1
|
Yatsushiro M, Katsuyama M, Nakamae T, Imahara K, Miyamoto M, Hayashi T. New molecular markers to differentiate carbon dioxide intoxication from asphyxia due to oxygen deficiency. Forensic Sci Med Pathol 2025:10.1007/s12024-025-00981-1. [PMID: 40167862 DOI: 10.1007/s12024-025-00981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE The lack of specific autopsy findings for carbon dioxide (CO2) intoxication hinders the determination of cause of death based on autopsy findings alone. In addition, when death occurs in a space is filled with CO2 or other gases, the cause of death must be distinguished between intoxication and asphyxia due to oxygen deficiency, which also has no specific autopsy findings. In this study, we aimed to identify diagnostic markers of mRNA expression in the brainstem that indicate cause of death in cases of suspected CO2 intoxication. METHODS Mouse models of CO2 intoxication (composition of ambient gases at 70% CO2, 20% O2, and 10% N2) and asphyxia due to oxygen deficiency (5% O2, 95% N2) were used to identify mRNA markers specific to intoxication or asphyxia. RESULTS Using RNA-Sequence analysis, we identified 7 candidate genes for qRT-PCR analysis: Acid-sensing ion channel 4 (Asic4), Early growth response protein 1 (Egr1), Neurogranin (Nrgn), Opioid receptor delta 1 (Oprd1), Semaphorin 3f (Sema3f), Transthyretin (Ttr), and Tryptophan hydroxylase 2 (Tph2). We observed a significant increase of Nrgn mRNA expression in the brainstem of CO2 intoxication and a significant increase of Ttr mRNA expression in the brainstem of asphyxia due to oxygen deficiency. CONCLUSION Assays for the expression of Nrgn and Ttr in the human brainstem may assist in the diagnosis/differential diagnosis of CO2 intoxication and asphyxia due to oxygen deficiency, respectively.
Collapse
Affiliation(s)
- Masahiko Yatsushiro
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Midori Katsuyama
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takuma Nakamae
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kotomi Imahara
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Machiko Miyamoto
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takahito Hayashi
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
2
|
Krawczuk D, Mroczko P, Winkel I, Mroczko B. The Diagnostic Value of Cerebrospinal Fluid Neurogranin in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:13578. [PMID: 39769345 PMCID: PMC11677289 DOI: 10.3390/ijms252413578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Synaptic pathology is crucial in neurodegenerative diseases (NDs), and numerous studies show a correlation between synaptic proteins and the rate of cognitive decline in Alzheimer's disease, Parkinson's disease, dementia, and Creutzfeldt-Jacob's disease. Due to the fact that altered synaptic function is considered a core feature of the pathophysiology of neurodegenerative disorders, synaptic proteins, such as neurogranin, may serve as a biomarker of these diseases. Neurogranin is a postsynaptic protein located in the cell bodies and dendrites of neurons, foremost in the cerebral cortex, hippocampus, and striatum. It has been established that neurogranin is involved in synaptic plasticity and long-term potentiation. Literature data indicate that cerebrospinal fluid neurogranin may be useful as a biomarker for more accurate diagnosis and prognosis of neurodegenerative diseases. In this review, the diagnostic value of cerebrospinal fluid neurogranin in most common neurodegenerative diseases is examined.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland;
| | - Piotr Mroczko
- Faculty of Law, University of Bialystok, Mickiewicza 1, 15-213 Białystok, Poland;
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Ścinawa, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland;
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland
| |
Collapse
|
3
|
Loenneker HD, Artemenko C, Willmes K, Liepelt-Scarfone I, Nuerk HC. Deficits in or Preservation of Basic Number Processing in Parkinson's Disease? A Registered Report. J Neurosci Res 2024; 102:e25397. [PMID: 39548739 DOI: 10.1002/jnr.25397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have a huge impact on patients, caregivers, and the health care system. Until now, diagnosis of mild cognitive impairments in PD has been established based on domain-general functions such as executive functions, attention, or working memory. However, specific numerical deficits observed in clinical practice have not yet been systematically investigated. PD-immanent deterioration of domain-general functions and domain-specific numerical areas suggests mechanisms of both primary and secondary dyscalculia. The current study systematically investigated basic number processing performance in PD patients for the first time, targeting domain-specific cognitive representations of numerosity and the influence of domain-general factors. The overall sample consisted of patients with a diagnosis of PD, according to consensus guidelines, and healthy controls. PD patients were stratified into patients with normal cognition (PD-NC) or mild cognitive impairment (level I-PD-MCI based on cognitive screening). Basic number processing was assessed using transcoding, number line estimation, and (non-) symbolic number magnitude comparison tasks. Discriminant analysis was employed to assess whether basic number processing tasks can differentiate between a healthy control group and both PD groups. All participants were subjected to a comprehensive numerical and a neuropsychological test battery, as well as sociodemographic and clinical measures. Results indicate a profile of preserved (verbal representation) and impaired (magnitude representation, place × value activation) function in PD-MCI, hinting at basal ganglia dysfunction affecting numerical cognition in PD. Numerical deficits could not be explained by domain-general cognitive impairments, so that future research needs to incorporate domain-specific tasks of sufficient difficulty.
