical dendrites of the pyramidal cells in untreated hydrocephalus group relative to control and a gradual reversal attempt in the vanadium-treated groups. Astrocytic activation (GFAP stain) in the untreated hydrocephalus group were attenuated in the vanadium-treated groups under the GFAP stain. Pyknotic index in CA1 pyramidal layer of untreated (18.82 ± 2.59) and 0.15mg/kg vanadium-treated groups (18.14 ± 5.92) were significantly higher than control (11.11 ± 0.93; p = 0.0205, p = 0.0373) while there was no significant difference in CA3 pyknotic index across all groups. Conclusion Our results suggest that vanadium has a dose-dependent protective effect on the pyramidal cells of the hippocampus and on memory and spatial learning functions in juvenile hydrocephalic mice.
Collapse
Affiliation(s)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Jane Obiako
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew Temitayo Shokunbi
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria,Division of Neurological Surgery, Department of Surgery, University of Ibadan, Ibadan, Nigeria,*Correspondence: Matthew Temitayo Shokunbi ✉
| |
Collapse
|
14
|
Hochstetler A, Raskin J, Blazer-Yost BL. Hydrocephalus: historical analysis and considerations for treatment. Eur J Med Res 2022; 27:168. [PMID: 36050779 PMCID: PMC9434947 DOI: 10.1186/s40001-022-00798-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrocephalus is a serious condition that affects patients of all ages, resulting from a multitude of causes. While the etiologies of hydrocephalus are numerous, many of the acute and chronic symptoms of the condition are shared. These symptoms include disorientation and pain (headaches), cognitive and developmental changes, vision and sleep disturbances, and gait abnormalities. This collective group of symptoms combined with the effectiveness of CSF diversion as a surgical intervention for many types of the condition suggest that the various etiologies may share common cellular and molecular dysfunctions. The incidence rate of pediatric hydrocephalus is approximately 0.1-0.6% of live births, making it as common as Down syndrome in infants. Diagnosis and treatment of various forms of adult hydrocephalus remain understudied and underreported. Surgical interventions to treat hydrocephalus, though lifesaving, have a high incidence of failure. Previously tested pharmacotherapies for the treatment of hydrocephalus have resulted in net zero or negative outcomes for patients potentially due to the lack of understanding of the cellular and molecular mechanisms that contribute to the development of hydrocephalus. Very few well-validated drug targets have been proposed for therapy; most of these have been within the last 5 years. Within the last 50 years, there have been only incremental improvements in surgical treatments for hydrocephalus, and there has been little progress made towards prevention or cure. This demonstrates the need to develop nonsurgical interventions for the treatment of hydrocephalus regardless of etiology. The development of new treatment paradigms relies heavily on investment in researching the common molecular mechanisms that contribute to all of the forms of hydrocephalus, and requires the concerted support of patient advocacy organizations, government- and private-funded research, biotechnology and pharmaceutical companies, the medical device industry, and the vast network of healthcare professionals.
Collapse
Affiliation(s)
- Alexandra Hochstetler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Jeffrey Raskin
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bonnie L Blazer-Yost
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
15
|
Mahaney KB, Buddhala C, Paturu M, Morales DM, Smyser CD, Limbrick DD, Gummidipundi SE, Han SS, Strahle JM. Elevated cerebrospinal fluid iron and ferritin associated with early severe ventriculomegaly in preterm posthemorrhagic hydrocephalus. J Neurosurg Pediatr 2022; 30:169-176. [PMID: 35916101 PMCID: PMC9998037 DOI: 10.3171/2022.4.peds21463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Posthemorrhagic hydrocephalus (PHH) following preterm intraventricular hemorrhage (IVH) is among the most severe sequelae of extreme prematurity and a significant contributor to preterm morbidity and mortality. The authors have previously shown hemoglobin and ferritin to be elevated in the lumbar puncture cerebrospinal fluid (CSF) of neonates with PHH. Herein, they evaluated CSF from serial ventricular taps to determine whether neonates with PHH following severe initial ventriculomegaly had higher initial levels and prolonged clearance of CSF hemoglobin and hemoglobin degradation products compared to those in neonates with PHH following moderate initial ventriculomegaly. METHODS In this observational cohort study, CSF samples were obtained from serial ventricular taps in premature neonates with severe IVH and subsequent PHH. CSF hemoglobin, ferritin, total iron, total bilirubin, and total protein were quantified using ELISA. Ventriculomegaly on cranial imaging was assessed using the frontal occipital horn ratio (FOHR) and was categorized as severe (FOHR > 0.6) or moderate (FOHR ≤ 0.6). RESULTS Ventricular tap CSF hemoglobin (mean) and ferritin (initial and mean) were higher in neonates with severe versus moderate initial ventriculomegaly. CSF hemoglobin, ferritin, total iron, total bilirubin, and total protein decreased in a nonlinear fashion over the weeks following severe IVH. Significantly higher levels of CSF ferritin and total iron were observed in the early weeks following IVH in neonates with severe initial ventriculomegaly than in those with initial moderate ventriculomegaly. CONCLUSIONS Among preterm neonates with PHH following severe IVH, elevated CSF hemoglobin, ferritin, and iron were associated with more severe early ventricular enlargement (FOHR > 0.6 vs ≤ 0.6 at first ventricular tap).
Collapse
Affiliation(s)
- Kelly B Mahaney
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Chandana Buddhala
- 2Department of Neurological Surgery, Washington University School of Medicine
| | - Mounica Paturu
- 2Department of Neurological Surgery, Washington University School of Medicine
| | - Diego M Morales
- 2Department of Neurological Surgery, Washington University School of Medicine
| | - Christopher D Smyser
- 3Department of Pediatrics, Washington University School of Medicine.,4Department of Neurology, Washington University School of Medicine.,5Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - David D Limbrick
- 2Department of Neurological Surgery, Washington University School of Medicine
| | - Santosh E Gummidipundi
- 6Quantitative Sciences Unit, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, California
| | - Summer S Han
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, California.,6Quantitative Sciences Unit, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, California
| | - Jennifer M Strahle
- 2Department of Neurological Surgery, Washington University School of Medicine
| |
Collapse
|
16
|
Holste KG, Xia F, Ye F, Keep RF, Xi G. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review. Fluids Barriers CNS 2022; 19:28. [PMID: 35365172 PMCID: PMC8973639 DOI: 10.1186/s12987-022-00324-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a significant cause of morbidity and mortality in both neonatal and adult populations. IVH not only causes immediate damage to surrounding structures by way of mass effect and elevated intracranial pressure; the subsequent inflammation causes additional brain injury and edema. Of those neonates who experience severe IVH, 25-30% will go on to develop post-hemorrhagic hydrocephalus (PHH). PHH places neonates and adults at risk for white matter injury, seizures, and death. Unfortunately, the molecular determinants of PHH are not well understood. Within the past decade an emphasis has been placed on neuroinflammation in IVH and PHH. More information has come to light regarding inflammation-induced fibrosis and cerebrospinal fluid hypersecretion in response to IVH. The aim of this review is to discuss the role of neuroinflammation involving clot-derived neuroinflammatory factors including hemoglobin/iron, peroxiredoxin-2 and thrombin, as well as macrophages/microglia, cytokines and complement in the development of PHH. Understanding the mechanisms of neuroinflammation after IVH may highlight potential novel therapeutic targets for PHH.
Collapse
Affiliation(s)
- Katherine G Holste
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA.
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA.
- , 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
17
|
Foster L, Robinson L, Yeatts SD, Conwit RA, Shehadah A, Lioutas V, Selim M. Effect of Deferoxamine on Trajectory of Recovery After Intracerebral Hemorrhage: A Post Hoc Analysis of the i-DEF Trial. Stroke 2022; 53:2204-2210. [PMID: 35306827 PMCID: PMC9246960 DOI: 10.1161/strokeaha.121.037298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
There are limited data on the trajectory of recovery and long-term functional outcomes after intracerebral hemorrhage (ICH). Most ICH trials have conventionally assessed outcomes at 3 months following the footsteps of ischemic stroke. The i-DEF trial (Intracerebral Hemorrhage Deferoxamine Trial) assessed modified Rankin Scale (mRS) longitudinally at prespecified time points from day 7 through the end of the 6-month follow-up period. We evaluated the trajectory of mRS among trial participants and examined the effect of deferoxamine on this trajectory.
Methods:
We performed a post hoc analysis of the i-DEF trial, a multicenter, randomized, placebo-controlled, double-blind, futility-design, phase 2 clinical trial, based on the actual treatment received. Favorable outcome was defined as mRS score of 0–2. A generalized linear mixed model was used to evaluate the outcome trajectory over time, as well as whether the trajectory was altered by deferoxamine, after adjustments for randomization variables, presence of intraventricular hemorrhage, and ICH location.
Results:
A total of 291 subjects were included in analysis (145 placebo and 146 deferoxamine). The proportion of patients with mRS score of 0–2 continually increased from day 7 to 180 in both groups (interaction
P
<0.0001 for time in main effects model), but treatment with deferoxamine favorably altered the trajectory (interaction
P
=0.0010). Between day 90 and 180, the deferoxamine group improved (
P
=0.0001), whereas there was not significant improvement in the placebo arm (
P
=0.3005).
Conclusions:
A large proportion of patients continue to improve up to 6 months after ICH. Future ICH trials should assess outcomes past 90 days for a minimum of 6 months. In i-DEF, treatment with deferoxamine seemed to accelerate and alter the trajectory of recovery as assessed by mRS.
Registration:
URL:
https://www.clinicaltrials.gov
; Unique identifier: NCT02175225.
Collapse
Affiliation(s)
- Lydia Foster
- Department of Public Health Sciences, Medical University of South Carolina, Charleston (L.F., S.D.Y.)
| | - Laura Robinson
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (L.R., A.S., V.L., M.S.)
| | - Sharon D. Yeatts
- Department of Public Health Sciences, Medical University of South Carolina, Charleston (L.F., S.D.Y.)
| | - Robin A. Conwit
- National Institute of Neurological Disorders and Stroke, Bethesda, MD (R.A.C.)
| | - Amjad Shehadah
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (L.R., A.S., V.L., M.S.)
| | - Vasileios Lioutas
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (L.R., A.S., V.L., M.S.)
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (L.R., A.S., V.L., M.S.)
| | | |
Collapse
|
18
|
Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7163326. [PMID: 35116092 PMCID: PMC8807048 DOI: 10.1155/2022/7163326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.
Collapse
|
19
|
Heinsberg LW, Weeks DE, Alexander SA, Minster RL, Sherwood PR, Poloyac SM, Deslouches S, Crago EA, Conley YP. Iron homeostasis pathway DNA methylation trajectories reveal a role for STEAP3 metalloreductase in patient outcomes after aneurysmal subarachnoid hemorrhage. EPIGENETICS COMMUNICATIONS 2021; 1:4. [PMID: 35083470 PMCID: PMC8788201 DOI: 10.1186/s43682-021-00003-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Following aneurysmal subarachnoid hemorrhage (aSAH), the brain is susceptible to ferroptosis, a type of iron-dependent cell death. Therapeutic intervention targeting the iron homeostasis pathway shows promise for mitigating ferroptosis and improving recovery in animal models, but little work has been conducted in humans. DNA methylation (DNAm) plays a key role in gene expression and brain function, plasticity, and injury recovery, making it a potentially useful biomarker of outcomes or therapeutic target for intervention. Therefore, in this longitudinal, observational study, we examined the relationships between trajectories of DNAm in candidate genes related to iron homeostasis and acute (cerebral vasospasm and delayed cerebral ischemia) and long-term (Glasgow Outcome Scale [GOS, unfavorable = 1-3] and death) patient outcomes after aSAH. RESULTS Longitudinal, genome-wide DNAm data were generated from DNA extracted from post-aSAH cerebrospinal fluid (n = 260 participants). DNAm trajectories of 637 CpG sites in 36 candidate genes related to iron homeostasis were characterized over 13 days post-aSAH using group-based trajectory analysis, an unsupervised clustering method. Significant associations were identified between inferred DNAm trajectory groups at several CpG sites and acute and long-term outcomes. Among our results, cg25713625 in the STEAP3 metalloreductase gene (STEAP3) stood out. Specifically, in comparing the highest cg25713625 DNAm trajectory group with the lowest, we observed significant associations (i.e., based on p-values less than an empirical significance threshold) with unfavorable GOS at 3 and 12 months (OR = 11.7, p = 0.0006 and OR = 15.6, p = 0.0018, respectively) and death at 3 and 12 months (OR = 19.1, p = 0.0093 and OR = 12.8, p = 0.0041, respectively). These results were replicated in an independent sample (n = 100 participants) observing significant associations with GOS at 3 and 12 months (OR = 8.2, p = 0.001 and OR = 6.3, p = 0.0.0047, respectively) and death at 3 months (OR = 2.3, p = 0.008) and a suggestive association (i.e., p-value < 0.05 not meeting an empirical significance threshold) with death at 12 months (OR = 2.0, p = 0.0272). In both samples, an additive effect of the DNAm trajectory group was observed as the percentage of participants with unfavorable long-term outcomes increased substantially with higher DNAm trajectory groups. CONCLUSION Our results support a role for DNAm of cg25713625/STEAP3 in recovery following aSAH. Additional research is needed to further explore the role of DNAm of cg25713625/STEAP3 as a biomarker of unfavorable outcomes, or therapeutic target to improve outcomes, to translate these findings clinically.
Collapse
Affiliation(s)
- Lacey W. Heinsberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sheila A. Alexander
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan L. Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Paula R. Sherwood
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sandra Deslouches
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth A. Crago
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P. Conley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Liu H, Schwarting J, Terpolilli NA, Nehrkorn K, Plesnila N. Scavenging Free Iron Reduces Arteriolar Microvasospasms After Experimental Subarachnoid Hemorrhage. Stroke 2021; 52:4033-4042. [PMID: 34749506 DOI: 10.1161/strokeaha.120.033472] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia resulting in high acute mortality and severe chronic neurological deficits. Spasms of the pial and intraparenchymal microcirculation (microvasospasms) contribute to acute cerebral ischemia after SAH; however, the underlying mechanisms remain unknown. We hypothesize that free iron (Fe3+) released from hemolytic red blood cells into the subarachnoid space may be involved in microvasospasms formation. METHODS Male C57BL/6 mice (n=8/group) received 200 mg/kg of the iron scavenger deferoxamine or vehicle intravenously and were then subjected to SAH by filament perforation. Microvasospasms of pial and intraparenchymal vessels were imaged three hours after SAH by in vivo 2-photon microscopy. RESULTS Microvasospasms occurred in all investigated vessel categories down to the capillary level. Deferoxamine significantly reduced the number of microvasospasms after experimental SAH. The effect was almost exclusively observed in larger pial arterioles (>30 µm) covered with blood. CONCLUSIONS These results provide proof-of-principle evidence that Fe3+ is involved in the formation of arteriolar microvasospasms after SAH and that arteriolar and capillary microvasospasms are triggered by different mechanisms. Deciphering the mechanisms of Fe3+-induced microvasospasms may result in novel therapeutic strategies for SAH patients.
Collapse
Affiliation(s)
- Hanhan Liu
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
| | - Julian Schwarting
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
- Department of Neurosurgery (J.S., N.A.T.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
| | - Nicole Angela Terpolilli
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
- Munich Cluster of Systems Neurology (Synergy), Germany (N.A.T., K.N., N.P.)
| | - Kathrin Nehrkorn
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
- Munich Cluster of Systems Neurology (Synergy), Germany (N.A.T., K.N., N.P.)