Collapse
Affiliation(s)
| | - Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Klaus Willmes
- Department of Neurology, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Inga Liepelt-Scarfone
- Department of Clinical Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Centre for Neurodegenerative Diseases, Tuebingen, Germany
- IB-Hochschule für Gesundheit und Soziales, Stuttgart, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- German Center for Mental Health, Tübingen, Germany
| |
Collapse
|
4
|
Rueda-García V, Rondón-Barragán IS. Molecular Characterization of Neurogranin (NRGN) Gene from Red‑Bellied Pacu (Piaractus brachypomus). Mol Neurobiol 2024; 61:2620-2630. [PMID: 37922064 PMCID: PMC11043121 DOI: 10.1007/s12035-023-03700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Neurogranin (NRGN) is a small brain protein expressed in various telencephalic areas and plays an essential role in synaptic plasticity by regulating the availability of calmodulin (CaM). The study aims to characterize the neurogranin gene in Colombian native fish, red-bellied pacu, Piaractus brachypomus, its basal tissue expression and differential expression in brain injury and sublethal toxicity by organophosphates. NRGN gene contains an open reading frame of 183 nucleotides encoding for 60 amino acids. Bioinformatics analysis showed an IQ motif necessary in the interaction with CaM. NRGN mRNA was detected in tissues with higher expression in brain, gills, and head kidney. In brain regions, NRGN showed high expression in the telencephalon (TE) and olfactory bulb (OB). In the sublethal toxicity experiment, NRGN mRNA was upregulated in individuals under organophosphate exposure in the OB and optic chiasm (OC). In brain injury experiment, NRGN showed upregulation at 14 days in OC and at 24 h and 7 days in TE. These findings demonstrate the differential expression of NRGN under different experimental conditions which make it a candidate for a biomarker in the brain of P. brachypomus.
Collapse
Affiliation(s)
- Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia.
| |
Collapse
|
5
|
Cao X, Gan C, Zhang H, Yuan Y, Sun H, Zhang L, Wang L, Zhang L, Zhang K. Altered perivascular spaces in subcortical white matter in Parkinson's disease patients with levodopa-induced dyskinesia. NPJ Parkinsons Dis 2024; 10:71. [PMID: 38548788 PMCID: PMC10978930 DOI: 10.1038/s41531-024-00688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Dilated perivascular spaces (PVS) have emerged as a pathological hallmark in various neurological conditions, including Parkinson's disease (PD). Levodopa-induced dyskinesia (LID), an intractable motor complication of PD, remains enigmatic regarding the distribution patterns of PVS. Our objective was to scrutinize the percent PVS (pPVS) changes within PD patients with LID (PD-LID). In total, 132 individuals were enrolled, including PD-LID (n = 42), PD patients without LID (PD-nLID, n = 45), and healthy controls (HCs, n = 45). Employing an automated approach for PVS quantification based on structural magnetic resonance imaging, we comprehensively evaluated total pPVS in subcortical white matter globally and regionally. A significant increase in global pPVS was observed in PD patients versus HCs, particularly evident in PD-LID relative to HCs. Within the PD-LID group, elevated pPVS was discerned in the right inferior frontal gyrus region (rIFG) (pars opercularis), contrasting with PD-nLID and HCs. Moreover, PD patients exhibited increased pPVS in bilateral superior temporal regions compared to HCs. Notably, pPVS in the rIFG positively correlated with dyskinetic symptoms and could well identify LID. Our findings unveiled PVS alternations in subcortical white matter in PD-LID at both global and regional levels, highlighting the increased pPVS in rIFG as a prospective imaging marker for LID.
Collapse
Affiliation(s)
- Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Alba-González A, Yáñez J, Anadón R, Folgueira M. Neurogranin-like immunoreactivity in the zebrafish brain during development. Brain Struct Funct 2022; 227:2593-2607. [PMID: 36018391 PMCID: PMC9618489 DOI: 10.1007/s00429-022-02550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
Neurogranin (Nrgn) is a neural protein that is enriched in the cerebral cortex and is involved in synaptic plasticity via its interaction with calmodulin. Recently we reported its expression in the brain of the adult zebrafish (Alba-González et al. J Comp Neurol 530:1569–1587, 2022). In this study we analyze the development of Nrgn-like immunoreactivity (Nrgn-like-ir) in the brain and sensory structures of zebrafish embryos and larvae, using whole mounts and sections. First Nrgn-like positive neurons appeared by 2 day post-fertilization (dpf) in restricted areas of the brain, mostly in the pallium, epiphysis and hindbrain. Nrgn-like populations increased noticeably by 3 dpf, reaching an adult-like pattern in 6 dpf. Most Nrgn-like positive neurons were observed in the olfactory organ, retina (most ganglion cells, some amacrine and bipolar cells), pallium, lateral hypothalamus, thalamus, optic tectum, torus semicircularis, octavolateralis area, and viscerosensory column. Immunoreactivity was also observed in axonal tracts originating in Nrgn-like neuronal populations, namely, the projection of Nrgn-like immunopositive primary olfactory fibers to olfactory glomeruli, that of Nrgn-like positive pallial cells to the hypothalamus, the Nrgn-like-ir optic nerve to the pretectum and optic tectum, the Nrgn-like immunolabeled lateral hypothalamus to the contralateral region via the horizontal commissure, the octavolateralis area to the midbrain via the lateral lemniscus, and the viscerosensory column to the dorsal isthmus via the secondary gustatory tract. The late expression of Nrgn in zebrafish neurons is probably related to functional maturation of higher brain centers, as reported in the mammalian telencephalon. The analysis of Nrgn expression in the zebrafish brain suggests that it may be a useful marker for specific neuronal circuitries.
Collapse
Affiliation(s)
- Anabel Alba-González
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain
| | - Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain. .,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain.