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (H.L., J.S., N.A.T., K.N., N.P.), University of Munich Medical Center, Ludwig-Maximilians-University (LMU), Germany
- Munich Cluster of Systems Neurology (Synergy), Germany (N.A.T., K.N., N.P.)
| |
Collapse
|
21
|
Strahle JM, Mahaney KB, Morales DM, Buddhala C, Shannon CN, Wellons JC, Kulkarni AV, Jensen H, Reeder RW, Holubkov R, Riva-Cambrin JK, Whitehead WE, Rozzelle CJ, Tamber M, Pollack IF, Naftel RP, Kestle JRW, Limbrick DD. Longitudinal CSF Iron Pathway Proteins in Posthemorrhagic Hydrocephalus: Associations with Ventricle Size and Neurodevelopmental Outcomes. Ann Neurol 2021; 90:217-226. [PMID: 34080727 DOI: 10.1002/ana.26133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Iron has been implicated in the pathogenesis of brain injury and hydrocephalus after preterm germinal matrix hemorrhage-intraventricular hemorrhage, however, it is unknown how external or endogenous intraventricular clearance of iron pathway proteins affect the outcome in this group. METHODS This prospective multicenter cohort included patients with posthemorrhagic hydrocephalus (PHH) who underwent (1) temporary and permanent cerebrospinal fluid (CSF) diversion and (2) Bayley Scales of Infant Development-III testing around 2 years of age. CSF proteins in the iron handling pathway were analyzed longitudinally and compared to ventricle size and neurodevelopmental outcomes. RESULTS Thirty-seven patients met inclusion criteria with a median estimated gestational age at birth of 25 weeks; 65% were boys. Ventricular CSF levels of hemoglobin, iron, total bilirubin, and ferritin decreased between temporary and permanent CSF diversion with no change in CSF levels of ceruloplasmin, transferrin, haptoglobin, and hepcidin. There was an increase in CSF hemopexin during this interval. Larger ventricle size at permanent CSF diversion was associated with elevated CSF ferritin (p = 0.015) and decreased CSF hemopexin (p = 0.007). CSF levels of proteins at temporary CSF diversion were not associated with outcome, however, higher CSF transferrin at permanent CSF diversion was associated with improved cognitive outcome (p = 0.015). Importantly, longitudinal change in CSF iron pathway proteins, ferritin (decrease), and transferrin (increase) were associated with improved cognitive (p = 0.04) and motor (p = 0.03) scores and improved cognitive (p = 0.04), language (p = 0.035), and motor (p = 0.008) scores, respectively. INTERPRETATION Longitudinal changes in CSF transferrin (increase) and ferritin (decrease) are associated with improved neurodevelopmental outcomes in neonatal PHH, with implications for understanding the pathogenesis of poor outcomes in PHH. ANN NEUROL 2021;90:217-226.
Collapse
Affiliation(s)
- Jennifer M Strahle
- Department of Neurosurgery, Washington University St. Louis, St. Louis, MO, USA
| | - Kelly B Mahaney
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Diego M Morales
- Department of Neurosurgery, Washington University St. Louis, St. Louis, MO, USA
| | - Chandana Buddhala
- Department of Neurosurgery, Washington University St. Louis, St. Louis, MO, USA
| | - Chevis N Shannon
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Wellons
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abhaya V Kulkarni
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Hailey Jensen
- Data Coordinating Center, University of Utah, Salt Lake City, UT, USA
| | - Ron W Reeder
- Data Coordinating Center, University of Utah, Salt Lake City, UT, USA
| | - Richard Holubkov
- Data Coordinating Center, University of Utah, Salt Lake City, UT, USA
| | - Jay K Riva-Cambrin
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | - Curtis J Rozzelle
- Department of Neurosurgery, University of Alabama - Birmingham, Birmingham, AL, USA
| | - Mandeep Tamber
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert P Naftel
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John R W Kestle
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
22
|
Wang C, Wang X, Tan C, Wang Y, Tang Z, Zhang Z, Liu J, Xiao G. Novel therapeutics for hydrocephalus: Insights from animal models. CNS Neurosci Ther 2021; 27:1012-1022. [PMID: 34151523 PMCID: PMC8339528 DOI: 10.1111/cns.13695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrocephalus is a cerebrospinal fluid physiological disorder that causes ventricular dilation with normal or high intracranial pressure. The current regular treatment for hydrocephalus is cerebrospinal fluid shunting, which is frequently related to failure and complications. Meanwhile, considering that the current nonsurgical treatments of hydrocephalus can only relieve the symptoms but cannot eliminate this complication caused by primary brain injuries, the exploration of more effective therapies has become the focus for many researchers. In this article, the current research status and progress of nonsurgical treatment in animal models of hydrocephalus are reviewed to provide new orientations for animal research and clinical practice.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaoqiang Wang
- Department of Pediatric NeurosurgeryXinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Changwu Tan
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuchang Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhi Tang
- Department of NeurosurgeryHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Zhiping Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jingping Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
23
|
White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 2021; 17:199-214. [PMID: 33504979 PMCID: PMC8880688 DOI: 10.1038/s41582-020-00447-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Intraventricular haemorrhage (IVH) continues to be a major complication of prematurity that can result in cerebral palsy and cognitive impairment in survivors. No optimal therapy exists to prevent IVH or to treat its consequences. IVH varies in severity and can present as a bleed confined to the germinal matrix, small-to-large IVH or periventricular haemorrhagic infarction. Moderate-to-severe haemorrhage dilates the ventricle and damages the periventricular white matter. This white matter injury results from a constellation of blood-induced pathological reactions, including oxidative stress, glutamate excitotoxicity, inflammation, perturbed signalling pathways and remodelling of the extracellular matrix. Potential therapies for IVH are currently undergoing investigation in preclinical models and evidence from clinical trials suggests that stem cell treatment and/or endoscopic removal of clots from the cerebral ventricles could transform the outcome of infants with IVH. This Review presents an integrated view of new insights into the mechanisms underlying white matter injury in premature infants with IVH and highlights the importance of early detection of disability and immediate intervention in optimizing the outcomes of IVH survivors.
Collapse
|
24
|
McKnight I, Hart C, Park IH, Shim JW. Genes causing congenital hydrocephalus: Their chromosomal characteristics of telomere proximity and DNA compositions. Exp Neurol 2021; 335:113523. [PMID: 33157092 PMCID: PMC7750280 DOI: 10.1016/j.expneurol.2020.113523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Congenital hydrocephalus (CH) is caused by genetic mutations, but whether factors impacting human genetic mutations are disease-specific remains elusive. Given two factors associated with high mutation rates, we reviewed how many disease-susceptible genes match with (i) proximity to telomeres or (ii) high adenine and thymine (A + T) content in human CH as compared to other disorders of the central nervous system (CNS). We extracted genomic information using a genome data viewer. Importantly, 98 of 108 genes causing CH satisfied (i) or (ii), resulting in >90% matching rate. However, such a high accordance no longer sustained as we checked two factors in Alzheimer's disease (AD) and/or familial Parkinson's disease (fPD), resulting in 84% and 59% matching, respectively. A disease-specific matching of telomere proximity or high A + T content predicts causative genes of CH much better than neurodegenerative diseases and other CNS conditions, likely due to sufficient number of known causative genes (n = 108) and precise determination and classification of the genotype and phenotype. Our analysis suggests a need for identifying genetic basis of both factors before human clinical studies, to prioritize putative genes found in preclinical models into the likely (meeting at least one) and more likely candidate (meeting both), which predisposes human genes to mutations.