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain. .,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain.
| |
Collapse
|
7
|
Alba‐González A, Folgueira M, Castro A, Anadón R, Yáñez J. Distribution of neurogranin-like immunoreactivity in the brain and sensory organs of the adult zebrafish. J Comp Neurol 2022; 530:1569-1587. [PMID: 35015905 PMCID: PMC9415131 DOI: 10.1002/cne.25297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022]
Abstract
We studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides. Immunohistochemistry shows neurogranin-like expression in the brain and sensory organs (taste buds, neuromasts and olfactory epithelium), not being able to discern its three different peptides. In the retina, the most conspicuous positive cells were bipolar neurons. In the brain, immunopositive neurons were observed in all major regions (pallium, subpallium, preoptic area, hypothalamus, diencephalon, mesencephalon and rhombencephalon, including the cerebellum), a more extended distribution than in mammals. Interestingly, dendrites, cell bodies and axon terminals of some neurons were immunopositive, thus zebrafish neurogranins may play presynaptic and postsynaptic roles. Most positive neurons were found in primary sensory centers (viscerosensory column and medial octavolateral nucleus) and integrative centers (pallium, subpallium, optic tectum and cerebellum), which have complex synaptic circuitry. However, we also observed expression in areas not related to sensory or integrative functions, such as in cerebrospinal fluid-contacting cells associated with the hypothalamic recesses, which exhibited high neurogranin-like immunoreactivity. Together, these results reveal important differences with the patterns reported in mammals, suggesting divergent evolution from the common ancestor.
Collapse
Affiliation(s)
- Anabel Alba‐González
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Mónica Folgueira
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Antonio Castro
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of BiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Julián Yáñez
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| |
Collapse
|
8
|
Cervantes González A, Belbin O. Fluid markers of synapse degeneration in synucleinopathies. J Neural Transm (Vienna) 2022; 129:187-206. [PMID: 35147800 DOI: 10.1007/s00702-022-02467-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
The abnormal accumulation of α-synuclein in the brain is a common feature of Parkinson's disease (PD), PD dementia (PDD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and synucleinopathies that present with overlapping but distinct clinical symptoms that include motor and cognitive deficits. Synapse degeneration is the crucial neuropathological event in these synucleinopathies and the neuropathological correlate of connectome dysfunction. The cognitive and motor deficits resulting from the connectome dysfunction are currently measured by scalar systems that are limited in their sensitivity and largely subjective. Ideally, a marker of synapse degeneration would correlate with measures of cognitive or motor impairment, and could therefore be used as a more objective, surrogate biomarker of the core clinical features of these diseases. Furthermore, an objective surrogate biomarker that can detect and monitor the progression of synapse degeneration would improve patient management and clinical trial design, and could provide a measure of therapeutic response. Here, we review the published findings relating to candidate biomarkers of synapse degeneration in PD, PDD, DLB, and MSA patient-derived biofluids and discuss the findings in the context of the mechanisms associated with α-synuclein-mediated synapse degeneration. Understanding these mechanisms is essential not only for discovery of biomarkers, but also to improve our understanding of the earliest changes in disease pathogenesis of synucleinopathies.
Collapse
Affiliation(s)
- Alba Cervantes González
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Olivia Belbin
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
9
|
Li W, Cui Y, Ma W, Wang M, Cai Y, Jiang Y. LncRNA RBPMS-AS1 promotes NRGN transcription to enhance the radiosensitivity of glioblastoma through the microRNA-301a-3p/CAMTA1 axis. Transl Oncol 2021; 15:101282. [PMID: 34800915 PMCID: PMC8605343 DOI: 10.1016/j.tranon.2021.101282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
RBPMS-AS1 and CAMTA1 are lowly expressed in GBM patients. RBPMS-AS1 and CAMTA1 enhance the radiosensitivity of GBM. miR-301a-3p diminishes the radiosensitivity of GBM. RBPMS-AS1 enhances CAMTA1 expression in GBM cells through sponging miR-301a-3p. CAMTA1 promotes NRGN transcription.
Objective Glioblastoma (GBM) is the most frequent brain malignancy with high incidence, and long noncoding RNAs (lncRNAs) exerts functions in GBM. In this research, we focused on the capabilities of lncRNA RBPMS-AS1 in radiosensitivity of GBM. Methods RBPMS-AS1 and CAMTA1 expression levels were determined in GBM tissues and cells. StarBase v3.0 database was searched for predicting miRNAs that simultaneously bound to RBPMS-AS1 and CAMTA1. pcDNA3.1-RBPMS-AS1, pcDNA3.1-CAMTA1, miR-301a-3p mimic, or pcDNA3.1-RBPMS-AS1/pcDNA3.1-CAMTA1 and miR-301a-3p mimic were transfected into GBM cells to test radiosensitivity, cell proliferation and apoptosis. The interactions of miR-301a-3p with RBPMS-AS1 and CAMTA1, as well as CAMTA1 and NRGN, were confirmed. In vivo imaging technology was utilized to detect tumor growth in orthotopic xenograft tumors, and Ki67 expression was tested in intracranial tumors. Results RBPMS-AS1 and CAMTA1 levels were reduced in GBM tissues and cells. miR-301a-3p had a binding site with both RBPMS-AS1 and CAMTA1 and it was the most significantly-upregulated one. Upregulation of RBPMS-AS1 or CAMTA1 enhanced the radiosensitivity and cell apoptosis while suppressing proliferation of GBM cells. Conversely, miR-301a-3p overexpression diminished the radiosensitivity and cell apoptosis while inducing proliferation of GBM cells. Overexpression of RBPMS-AS1 or CAMTA1 reversed the effects of overexpressed miR-301a-3p in GBM cells. Mechanistically, RBPMS-AS1 enhanced CAMTA1 expression in GBM cells through sponging miR-301a-3p, and CAMTA1 promoted NRGN expression. In animal experiments, overexpressed RBPMS-AS1 inhibited tumor growth and the positive expression of Ki67 both before and after radiation therapy. Conclusion RBPMS-AS1 promotes NRGN transcription through the miR-301a-3p/CAMTA1 axis and enhances the radiosensitivity of GBM.