Collapse
Affiliation(s)
- Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - Christoph Hart
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joon W Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
25
|
Mahaney KB, Buddhala C, Paturu M, Morales D, Limbrick DD, Strahle JM. Intraventricular Hemorrhage Clearance in Human Neonatal Cerebrospinal Fluid: Associations With Hydrocephalus. Stroke 2020; 51:1712-1719. [PMID: 32397930 DOI: 10.1161/strokeaha.119.028744] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Preterm neonates with intraventricular hemorrhage (IVH) are at risk for posthemorrhagic hydrocephalus and poor neurological outcomes. Iron has been implicated in ventriculomegaly, hippocampal injury, and poor outcomes following IVH. We hypothesized that levels of cerebrospinal fluid blood breakdown products and endogenous iron clearance proteins in neonates with IVH differ from those of neonates with IVH who subsequently develop posthemorrhagic hydrocephalus. Methods- Premature neonates with an estimated gestational age at birth <30 weeks who underwent lumbar puncture for clinical evaluation an average of 2 weeks after birth were evaluated. Groups consisted of controls (n=16), low-grade IVH (grades I-II; n=4), high-grade IVH (grades III-IV; n=6), and posthemorrhagic hydrocephalus (n=9). Control subjects were preterm neonates born at <30 weeks' gestation without brain abnormality or hemorrhage on cranial ultrasound, who underwent lumbar puncture for clinical purposes. Cerebrospinal fluid hemoglobin, total bilirubin, total iron, ferritin, ceruloplasmin, transferrin, haptoglobin, and hemopexin were quantified. Results- Cerebrospinal fluid hemoglobin levels were increased in posthemorrhagic hydrocephalus compared with high-grade IVH (9.45 versus 6.06 µg/mL, P<0.05) and cerebrospinal fluid ferritin levels were increased in posthemorrhagic hydrocephalus compared with controls (511.33 versus 67.08, P<0.01). No significant group differences existed for the other cerebrospinal fluid blood breakdown and iron-handling proteins tested. We observed positive correlations between ventricular enlargement (frontal occipital horn ratio) and ferritin (Pearson r=0.67), hemoglobin (Pearson r=0.68), and total bilirubin (Pearson r=0.69). Conclusions- Neonates with posthemorrhagic hydrocephalus had significantly higher levels of hemoglobin than those with high-grade IVH. Levels of blood breakdown products, hemoglobin, ferritin, and bilirubin correlated with ventricular size. There was no elevation of several iron-scavenging proteins in cerebrospinal fluid in neonates with posthemorrhagic hydrocpehalus, indicative of posthemorrhagic hydrocephalus as a disease state occurring when endogenous iron clearance mechanisms are overwhelmed.
Collapse
Affiliation(s)
- Kelly B Mahaney
- Department of Neurosurgery, Stanford University, Stanford, CA (K.B.M.)
| | - Chandana Buddhala
- From the Department of Neurological Surgery, Washington University in St Louis, MO (C.B., M.P., D.M., D.D.L., J.M.S.)
| | - Mounica Paturu
- From the Department of Neurological Surgery, Washington University in St Louis, MO (C.B., M.P., D.M., D.D.L., J.M.S.)
| | - Diego Morales
- From the Department of Neurological Surgery, Washington University in St Louis, MO (C.B., M.P., D.M., D.D.L., J.M.S.)
| | - David D Limbrick
- From the Department of Neurological Surgery, Washington University in St Louis, MO (C.B., M.P., D.M., D.D.L., J.M.S.)
| | - Jennifer M Strahle
- From the Department of Neurological Surgery, Washington University in St Louis, MO (C.B., M.P., D.M., D.D.L., J.M.S.)
| |
Collapse
|
26
|
Zhang L, Xiao H, Yu X, Deng Y. Minocycline attenuates neurological impairment and regulates iron metabolism in a rat model of traumatic brain injury. Arch Biochem Biophys 2020; 682:108302. [DOI: 10.1016/j.abb.2020.108302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
|
27
|
Zhang L, Hussain Z, Ren Z. Recent Advances in Rational Diagnosis and Treatment of Normal Pressure Hydrocephalus: A Critical Appraisal on Novel Diagnostic, Therapy Monitoring and Treatment Modalities. Curr Drug Targets 2019; 20:1041-1057. [PMID: 30767741 DOI: 10.2174/1389450120666190214121342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Normal pressure hydrocephalus (NPH) is a critical brain disorder in which excess Cerebrospinal Fluid (CSF) is accumulated in the brain's ventricles causing damage or disruption of the brain tissues. Amongst various signs and symptoms, difficulty in walking, slurred speech, impaired decision making and critical thinking, and loss of bladder and bowl control are considered the hallmark features of NPH. OBJECTIVE The current review was aimed to present a comprehensive overview and critical appraisal of majorly employed neuroimaging techniques for rational diagnosis and effective monitoring of the effectiveness of the employed therapeutic intervention for NPH. Moreover, a critical overview of recent developments and utilization of pharmacological agents for the treatment of hydrocephalus has also been appraised. RESULTS Considering the complications associated with the shunt-based surgical operations, consistent monitoring of shunting via neuroimaging techniques hold greater clinical significance. Despite having extensive applicability of MRI and CT scan, these conventional neuroimaging techniques are associated with misdiagnosis or several health risks to patients. Recent advances in MRI (i.e., Sagittal-MRI, coronal-MRI, Time-SLIP (time-spatial-labeling-inversion-pulse), PC-MRI and diffusion-tensor-imaging (DTI)) have shown promising applicability in the diagnosis of NPH. Having associated with several adverse effects with surgical interventions, non-invasive approaches (pharmacological agents) have earned greater interest of scientists, medical professional, and healthcare providers. Amongst pharmacological agents, diuretics, isosorbide, osmotic agents, carbonic anhydrase inhibitors, glucocorticoids, NSAIDs, digoxin, and gold-198 have been employed for the management of NPH and prevention of secondary sensory/intellectual complications. CONCLUSION Employment of rational diagnostic tool and therapeutic modalities avoids misleading diagnosis and sophisticated management of hydrocephalus by efficient reduction of Cerebrospinal Fluid (CSF) production, reduction of fibrotic and inflammatory cascades secondary to meningitis and hemorrhage, and protection of brain from further deterioration.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, China
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Zhuanqin Ren
- Department of Radiology, Baoji Center Hospital, No. 8 Jiang Tan Road, Baoji 721008, Shaanxi, China
| |
Collapse
|
28
|
Wu Y, Song J, Wang Y, Wang X, Culmsee C, Zhu C. The Potential Role of Ferroptosis in Neonatal Brain Injury. Front Neurosci 2019; 13:115. [PMID: 30837832 PMCID: PMC6382670 DOI: 10.3389/fnins.2019.00115] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death that is characterized by early lipid peroxidation and different from other forms of regulated cell death in terms of its genetic components, specific morphological features, and biochemical mechanisms. Different initiation pathways of ferroptosis have been reported, including inhibition of system Xc -, inactivation of glutathione-dependent peroxidase 4, and reduced glutathione levels, all of which ultimately promote the production of reactive oxygen species, particularly through enhanced lipid peroxidation. Although ferroptosis was first described in cancer cells, emerging evidence now links mechanisms of ferroptosis to many different diseases, including cerebral ischemia and brain hemorrhage. For example, neonatal brain injury is an important cause of developmental impairment and of permanent neurological deficits, and several types of cell death, including iron-dependent pathways, have been detected in the process of neonatal brain damage. Iron chelators and erythropoietin have both shown neuroprotective effects against neonatal brain injury. Here, we have summarized the potential relation between ferroptosis and neonatal brain injury, and according therapeutic intervention strategies.
Collapse
Affiliation(s)
- Yanan Wu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafeng Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carsten Culmsee
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Kantaputra PN, Sirirungruangsarn Y, Visrutaratna P, Petcharunpaisan S, Carlson BM, Intachai W, Sudasna J, Kampuansai J, Dejkhamron P. WNT1-associated osteogenesis imperfecta with atrophic frontal lobes and arachnoid cysts. J Hum Genet 2019; 64:291-296. [DOI: 10.1038/s10038-019-0565-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 01/07/2023]
|
30
|
Luo J, Luo Y, Zeng H, Reis C, Chen S. Research Advances of Germinal Matrix Hemorrhage: An Update Review. Cell Mol Neurobiol 2019; 39:1-10. [PMID: 30361892 PMCID: PMC11469802 DOI: 10.1007/s10571-018-0630-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/19/2018] [Indexed: 02/02/2023]
Abstract
Germinal matrix hemorrhage (GMH) refers to bleeding that derives from the subependymal (or periventricular) germinal region of the premature brain. GMH can induce severe and irreversible damage attributing to the vulnerable structure of germinal matrix and deleterious circumstances. Molecular mechanisms remain obscure so far. In this review, we summarized the newest preclinical discoveries recent years about GMH to distill a deeper understanding of the neuropathology, and then discuss the potential diagnostic or therapeutic targets among these pathways. GMH studies mostly in recent 5 years were sorted out and the authors generalized the newest discoveries and ideas into four parts of this essay. Intrinsic fragile structure of preterm germinal matrix is the fundamental cause leading to GMH. Many molecules have been found effective in the pathophysiological courses. Some of these molecules like minocycline are suggested active to reduce the damage in animal GMH model. However, researchers are still trying to find efficient diagnostic methods and remedies that are available in preterm infants to rehabilitate or cure the sequent injury. Merits have been obtained in the last several years on molecular pathways of GMH, but more work is required to further unravel the whole pathophysiology.
Collapse
Affiliation(s)
- Jinqi Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Hanhai Zeng
- Department of Neurological Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China.
- Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, China.
| |
Collapse
|
31
|
Garton T, Hua Y, Xiang J, Xi G, Keep RF. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin Ther Targets 2017; 21:1111-1122. [PMID: 29067856 PMCID: PMC6097191 DOI: 10.1080/14728222.2017.1397628] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Intraventricular hemorrhage (IVH) affects both premature infants and adults. In both demographics, it has high mortality and morbidity. There is no FDA approved therapy that improves neurological outcome in either population highlighting the need for additional focus on therapeutic targets and treatments emerging from preclinical studies. Areas covered: IVH induces both initial injury linked to the physical effects of the blood (mass effect) and secondary injury linked to the brain response to the hemorrhage. Preclinical studies have identified multiple secondary injury mechanisms following IVH, and particularly the role of blood components (e.g. hemoglobin, iron, thrombin). This review, with an emphasis on pre-clinical IVH research, highlights therapeutic targets and treatments that may be of use in prevention, acute care, or repair of damage. Expert opinion: An IVH is a potentially devastating event. Progress has been made in elucidating injury mechanisms, but this has still to translate to the clinic. Some pathways involved in injury also have beneficial effects (coagulation cascade/inflammation). A greater understanding of the downstream pathways involved in those pathways may allow therapeutic development. Iron chelation (deferoxamine) is in clinical trial for intracerebral hemorrhage and preclinical data suggest it may be a potential treatment for IVH.
Collapse
Affiliation(s)
- Thomas Garton
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Ya Hua
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Jianming Xiang
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Guohua Xi
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Richard F Keep
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
32
|
Hua C, Zhao G. Adult posthaemorrhagic hydrocephalus animal models. J Neurol Sci 2017; 379:39-43. [PMID: 28716276 DOI: 10.1016/j.jns.2017.05.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022]
Abstract
Posthaemorrhagic hydrocephalus (PHH) is often associated with high morbidity and mortality and serves as an important clinical predictor of poor outcomes after intracranial haemorrhage (ICH). We are lack of effective medical intervention methods to improve functional outcomes in patients with PHH because little is still known about the mechanisms of PHH pathogenesis. Animal models play a key role in the study of PHH. Developed a suitable animal model that will help us to be better to find preventative strategies and improve the prognosis of patients with PHH. The purpose of this review is to summarize the body of knowledge gained from animal studies.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China.
| | - Gang Zhao
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China.
| |
Collapse
|
33
|
Abstract
Posthemorrhagic hydrocephalus is a severe complication following intracranial hemorrhage. Posthemorrhagic hydrocephalus is often associated with high morbidity and mortality and serves as an important clinical predictor of adverse outcomes after intracranial hemorrhage. Currently, no effective medical intervention exists to improve functional outcomes in posthemorrhagic hydrocephalus patients because little is still known about the mechanisms of posthemorrhagic hydrocephalus pathogenesis. Because a better understanding of the posthemorrhagic hydrocephalus pathogenesis would facilitate development of clinical treatments, this is an active research area. The purpose of this review is to describe recent progress in elucidation of molecular mechanisms that cause posthemorrhagic hydrocephalus. What we are certain of is that the entry of blood into the ventricular system and subarachnoid space results in release of lytic blood products which cause a series of physiological and pathological changes in the brain. Blood components that can be linked to pathology would serve as disease biomarkers. From studies of posthemorrhagic hydrocephalus, such biomarkers are known to mutually synergize to initiate and promote posthemorrhagic hydrocephalus progression. These findings suggest that modulation of biomarker expression or function may benefit posthemorrhagic hydrocephalus patients.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery of the First Clinical Hospital, Jilin University, Changchun, China
| |
Collapse
|
34
|
Chen Q, Feng Z, Tan Q, Guo J, Tang J, Tan L, Feng H, Chen Z. Post-hemorrhagic hydrocephalus: Recent advances and new therapeutic insights. J Neurol Sci 2017; 375:220-230. [PMID: 28320134 DOI: 10.1016/j.jns.2017.01.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Post-hemorrhagic hydrocephalus (PHH), also referred to as progressive ventricular dilatation, is caused by disturbances in cerebrospinal fluid (CSF) flow or absorption following hemorrhage in the brain. As one of the most serious complications of neonatal/adult intraventricular hemorrhage (IVH), subarachnoid hemorrhage (SAH), and traumatic brain injury (TBI), PHH is associated with increased morbidity and disability of these events. Common sequelae of PHH include neurocognitive impairment, motor dysfunction, and growth impairment. Non-surgical measures to reduce increased intracranial pressure (ICP) in PHH have shown little success and most patients will ultimately require surgical management, such as external ventricular drainage and shunting which mostly by inserting a CSF drainage shunt. Unfortunately, shunt complications are common and the optimum time for intervention is unclear. To date, there remains no comprehensive strategy for PHH management and it becomes imperative that to explore new therapeutic targets and methods for PHH. Over past decades, increasing evidence have indicated that hemorrhage-derived blood and subsequent metabolic products may play a key role in the development of IVH-, SAH- and TBI-associated PHH. Several intervention strategies have recently been evaluated and cross-referenced. In this review, we summarized and discussed the common aspects of hydrocephalus following IVH, SAH and TBI, relevant experimental animal models, clinical translation of in vivo experiments, and potential preventive and therapeutic targets for PHH.