Collapse
Affiliation(s)
- Wenyang Li
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yan Cui
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Wenjia Ma
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Ming Wang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yang Cai
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yugang Jiang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
10
|
Loenneker HD, Artemenko C, Willmes K, Liepelt-Scarfone I, Nuerk HC. Deficits in or preservation of basic number processing in Parkinson's disease? A registered report. J Neurosci Res 2021; 99:2390-2405. [PMID: 34184307 DOI: 10.1002/jnr.24907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/10/2022]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have a huge impact on patients, caregivers, and the health-care system. To date, the diagnosis of mild cognitive impairments in PD has been established based on domain-general functions such as executive functions, attention, or working memory. However, specific numerical deficits observed in clinical practice have not yet been systematically investigated. PD-immanent deterioration of domain-general functions and domain-specific numerical areas suggests the mechanisms of both primary and secondary dyscalculia. The current study will systematically investigate basic number processing performance in PD patients for the first time, targeting domain-specific cognitive representations of numerosity and the influence of domain-general factors. The overall sample consists of patients with a diagnosis of PD, according to consensus guidelines, and healthy controls. PD patients will be stratified into patients with normal cognition or mild cognitive impairment (level I-PD-MCI based on cognitive screening). Basic number processing will be assessed using transcoding, number line estimation, and (non)symbolic number magnitude comparison tasks. Discriminant analysis will be employed to assess whether basic number processing tasks can differentiate between a healthy control group and both PD groups. All participants will be subjected to a comprehensive numerical and a neuropsychological test battery, as well as sociodemographic and clinical measures. Study results will give the first broad insight into the extent of basic numerical deficits in different PD patient groups and will help us to understand the underlying mechanisms of the numerical deficits faced by PD patients in daily life.
Collapse
Affiliation(s)
| | - Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany.,LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Klaus Willmes
- Department of Neurology, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Inga Liepelt-Scarfone
- Department of Clinical Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany.,German Centre for Neurodegenerative Diseases, Tuebingen, Germany.,IB-Hochschule für Gesundheit und Soziales, Stuttgart, Germany
| | | |
Collapse
|
11
|
RT-QuIC Using C-Terminally Truncated α-Synuclein Forms Detects Differences in Seeding Propensity of Different Brain Regions from Synucleinopathies. Biomolecules 2021; 11:biom11060820. [PMID: 34072869 PMCID: PMC8226794 DOI: 10.3390/biom11060820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Aggregated α-synuclein (αSyn) protein is a core pathological feature of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Both PD and DLB demonstrate the presence of diverse intracellular α-synuclein (αSyn) species, including C-terminally truncated αSyn (C-αSyn), although it is unknown how C-αSyn species contribute to disease progression. Using recombinant C-αSyn and PD and DLB brain lysates as seeds in the real-time quaking-induced conversion (RT-QuIC) assay, we explored how C-αSyn may be involved in disease stratification. Comparing the seeding activity of aqueous-soluble fractions to detergent-soluble fractions, and using αSyn 1-130 as substrate for the RT-QuIC assay, the temporal cortex seeds differentiated PD and DLB from healthy controls. In contrast to the temporal cortex, where PD and DLB could not be distinguished, αSyn 1-130 seeded by the detergent-soluble fractions from the PD frontal cortex demonstrated greater seeding efficiency compared to the DLB frontal cortex. Moreover, proteinase K-resistant (PKres) fragments from the RT-QuIC end products using C-αSyn 1-130 or C-αSyn 1-115 were more obvious in the frontal cortex compared to the temporal cortex. Morphological examinations of RT-QuIC end products showed differences in the size of the fibrils between C-αSyn 1-130 and C-αSyn 1-115, in agreement with the RT-QuIC results. These data show that C-αSyn species can distinguish PD from DLB and suggest diversity in αSyn species across these synucleinopathies, which could play a role in disease progression.
Collapse
|
12
|
Mazzucchi S, Palermo G, Campese N, Galgani A, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. The role of synaptic biomarkers in the spectrum of neurodegenerative diseases. Expert Rev Proteomics 2020; 17:543-559. [PMID: 33028119 DOI: 10.1080/14789450.2020.1831388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The quest for reliable fluid biomarkers tracking synaptic disruption is supported by the evidence of a tight association between synaptic density and cognitive performance in neurodegenerative diseases (NDD), especially Alzheimer's disease (AD). AREAS COVERED Neurogranin (Ng) is a post-synaptic protein largely expressed in neurons involved in the memory networks. Currently, Ng measured in CSF is the most promising synaptic biomarker. Several studies show Ng elevated in AD dementia with a hippocampal phenotype as well as in MCI individuals who progress to AD. Ng concentrations are also increased in Creutzfeldt Jacob Disease where widespread and massive synaptic disintegration takes place. Ng does not discriminate Parkinson's disease from atypical parkinsonisms, nor is it altered in Huntington disease. CSF synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1) are emerging candidates. EXPERT OPINION CSF Ng revealed a role as a diagnostic and prognostic biomarker in NDD. Ng increase seems to be very specific for typical AD phenotype, probably for a prevalent hippocampal involvement. Synaptic biomarkers may serve different context-of-use in AD and other NDD including prognosis, diagnosis, and tracking synaptic damage - a critical pathophysiological mechanism in NDD - thus representing reliable tools for a precision medicine-oriented approach to NDD.