Collapse
Affiliation(s)
- Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jing Guo
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Department of Neurosurgery, The 211st Hospital of PLA, Harbin 150086, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
35
|
Chen Q, Shi X, Tan Q, Feng Z, Wang Y, Yuan Q, Tao Y, Zhang J, Tan L, Zhu G, Feng H, Chen Z. Simvastatin Promotes Hematoma Absorption and Reduces Hydrocephalus Following Intraventricular Hemorrhage in Part by Upregulating CD36. Transl Stroke Res 2017; 8:362-373. [PMID: 28102508 DOI: 10.1007/s12975-017-0521-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/08/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
We previously found that hematoma worsens hydrocephalus after intraventricular hemorrhage (IVH) via increasing iron deposition and aggravating ependymal cilia injury; therefore, promoting hematoma absorption may be a promising strategy for IVH. Recently, some investigations imply that simvastatin has the ability of accelerating hematoma absorption. Thus, this study was designed to examine the efficacy of simvastatin for IVH in rats. Intracerebral hemorrhage with ventricular extension was induced in adult male Sprague-Dawley rats after autologous blood injection. Simvastatin or vehicle was administered orally at 1 day after IVH and then daily for 1 week. MRI studies were performed to measure the volumes of intracranial hematoma and lateral ventricle at days 1, 3, 7, 14, and 28 after IVH. Motor and neurocognitive functions were assessed at days 1 to 7 and 23 to 28, respectively. Iron deposition, iron-related protein expression, ependymal damage, and histology were detected at day 28. Expression of CD36 scavenger receptor (facilitating phagocytosis) was examined at day 3 after IVH using western blotting and immunofluorescence. Simvastatin significantly increased hematoma absorption ratio, reduced ventricular volume, and attenuated neurological dysfunction post-IVH. In addition, less iron accumulation and more cilia survival was observed in the simvastatin group when compared with the control. What's more, higher expression of CD36 was detected around the hematoma after simvastatin administration. Simvastatin significantly enhanced brain hematoma absorption, alleviated hydrocephalus, and improved neurological recovery after experimental IVH, which may in part by upregulating CD36 expression. Our data suggest that early simvastatin use may be a novel therapy for IVH patients.
Collapse
Affiliation(s)
- Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China
| | - Xia Shi
- Department of Nutrition, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China
| | - Yuelong Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China
| | - Qiaoying Yuan
- Department of Nutrition, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China
| | - Jianbo Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
36
|
Prolonged hydrocephalus induced by intraventricular hemorrhage in rats is reduced by curcumin therapy. Neurosci Lett 2017; 637:120-125. [DOI: 10.1016/j.neulet.2016.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
|
37
|
Wang G, Shen G, Yin T. In vitro assessment of deferoxamine on mesenchymal stromal cells from tumor and bone marrow. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:58-64. [PMID: 27915123 DOI: 10.1016/j.etap.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
Deferoxamine (DFO), an iron chelator, is commonly used to remove excess iron from the body. DFO has also been demonstrated to have anti-tumor effect. However, there is no available report on the effect of deferoxamine on mesenchymal stromal cells (MSCs). In this study, we first isolated tumor-associated MSCs (TAMSCs) from EG-7 tumors, which were positive for CD29, CD44, CD73, CD90 and CD105. Ex vivo cultured stem cells derived from tumor and bone marrow compartment were exposed to DFO. We demonstrated that DFO had growth-arresting and apoptosis-inducing effect on TAMSCs and bone marrow MSCs (BMMSCs). DFO also influenced the expression pattern of adhesion molecule VCAM-1 on both TAMSCs and BMMSCs. Notwithstanding its widespread use, our results here warrants caution in the application of DFO, and also highlights the need for careful evaluation of the bone marrow compartment in patients receiving DFO treatment.
Collapse
Affiliation(s)
- Guoping Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Tao Yin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
38
|
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1:172-184. [PMID: 28959481 PMCID: PMC5435218 DOI: 10.1136/svn-2016-000042] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Intracranial haemorrhages, including intracerebral haemorrhage (ICH), intraventricular haemorrhage (IVH) and subarachnoid haemorrhage (SAH), are leading causes of morbidity and mortality worldwide. In addition, haemorrhage contributes to tissue damage in traumatic brain injury (TBI). To date, efforts to treat the long-term consequences of cerebral haemorrhage have been unsatisfactory. Incident rates and mortality have not showed significant improvement in recent years. In terms of secondary damage following haemorrhage, it is becoming increasingly apparent that blood components are of integral importance, with haemoglobin-derived iron playing a major role. However, the damage caused by iron is complex and varied, and therefore, increased investigation into the mechanisms by which iron causes brain injury is required. As ICH, IVH, SAH and TBI are related, this review will discuss the role of iron in each, so that similarities in injury pathologies can be more easily identified. It summarises important components of normal brain iron homeostasis and analyses the existing evidence on iron-related brain injury mechanisms. It further discusses treatment options of particular promise.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
LeBlanc RH, Chen R, Selim MH, Hanafy KA. Heme oxygenase-1-mediated neuroprotection in subarachnoid hemorrhage via intracerebroventricular deferoxamine. J Neuroinflammation 2016; 13:244. [PMID: 27618864 PMCID: PMC5020472 DOI: 10.1186/s12974-016-0709-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a devastating disease that affects over 30,000 Americans per year. Previous animal studies have explored the therapeutic effects of deferoxamine (DFX) via its iron-chelating properties after SAH, but none have assessed the necessity of microglial/macrophage heme oxygenase-1 (HO-1 or Hmox1) in DFX neuroprotection, nor has the efficacy of an intracerebroventricular (ICV) administration route been fully examined. We explored the therapeutic efficacy of systemic and ICV DFX in a SAH mouse model and its effect on microglial/macrophage HO-1. METHODS Wild-type (WT) mice were split into the following treatment groups: SAH sham + vehicle, SAH + vehicle, SAH + intraperitoneal (IP) DFX, and SAH + ICV DFX. For each experimental group, neuronal damage, cognitive outcome, vasospasm, cerebral and hematogenous myeloid cell populations, cerebral IL-6 concentration, and mitochondrial superoxide anion production were measured. HO-1 co-localization to microglia was measured using confocal images. Trans-wells with WT or HO-1(-/-) microglia and hippocampal neurons were treated with vehicle, red blood cells (RBCs), or RBCs with DFX; neuronal damage, TNF-α concentration, and microglial HO-1 expression were measured. HO-1 conditional knockouts were used to study myeloid, neuronal, and astrocyte HO-1 involvement in DFX-induced neuroprotection and cognitive recovery. RESULTS DFX treatment after SAH decreased cortical damage and improved cognitive outcome after SAH yet had no effect on vasospasm; ICV DFX was most neuroprotective. ICV DFX treatment after SAH decreased cerebral IL-6 concentration and trended towards decreased mitochondrial superoxide anion production. ICV DFX treatment after SAH effected an increase in HO-1 co-localization to microglia. DFX treatment of WT microglia with RBCs in the trans-wells showed decreased neuronal damage; this effect was abolished in HO-1(-/-) microglia. ICV DFX after SAH decreased neuronal damage and improved cognition in Hmox1 (fl/fl) control and Nes (Cre) :Hmox1 (fl/fl) mice, but not LyzM (Cre) :Hmox1 (fl/fl) mice. CONCLUSIONS DFX neuroprotection is independent of vasospasm. ICV DFX treatment provides superior neuroprotection in a mouse model of SAH. Mechanisms of DFX neuroprotection after SAH may involve microglial/macrophage HO-1 expression. Monitoring patient HO-1 expression during DFX treatment for hemorrhagic stroke may help clinicians identify patients that are more likely to respond to treatment.