Collapse
Affiliation(s)
- Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Andrea Vergallo
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France.,Brain & Spine Institute (ICM), INSERM U1127 , Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP , Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy.,Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| |
Collapse
|
13
|
Xiang Y, Xin J, Le W, Yang Y. Neurogranin: A Potential Biomarker of Neurological and Mental Diseases. Front Aging Neurosci 2020; 12:584743. [PMID: 33132903 PMCID: PMC7573493 DOI: 10.3389/fnagi.2020.584743] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Neurogranin (Ng) is a small protein usually expressed in granule-like structures in pyramidal cells of the hippocampus and cortex. However, its clinical value is not fully clear so far. Currently, Ng is proved to be involved in synaptic plasticity, synaptic regeneration, and long-term potentiation mediated by the calcium- and calmodulin-signaling pathways. Due to both the synaptic integrity and function as the growing concerns in the pathogenesis of a wide variety of neurological and mental diseases, a series of researches published focused on the associations between Ng and these kinds of diseases in the past decade. Therefore, in this review, we highlight several diseases, which include, but are not limited to, Alzheimer’s disease, Parkinson disease, Creutzfeldt–Jakob disease, neuro-HIV, neurosyphilis, schizophrenia, depression, traumatic brain injury, and acute ischemic stroke, and summarize the associations between cerebrospinal fluid or blood-derived Ng with these diseases. We propose that Ng is a potential and promising biomarker to improve the diagnosis, prognosis, and severity evaluation of these diseases in the future.
Collapse
Affiliation(s)
- Yang Xiang
- Institute of Neuroscience, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayan Xin
- North Sichuan Medical College, Nanchong, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Weidong Le
- Institute of Neuroscience, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongjian Yang
- Department of Cardiovasology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
14
|
Henson RL, Doran E, Christian BT, Handen BL, Klunk WE, Lai F, Lee JH, Rosas HD, Schupf N, Zaman SH, Lott IT, Fagan AM. Cerebrospinal fluid biomarkers of Alzheimer's disease in a cohort of adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12057. [PMID: 32671183 PMCID: PMC7346867 DOI: 10.1002/dad2.12057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Virtually all individuals with Down syndrome (DS) will develop Alzheimer's disease (AD) pathology by age 40. Cerebrospinal fluid (CSF) biomarkers have characterized AD pathology in cohorts of late-onset AD (LOAD) and autosomal-dominant AD (ADAD). Few studies have evaluated such biomarkers in adults with DS. METHODS CSF concentrations of amyloid beta (Aβ)40, Aβ42, tau, phospho-tau181 (p-tau), neurofilament light chain (NfL), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 (YKL-40), alpha synuclein (αSyn), neurogranin (Ng), synaptosomal-associated protein 25 (SNAP-25), and visinin-like protein 1 (VILIP-1) were assessed in CSF from 44 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome study. Biomarker levels were evaluated by cognitive status, age, and apolipoprotein E gene (APOE) ε4 carrier status. RESULTS Biomarker abnormalities indicative of amyloid deposition, tauopathy, neurodegeneration, synaptic dysfunction, and neuroinflammation were associated with increased cognitive impairment. Age and APOE ε4 status influenced some biomarkers. DISCUSSION The profile of many established and emerging CSF biomarkers of AD in a cohort of adults with DS was similar to that reported in LOAD and ADAD, while some differences were observed.
Collapse
Affiliation(s)
- Rachel L. Henson
- Department of NeurologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Charles F. and Joanne Knight Alzheimer Disease Research CenterSt. LouisMissouriUSA
| | - Eric Doran
- Department of PediatricsUniversity of California‐Irvine School of MedicineIrvineCaliforniaUSA
| | - Bradley T. Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph H. Lee
- Gertrude H. Sergievsky CenterTaub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Departments of Epidemiology and NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - H. Diana Rosas
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Nicole Schupf
- Gertrude H. Sergievsky CenterTaub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Departments of Epidemiology and NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | | | - Ira T. Lott
- Department of PediatricsUniversity of California‐Irvine School of MedicineIrvineCaliforniaUSA
| | - Anne M. Fagan
- Department of NeurologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Charles F. and Joanne Knight Alzheimer Disease Research CenterSt. LouisMissouriUSA
| |
Collapse
|
15
|
Yang J, Yu D, Liu X, Changyong E, Yu S. LINC00641/miR-4262/NRGN axis confines cell proliferation in glioma. Cancer Biol Ther 2020; 21:758-766. [PMID: 32543324 DOI: 10.1080/15384047.2020.1776581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioma is the most prevalent brain malignancy with high mortality. In recent decades, the regulatory role of long noncoding RNAs (lncRNAs) has been unmasked in glioma. In this study, we focused on the function and mechanism of LINC00641 in glioma. First of all, we found that LINC00641 was expressed at a low level in glioma cell lines. Importantly, overexpression of LINC00641 prevented cell proliferation but enhanced cell apoptosis. Meanwhile, NRGN, a previously-reported downregulated mRNA in GBM, was disclosed as a tumor suppressor in glioma cells. Besides, we verified that NRGN could be positively regulated by LINC00641 in glioma cells. Moreover, the cellular distribution of LINC00641 was identified to be cytoplasmic. Therefore, bioinformatics analysis and mechanism experiments were carried out and we determined that miR-4262 was the shared miRNA between LINC00641 and NRGN. In contrast to LINC00641 and NRGN, miR-4262 was dramatically upregulated in glioma cells. Furthermore, we confirmed that LINC00641 acted as a ceRNA in glioma cells via absorbing miR-4262 to upregulate NRGN. More importantly, silenced NRGN countervailed the repression on glioma cell proliferation caused by LINC00641 upregulation. Collectively, our findings unveiled that LINC00641 serves as a tumor inhibitor in glioma by targeting miR-4262/NRGN axis, providing a new potential therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University , Changchun, Jilin, China