Collapse
Affiliation(s)
- Robert H LeBlanc
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02140, USA
| | - Ruiya Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02140, USA
| | - Magdy H Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02140, USA
| | - Khalid A Hanafy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02140, USA. .,Division of Neurointensive Care Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02140, USA.
| |
Collapse
|
40
|
Baschant U, Rauner M, Balaian E, Weidner H, Roetto A, Platzbecker U, Hofbauer LC. Wnt5a is a key target for the pro-osteogenic effects of iron chelation on osteoblast progenitors. Haematologica 2016; 101:1499-1507. [PMID: 27540134 DOI: 10.3324/haematol.2016.144808] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/10/2016] [Indexed: 11/09/2022] Open
Abstract
Iron overload due to hemochromatosis or chronic blood transfusions has been associated with the development of osteoporosis. However, the impact of changes in iron homeostasis on osteoblast functions and the underlying mechanisms are poorly defined. Since Wnt signaling is a critical regulator of bone remodeling, we aimed to analyze the effects of iron overload and iron deficiency on osteoblast function, and further define the role of Wnt signaling in these processes. Therefore, bone marrow stromal cells were isolated from wild-type mice and differentiated towards osteoblasts. Exposure of the cells to iron dose-dependently attenuated osteoblast differentiation in terms of mineralization and osteogenic gene expression, whereas iron chelation with deferoxamine promoted osteogenic differentiation in a time- and dose-dependent manner up to 3-fold. Similar results were obtained for human bone marrow stromal cells. To elucidate whether the pro-osteogenic effect of deferoxamine is mediated via Wnt signaling, we performed a Wnt profiler array of deferoxamine-treated osteoblasts. Wnt5a was amongst the most highly induced genes. Further analysis revealed a time- and dose-dependent induction of Wnt5a being up-regulated 2-fold after 48 h at 50 μM deferoxamine. Pathway analysis using specific inhibitors revealed that deferoxamine utilized the phosphatidylinositol-3-kinase and nuclear factor of activated T cell pathways to induce Wnt5a expression. Finally, we confirmed the requirement of Wnt5a in the deferoxamine-mediated osteoblast-promoting effects by analyzing the matrix mineralization of Wnt5a-deficient cells. The promoting effect of deferoxamine on matrix mineralization in wild-type cells was completely abolished in Wnt5a-/- cells. Thus, these data demonstrate that Wnt5a is critical for the pro-osteogenic effects of iron chelation using deferoxamine.
Collapse
Affiliation(s)
- Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Saxony, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Saxony, Germany
| | - Ekaterina Balaian
- Department of Medicine I, Technische Universität Dresden, Saxony, Germany
| | - Heike Weidner
- Department of Medicine I, Technische Universität Dresden, Saxony, Germany
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Torino, Italy
| | - Uwe Platzbecker
- Department of Medicine I, Technische Universität Dresden, Saxony, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Saxony, Germany .,Center for Regenerative Therapies Dresden, Saxony, Germany.,Center for Healthy Aging, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
41
|
Intraventricular Hemorrhage: the Role of Blood Components in Secondary Injury and Hydrocephalus. Transl Stroke Res 2016; 7:447-451. [DOI: 10.1007/s12975-016-0480-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
|
42
|
Xu H. New concept of the pathogenesis and therapeutic orientation of acquired communicating hydrocephalus. Neurol Sci 2016; 37:1387-91. [DOI: 10.1007/s10072-016-2589-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 12/12/2022]
|
43
|
Del Bigio MR, Di Curzio DL. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 2016; 13:3. [PMID: 26846184 PMCID: PMC4743412 DOI: 10.1186/s12987-016-0025-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
Pharmacological interventions have been tested experimentally and clinically to prevent hydrocephalus and avoid the need for shunting beginning in the 1950s. Clinical trials of varied quality have not demonstrated lasting and convincing protective effects through manipulation of cerebrospinal fluid production, diuresis, blood clot fibrinolysis, or manipulation of fibrosis in the subarachnoid compartment, although there remains some promise in the latter areas. Acetazolamide bolus seems to be useful for predicting shunt response in adults with hydrocephalus. Neuroprotection in the situation of established hydrocephalus has been tested experimentally beginning more recently. Therapies designed to modify blood flow or pulsation, reduce inflammation, reduce oxidative damage, or protect neurons are so far of limited success; more experimental work is needed in these areas. As has been recommended for preclinical studies in stroke and brain trauma, stringent conditions should be met for preclinical studies in hydrocephalus.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba; Children's Hospital Research Institute of Manitoba, Diagnostic Services Manitoba, 401 Brodie Centre, 715 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| | - Domenico L Di Curzio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
44
|
Garton TP, He Y, Garton HJL, Keep RF, Xi G, Strahle JM. Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Res 2016; 1635:86-94. [PMID: 26772987 DOI: 10.1016/j.brainres.2015.12.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/16/2022]
Abstract
Neuronal degeneration following neonatal intraventricular hemorrhage (IVH) is incompletely understood. Understanding the mechanisms of degeneration and cell loss may point toward specific treatments to limit injury. We evaluated the role of hemoglobin (Hb) in cell death after intraventricular injection in neonatal rats. Hb was injected into the right lateral ventricle of post-natal day 7 rats. Rats exposed to anesthesia were used for controls. The CA-1 region of the hippocampus was analyzed via immunohistochemistry, hematoxylin and eosin (H&E) staining, Fluoro-Jade C staining, Western blots, and double-labeling stains. Compared to controls, intraventricular injection of Hb decreased hippocampal volume (27% decrease; p<0.05), induced neuronal loss (31% loss; p<0.01), and increased neuronal degeneration (2.7 fold increase; p<0.01), which were all significantly reduced with the iron chelator, deferoxamine. Hb upregulated p-JNK (1.8 fold increase; p<0.05) and increased expression of the Hb/haptoglobin endocytotic receptor CD163 in neurons in vivo and in vitro (cultured cortical neurons). Hb induced expression of the CD163 receptor, which co-localized with p-JNK in hippocampal neurons, suggesting a potential pathway by which Hb enters the neuron to result in cell death. There were no differences in neuronal loss or degenerating neurons in Hb-injected animals that developed hydrocephalus versus those that did not. Intraventricular injection of Hb causes hippocampal neuronal degeneration and cell loss and increases brain p-JNK levels. p-JNK co-localized with the Hb/haptoglobin receptor CD163, suggesting a novel pathway by which Hb enters the neuron after IVH to result in cell death.
Collapse
Affiliation(s)
- Thomas P Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Yangdong He
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Hugh J L Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Department of Neurological Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
45
|
Klebe D, McBride D, Flores JJ, Zhang JH, Tang J. Modulating the Immune Response Towards a Neuroregenerative Peri-injury Milieu After Cerebral Hemorrhage. J Neuroimmune Pharmacol 2015; 10:576-86. [PMID: 25946986 PMCID: PMC4636976 DOI: 10.1007/s11481-015-9613-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
Cerebral hemorrhages account for 15-20 % of stroke sub-types and have very poor prognoses. The mortality rate for cerebral hemorrhage patients is between 40 and 50 %, of which at least half of the deaths occur within the first 2 days, and 75 % of survivors are incapable of living independently after 1 year. Current emergency interventions involve lowering blood pressure and reducing intracranial pressure by controlled ventilations or, in the worst case scenarios, surgical intervention. Some hemostatic and coagulatherapeutic interventions are being investigated, although a few that were promising in experimental studies have failed in clinical trials. No significant immunomodulatory intervention, however, exists for clinical management of cerebral hemorrhage. The inflammatory response following cerebral hemorrhage is particularly harmful in the acute stage because blood-brain barrier disruption is amplified and surrounding tissue is destroyed by secreted proteases and reactive oxygen species from infiltrated leukocytes. In this review, we discuss both the destructive and regenerative roles the immune response play following cerebral hemorrhage and focus on microglia, macrophages, and T-lymphocytes as the primary agents directing the response. Microglia, macrophages, and T-lymphocytes each have sub-types that significantly influence the over-arching immune response towards either a pro-inflammatory, destructive, or an anti-inflammatory, regenerative, state. Both pre-clinical and clinical studies of cerebral hemorrhages that selectively target these immune cells are reviewed and we suggest immunomodulatory therapies that reduce inflammation, while augmenting neural repair, will improve overall cerebral hemorrhage outcomes.