| | - Duo Yu
- Department of Radiotherapy, Second Hospital of Jilin University , Changchun, Jilin, China
| | - Xueshibojie Liu
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital of Jilin University , Changchun, Jilin, China
| | - E Changyong
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University , Changchun, Jilin, China
| | - Shan Yu
- Department of Neurology, China-Japan Union Hospital of Jilin University , Changchun, Jilin, China
| |
Collapse
|
16
|
Paolini Paoletti F, Gaetani L, Parnetti L. Molecular profiling in Parkinsonian syndromes: CSF biomarkers. Clin Chim Acta 2020; 506:55-66. [PMID: 32142717 DOI: 10.1016/j.cca.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Abstract
An accurate and early diagnosis of degenerative parkinsonian syndromes is a major need for their correct and timely therapeutic management. The current diagnostic criteria are mostly based on clinical features and molecular imaging. However, diagnostic doubts often persist especially in the early stages of diseases when signs are slight, ambiguous and overlapping among different syndromes. Molecular imaging may not be altered in the early stages of diseases, also failing to discriminate among different syndromes. Cerebrospinal fluid (CSF) represents an ideal source of biomarkers reflecting different pathways of neuropathological changes taking place in the brain and preceding the clinical onset. The aim of this review is to provide un update on CSF biomarkers in parkinsonian disorders, discussing in detail their association with neuropathological correlates. Their potential contribution in differential diagnosis and prognostic assessment of different parkinsonian syndromes is also discussed. Before entering the clinical use both for diagnostic and prognostic purposes, these CSF biomarkers need to be thoroughly assessed in terms of pre-analytical and analytical variability, as well as to clinical validation in independent cohorts.
Collapse
Affiliation(s)
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine, University of Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine, University of Perugia, Italy; Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Italy
| |
Collapse
|
17
|
Hall S, Janelidze S, Zetterberg H, Brix B, Mattsson N, Surova Y, Blennow K, Hansson O. Cerebrospinal fluid levels of neurogranin in Parkinsonian disorders. Mov Disord 2019; 35:513-518. [PMID: 31837067 DOI: 10.1002/mds.27950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND CSF concentration of neurogranin has been suggested as a biomarker for synapse dysfunction. OBJECTIVES To investigate CSF neurogranin in parkinsonian disorders compared to controls and Alzheimer's disease and the possible correlations between neurogranin and cognitive and motor impairment. METHODS We included 157 patients with PD, 29 with PD with dementia, 11 with dementia with Lewy bodies, 26 with MSA, 21 with PSP, 6 with corticobasal syndrome, 47 controls, and 124 with Alzheimer's disease. CSF neurogranin was measured using two enzyme-linked immunosorbent assays; from EUROIMMUN and the University of Gothenburg. RESULTS We found a strong correlation between CSF neurogranin-EI and CSF neurogranin-University of Gothenburg (Rs = 0.890; P < 0.001). Neurogranin was decreased in PD, PD with dementia, MSA, and PSP compared to controls and Alzheimer's disease. Neurogranin did not correlate with motor or cognitive impairment, longitudinal decline, or progression to dementia in PD. CONCLUSIONS CSF neurogranin is decreased in parkinsonian disorders compared to controls, emphasizing the importance of synaptic dysfunction in these disorders. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sara Hall
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom
| | | | - Niklas Mattsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yulia Surova
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
18
|
Çevik S, Özgenç MM, Güneyk A, Evran Ş, Akkaya E, Çalış F, Katar S, Soyalp C, Hanımoğlu H, Kaynar MY. NRGN, S100B and GFAP levels are significantly increased in patients with structural lesions resulting from mild traumatic brain injuries. Clin Neurol Neurosurg 2019; 183:105380. [PMID: 31234132 DOI: 10.1016/j.clineuro.2019.105380] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/19/2019] [Accepted: 06/01/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine whether serum neurogranin (NRGN), glial fibrillary acidic protein (GFAP), and calcium-binding protein S100 beta (S100B) levels are associated with traumatic intracranial lesions compared to computed tomography (CT) findings of patients with mild traumatic brain injury (mTBI). PATIENTS AND METHODS The cross-sectional study cohort included 48 patients who were admitted to the Emergency Department with a complaint of mTBI, a Glasgow Coma Scale score of 14-15, and at least one symptom of head trauma (i.e., post-traumatic amnesia, nausea or vomiting, post-traumatic seizures, persistent headache, and transient loss of consciousness). Blood samples and CT scans were obtained for all patients within 4 h of injury. Age-matched patients without intracranial traumatic pathology (CT-) were recruited as a control group. Blood samples were measured for NRGN, GFAP, and S100B levels. RESULTS Of 48 patients, 24 were CT + and had significantly higher serum NRGN (5.79 vs. 2.95 ng/mL), GFAP (0.59 vs.0.36 ng/mL), and S100B (1.72 vs.0.73 μg/L) levels than those who were CT- (p = 0.001, p = 0.026, and p < 0.001, respectively). ROC curves showed that NRGN, GFAP, and S100B levels were sufficient to distinguish traumatic brain injury in patients with mTBI. At the cut-off value for NRGN of 1.87 ng/mL, sensivity was 83.3%, and specificity was 58.3%. At the cut-off value for GFAP of 0.23 ng/mL, sensivity was 75% and specificity was 62.5%. The optimal cut-off value for S100B was 0.47 μg/L (95.8% sensitivity and 62.5% specificity). CONCLUSION This is the first study to evaluate NRGN in human serum after mTBI. We confirmed that NRGN levels were significantly higher in CT + patients than CT- patients in the mTBI patient population. Future studies of larger populations and different age groups (especially pediatric) can help reduce the number of CT scans as a reliable and noninvasive diagnostic tool for evaluating NRGN protein levels in mTBI patients with a low probability of intracranial lesions.
Collapse
Affiliation(s)
- Serdar Çevik
- Department of Neurosurgery, Bezmialem Vakıf University, Adnan Menderes Bulvarı, Vatan caddesi 34093, Fatih, Istanbul, Turkey.
| | | | - Ahmet Güneyk
- Department of Biochemstry, Ağrı State Hospital, Ağrı, Turkey
| | - Şevket Evran
- Department of Neurosurgery, Bahçelievler State Hospital, İstanbul, Turkey
| | - Enes Akkaya
- Department of Neurosurgery, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Fatih Çalış
- Deparrment of Neurosurgery, Medeniyet University, Göztepe Training and Research Hospital, Istanbul, Turkey
| | - Salim Katar
- Department of Neurosurgery, Selahaddin Eyyübi State Hospital, Diyarbakır, Turkey
| | - Celaleddin Soyalp
- Department of Anesthesiology and Intensive Care, Yüzüncü Yıl University School of Medicine, Van, Turkey
| | - Hakan Hanımoğlu
- Department of Neurosurgery, Biruni University, İstanbul, Turkey
| | - Mehmet Yaşar Kaynar
- Department of Neurosurgery, Istanbul University Cerrahpasa School of Medicine, İstanbul, Turkey
| |
Collapse
|
19
|
Haghshomar M, Dolatshahi M, Ghazi Sherbaf F, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Disruption of Inferior Longitudinal Fasciculus Microstructure in Parkinson's Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Front Neurol 2018; 9:598. [PMID: 30093877 PMCID: PMC6070770 DOI: 10.3389/fneur.2018.00598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder accompanied by a series of pathological mechanisms which contribute to a variety of motor and non-motor symptoms. Recently, there has been an increasing interest in structural diffusion tensor imaging (DTI) in PD which has shed light on our understanding of structural abnormalities underlying PD symptoms or its associations with pathological mechanisms. One of the white matter tracts shown to be disrupted in PD with a possible contribution to some PD symptoms is the inferior longitudinal fasciculus (ILF). On the whole, lower ILF integrity contributes to thought disorders, impaired visual emotions, cognitive impairments such as semantic fluency deficits, and mood disorders. This review outlines the microstructural changes in ILF associated with systemic inflammation and various PD symptoms like cognitive decline, facial emotion recognition deficit, depression, color discrimination deficit, olfactory dysfunction, and tremor genesis. However, few studies have investigated DTI correlates of each symptom and larger studies with standardized imaging protocols are required to extend these preliminary findings and lead to more promising results.
Collapse
Affiliation(s)
- Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mehdi Shirin Shandiz
- Department of Medical Physics, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
20
|
Guha D, Wagner MCE, Ayyavoo V. Human immunodeficiency virus type 1 (HIV-1)-mediated neuroinflammation dysregulates neurogranin and induces synaptodendritic injury. J Neuroinflammation 2018; 15:126. [PMID: 29703241 PMCID: PMC5923011 DOI: 10.1186/s12974-018-1160-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorder (HAND) is a common outcome of a majority of HIV-1-infected subjects and is associated with synaptodendritic damage. Neurogranin (Ng), a postsynaptic protein, and calmodulin (CaM) are two important players of synaptic integrity/functions. The biological role of Ng in the context of HAND is unknown. Methods We compared the expression of Ng in frontal cortex (FC) tissues from control and HIV-1-positive subjects with and without HAND by immunohistochemistry, western blot, and qRT-PCR. The interaction between Ng and CaM was analyzed by co-immunoprecipitation. Ng, microtubule-associated protein 2 (MAP2), CaM, CaM-dependent protein kinase II (CaMKII), CREB, synaptophysin (Syp), and synapsin I (Syn I) expressions were evaluated by western blot using FC tissue lysates and differentiated SH-SY5Y (dSH-SY5Y) cells. Identification of inflammatory factors related to Ng loss was accomplished by exposing dSH-SY5Y cells to HIV-1 and mock-infected monocyte-derived macrophage (MDM) supernatants or HIV-1 NLYU2 pseudotyped with VSV-G-Env. Levels of interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, MCP-2, and CXCL5 in MDM supernatants were measured by ELISA. Association of IL-1β and IL-8 to Ng expression in context of HIV-1 infection was evaluated in the presence or absence of neutralizing antibodies against these cytokines. Results Expression level of Ng was reduced significantly in FC of HAND-positive (HAND+) patients compared to uninfected individuals. Although no difference was found in CaM expression, interaction between Ng and CaM was reduced in HAND+ patients, which was associated with decreased level of CaMKII, a downstream signaling molecule of CaM pathway. This in turn resulted in reduction of synaptic markers, Syp and Syn I. HIV-1 infection directly had no considerable effect on dysregulation of Ng expression in dSH-SY5Y cells, whereas high amount of pro-inflammatory IL-1β and IL-8 in HIV-1-infected MDM supernatants was associated with significant reduction in Ng expression. Conclusions Synaptic damage in HAND+ patients could be a result of abrogation of Ng through HIV-1-induced inflammation that dysregulates Ng-CaM interaction and downstream signaling cascades associated with synaptodendritic functions. This is the first study evaluating the potential role of Ng in the context of HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Debjani Guha