Collapse
Affiliation(s)
- Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Devin McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jerry J Flores
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Departments of Anesthesiology and Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
46
|
Choy W, Bohnen AM, Pelargos P, Lam S, Yang I, Smith ZA. Neurosurgery concepts: Key perspectives on deferoxamine and chronic hydrocephalus from intraventricular hemorrhage, laboratory dissection training in neurosurgical residency, tetanus toxoid and dendritic cell vaccines for glioblastoma, and intracranial hypertension after surgery for craniosynostosis. Surg Neurol Int 2015; 6:139. [PMID: 26392916 PMCID: PMC4553661 DOI: 10.4103/2152-7806.163179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 12/02/2022] Open
Affiliation(s)
- Winward Choy
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Angela M Bohnen
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Panayiotis Pelargos
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sandi Lam
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zachary A Smith
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
47
|
Chen Q, Tang J, Tan L, Guo J, Tao Y, Li L, Chen Y, Liu X, Zhang JH, Chen Z, Feng H. Intracerebral Hematoma Contributes to Hydrocephalus After Intraventricular Hemorrhage via Aggravating Iron Accumulation. Stroke 2015; 46:2902-8. [PMID: 26265129 DOI: 10.1161/strokeaha.115.009713] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The intraventricular hemorrhage (IVH) secondary to intracerebral hemorrhage (ICH) was reported to be relevant to a higher incidence of hydrocephalus, which would result in poorer outcomes for patients with ICH. However, the mechanisms responsible for this relationship remain poorly characterized. Thus, this study was designed to further explore the development and progression of hydrocephalus after secondary IVH. METHODS Autologous blood injection model was induced to mimic ICH with ventricular extension (ICH/IVH) or primary IVH in Sprague-Dawley rats. Magnetic resonance imaging, Morris water maze, brain water content, Evans blue extravasation, immunohistochemistry staining, Western blot, iron determination, and electron microscopy were used in these rats. Then, deferoxamine treatment was used to clarify the involvement of iron in the development of hydrocephalus. RESULTS Despite the injection of equivalent blood volumes, ICH/IVH resulted in more significant ventricular dilation, ependymal cilia damage, and iron overload, as well as more severe early brain injury and neurological deficits compared with IVH alone. Systemic deferoxamine treatment more effectively reduced ventricular enlargement in ICH/IVH compared with primary IVH. CONCLUSIONS Our results show that ICH/IVH caused more significant chronic hydrocephalus and iron accumulation than primary IVH alone. Intracerebral hematoma plays a vital role in persistent iron overload and aggravated hydrocephalus after ICH/IVH.
Collapse
Affiliation(s)
- Qianwei Chen
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - Jun Tang
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - Liang Tan
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - Jing Guo
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - Yihao Tao
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - Lin Li
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - Yujie Chen
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - Xin Liu
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - John H Zhang
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.)
| | - Zhi Chen
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.).
| | - Hua Feng
- From the Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China (Q.C., J.T., L.T., J.G., Y.T., L.L., Y.C., X.L., Z.C., H.F.); and Department of Anesthesia, Neurosurgery and Physiology, Loma Linda University, CA (J.H.Z.).
| |
Collapse
|
48
|
The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Res 2015; 1623:110-22. [PMID: 25982598 DOI: 10.1016/j.brainres.2015.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Despite accumulated understanding on the mechanisms of early brain injury and improved management of subarachnoid hemorrhage (SAH), it is still one of the serious and refractory health problems around the world. Traditionally, pericyte, served as capillary contraction handler, is recently considered as the main participant of microcirculation regulation in SAH pathophysiology. However, accumulate evidences indicate that pericyte is much more than we already know. Therefore, we briefly review the characteristics, regulation pathways and functions of pericyte, aim to summarize the evolving new pathophysiological roles of pericyte that are implicated in early brain injury after SAH and to improve our understanding in order to explore potential novel therapeutic options for patients with SAH. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
49
|
Yang F, Wang Z, Zhang JH, Tang J, Liu X, Tan L, Huang QY, Feng H. Receptor for Advanced Glycation End-Product Antagonist Reduces Blood–Brain Barrier Damage After Intracerebral Hemorrhage. Stroke 2015; 46:1328-36. [DOI: 10.1161/strokeaha.114.008336] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/18/2015] [Indexed: 01/03/2023]
Abstract
Background and Purpose—
To determine whether the receptor for advanced glycation end-products (RAGE) plays a role in early brain injury from intracerebral hemorrhage (ICH), RAGE expression and activation after injury were examined in a rat model of ICH with or without administration of a RAGE-specific antagonist (FPS-ZM1).
Methods—
Autologous arterial blood was injected into the basal ganglia of rats to induce ICH. The motor function of the rats was examined, and water content was detected after euthanization. Blood–brain barrier permeability was determined by Evans blue staining and colloidal gold nanoparticle tracers. Nerve fiber injury in white matter was determined by diffusion tensor imaging analysis, and the expression of target genes was analyzed by Western blotting and quantitative reverse transcription polymerase chain reaction. FPS-ZM1 was administered by intraperitoneal injection.
Results—
Expression of RAGE and its ligand high-mobility group protein B1 were increased at 12 hours after ICH, along with blood–brain barrier permeability and perihematomal nerve fiber injury. RAGE and nuclear factor-κB p65 upregulation were also observed when FeCl
2
was infused into the basal ganglia at 24 hours. FPS-ZM1 administration resulted in significant improvements of blood–brain barrier damage, brain edema, motor dysfunction, and nerve fiber injury, and the expression of RAGE, nuclear factor-κB p65, proinflammatory mediators interleukin 1β, interleukin-6, interleukin-8R, cyclooxygenase-2, inducible nitric oxide synthase, and matrix metallopeptidase-9 was attenuated. Moreover, decreases in claudin-5 and occludin expression were partially recovered. FPS-ZM1 also reversed FeCl
2
-induced RAGE and nuclear factor-κB p65 upregulation.
Conclusions—
RAGE signaling is involved in blood–brain barrier and white matter fiber damage after ICH, the initiation of which is associated with iron. RAGE antagonists represent a novel therapeutic intervention to prevent early brain injury after ICH.
Collapse
Affiliation(s)
- Fan Yang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Zhe Wang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - John H. Zhang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Jiping Tang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Xin Liu
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Liang Tan
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Qing-Yuan Huang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Hua Feng
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| |
Collapse
|
50
|
Rüegger CM, Hagmann CF, Bührer C, Held L, Bucher HU, Wellmann S. Erythropoietin for the Repair of Cerebral Injury in Very Preterm Infants (EpoRepair). Neonatology 2015; 108:198-204. [PMID: 26278911 DOI: 10.1159/000437248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/25/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Preterm infants suffering from intraventricular hemorrhage (IVH) are at increased risk for neurodevelopmental impairment. Observational data suggest that recombinant human erythropoietin (rEPO) improves long-term cognitive outcome in infants with IVH. Recent studies revealed a beneficial effect of early high-dose rEPO on white matter development in preterm infants determined by magnetic resonance imaging (MRI). OBJECTIVES To summarize the current evidence and to delineate the study protocol of the EpoRepair trial (Erythropoietin for the Repair of Cerebral Injury in Very Preterm Infants). METHODS The study involves a review of the literature and the design of a double-blind, placebo-controlled, multicenter trial of repetitive high-dose rEPO administration, enrolling 120 very preterm infants with moderate-to-severe IVH diagnosed by cranial ultrasound in the first days of life, qualitative and quantitative MRI at term-equivalent age and long-term neurodevelopmental follow-up until 5 years of age. RESULTS AND CONCLUSIONS The hypothesis generated by observational data that rEPO may improve long-term cognitive outcomes of preterm infants suffering from IVH are to be confirmed or refuted by the randomized controlled trial, EpoRepair.
Collapse
Affiliation(s)
- Christoph M Rüegger
- Division of Neonatology, University of Basel Children's Hospital (UKBB), Basel, Germany
| | | | | | | | | | | | | |
Collapse
|