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
21
|
Kester MI, Teunissen CE, Crimmins DL, Herries EM, Ladenson JH, Scheltens P, van der Flier WM, Morris JC, Holtzman DM, Fagan AM. Neurogranin as a Cerebrospinal Fluid Biomarker for Synaptic Loss in Symptomatic Alzheimer Disease. JAMA Neurol 2016; 72:1275-80. [PMID: 26366630 DOI: 10.1001/jamaneurol.2015.1867] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE Neurogranin (NGRN) seems to be a promising novel cerebrospinal fluid (CSF) biomarker for synaptic loss; however, clinical, and especially longitudinal, data are sparse. OBJECTIVE To examine the utility of NGRN, with repeated CSF sampling, for diagnosis, prognosis, and monitoring of Alzheimer disease (AD). DESIGN, SETTING, AND PARTICIPANTS Longitudinal study of consecutive patients who underwent 2 lumbar punctures between the beginning of 1995 and the end of 2010 within the memory clinic-based Amsterdam Dementia Cohort. The study included 163 patients: 37 cognitively normal participants (mean [SE] age, 64 [2] years; 38% female; and mean [SE] Mini-Mental State Examination [MMSE] score, 28 [0.3]), 61 patients with mild cognitive impairment (MCI) (mean [SE] age, 68 [1] years; 38% female; and mean [SE] MMSE score, 27 [0.3]), and 65 patients with AD (mean [SE] age, 65 [1] years; 45% female; and mean [SE] MMSE score, 22 [0.7]). The mean (SE) interval between lumbar punctures was 2.0 (0.1) years, and the mean (SE) duration of cognitive follow-up was 3.8 (0.2) years. Measurements of CSF NGRN levels were obtained in January and February 2014. MAIN OUTCOME AND MEASURE Levels of NGRN in CSF samples. RESULTS Baseline CSF levels of NGRN in patients with AD (median level, 2381 pg/mL [interquartile range, 1651-3416 pg/mL]) were higher than in cognitively normal participants (median level, 1712 pg/mL [interquartile range, 1206-2724 pg/mL]) (P = .04). Baseline NGRN levels were highly correlated with total tau and tau phosphorylated at threonine 181 in all patient groups (all P < .001), but not with Aβ42. Baseline CSF levels of NGRN were also higher in patients with MCI who progressed to AD (median level, 2842 pg/mL [interquartile range, 1882-3950 pg/mL]) compared with those with stable MCI (median level, 1752 pg/mL [interquartile range, 1024-2438 pg/mL]) (P = .004), and they were predictive of progression from MCI to AD (hazard ratio, 1.8 [95% CI, 1.1-2.9]; stratified by tertiles). Linear mixed-model analyses demonstrated that within-person levels of NGRN increased over time in cognitively normal participants (mean [SE] level, 90 [45] pg/mL per year; P < .05) but not in patients with MCI or AD. CONCLUSIONS AND RELEVANCE Neurogranin is a promising biomarker for AD because levels were elevated in patients with AD compared with cognitively normal participants and predicted progression from MCI to AD. Within-person levels of NGRN increased in cognitively normal participants but not in patients with later stage MCI or AD, which suggests that NGRN may reflect presymptomatic synaptic dysfunction or loss.
Collapse
Affiliation(s)
- Maartje I Kester
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands
| | - Daniel L Crimmins
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Elizabeth M Herries
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Jack H Ladenson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands4Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - John C Morris
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri6Department of Neurology, Washington University School of Medicine, St Louis, Missouri7Hope Center for Neurological Disorders, Washington Universit
| | - David M Holtzman
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri6Department of Neurology, Washington University School of Medicine, St Louis, Missouri7Hope Center for Neurological Disorders, Washington Universit
| | - Anne M Fagan
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri6Department of Neurology, Washington University School of Medicine, St Louis, Missouri7Hope Center for Neurological Disorders, Washington Universit
| |
Collapse
|
22
|
Mohn TC, Koob AO. Adult Astrogenesis and the Etiology of Cortical Neurodegeneration. J Exp Neurosci 2015; 9:25-34. [PMID: 26568684 PMCID: PMC4634839 DOI: 10.4137/jen.s25520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023] Open
Abstract
As more evidence points to a clear role for astrocytes in synaptic processing, synaptogenesis and cognition, continuing research on astrocytic function could lead to strategies for neurodegenerative disease prevention. Reactive astrogliosis results in astrocyte proliferation early in injury and disease states and is considered neuroprotective, indicating a role for astrocytes in disease etiology. This review describes the different types of human cortical astrocytes and the current evidence regarding adult cortical astrogenesis in injury and degenerative disease. A role for disrupted astrogenesis as a cause of cortical degeneration, with a focus on the tauopathies and synucleinopathies, will also be considered.
Collapse
Affiliation(s)
- Tal C. Mohn
- Biology Department, University of Wisconsin—River Falls, River Falls, Wisconsin, USA
| | - Andrew O. Koob
- Biology Department, University of Wisconsin—River Falls, River Falls, Wisconsin, USA
| |
Collapse
|