1
|
Ouelhazi A, Bharmauria V, Molotchnikoff S. Adaptation-induced sharpening of orientation tuning curves in the mouse visual cortex. Neuroreport 2024; 35:291-298. [PMID: 38407865 DOI: 10.1097/wnr.0000000000002012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
OBJECTIVE Orientation selectivity is an emergent property of visual neurons across species with columnar and noncolumnar organization of the visual cortex. The emergence of orientation selectivity is more established in columnar cortical areas than in noncolumnar ones. Thus, how does orientation selectivity emerge in noncolumnar cortical areas after an adaptation protocol? Adaptation refers to the constant presentation of a nonoptimal stimulus (adapter) to a neuron under observation for a specific time. Previously, it had been shown that adaptation has varying effects on the tuning properties of neurons, such as orientation, spatial frequency, motion and so on. BASIC METHODS We recorded the mouse primary visual neurons (V1) at different orientations in the control (preadaptation) condition. This was followed by adapting neurons uninterruptedly for 12 min and then recording the same neurons postadaptation. An orientation selectivity index (OSI) for neurons was computed to compare them pre- and post-adaptation. MAIN RESULTS We show that 12-min adaptation increases the OSI of visual neurons ( n = 113), that is, sharpens their tuning. Moreover, the OSI postadaptation increases linearly as a function of the OSI preadaptation. CONCLUSION The increased OSI postadaptation may result from a specific dendritic neural mechanism, potentially facilitating the rapid learning of novel features.
Collapse
Affiliation(s)
- Afef Ouelhazi
- Département de Sciences Biologiques, Neurophysiology of the Visual system, Université de Montréal, Montréal, Québec
| | - Vishal Bharmauria
- Department of Psychology, Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario, Canada
| | - Stéphane Molotchnikoff
- Département de Sciences Biologiques, Neurophysiology of the Visual system, Université de Montréal, Montréal, Québec
| |
Collapse
|
2
|
Afef O, Rudy L, Stéphane M. Ketamine promotes adaption-induced orientation plasticity and vigorous network changes. Brain Res 2022; 1797:148111. [PMID: 36183793 DOI: 10.1016/j.brainres.2022.148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Adult primary visual cortex features well demonstrated orientation selectivities. However, the imposition of a non-preferred stimulus for many minutes (adaptation) or the application of an antidepressant drug, such as ketamine, shifts the peak of the tuning curve, assigning a novel selectivity to a neuron. The effect of ketamine on V1 neural circuitry is not yet ascertained. The present investigation explores (in control, post-adaptation, and following local ketamine application) the modification of orientation selectivities and its outcome on functional relationships between neurons in mouse and cat. Two main results are revealed. Electrophysiological neuronal responses of monocular stimulation show that in cells exhibiting large orientation shifts after adaptation, ketamine facilitates the cell's recovery. Whereas in units displaying small shifts following adaptation, the drug increases the magnitude of orientation shifts. In addition, pair-wise cross correlogram analyses show modifications of functional relationships between neurons revealing updated micro-circuits as a consequence of ketamine application. We report in cat but not in mouse, that ketamine significantly increases the connectivity rate, their strengths, and an enhancement of neuronal synchrony.
Collapse
Affiliation(s)
- Ouelhazi Afef
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada
| | - Lussiez Rudy
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada
| | - Molotchnikoff Stéphane
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada.
| |
Collapse
|
3
|
Abstract
Adaptation is a common principle that recurs throughout the nervous system at all stages of processing. This principle manifests in a variety of phenomena, from spike frequency adaptation, to apparent changes in receptive fields with changes in stimulus statistics, to enhanced responses to unexpected stimuli. The ubiquity of adaptation leads naturally to the question: What purpose do these different types of adaptation serve? A diverse set of theories, often highly overlapping, has been proposed to explain the functional role of adaptive phenomena. In this review, we discuss several of these theoretical frameworks, highlighting relationships among them and clarifying distinctions. We summarize observations of the varied manifestations of adaptation, particularly as they relate to these theoretical frameworks, focusing throughout on the visual system and making connections to other sensory systems.
Collapse
Affiliation(s)
- Alison I Weber
- Department of Physiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, Washington 98195, USA; ,
| | - Kamesh Krishnamurthy
- Neuroscience Institute and Center for Physics of Biological Function, Department of Physics, Princeton University, Princeton, New Jersey 08544, USA;
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, Washington 98195, USA; , .,UW Institute for Neuroengineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
4
|
Kheradpezhouh E, Adibi M, Arabzadeh E. Response dynamics of rat barrel cortex neurons to repeated sensory stimulation. Sci Rep 2017; 7:11445. [PMID: 28904406 PMCID: PMC5597595 DOI: 10.1038/s41598-017-11477-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/24/2017] [Indexed: 11/25/2022] Open
Abstract
Neuronal adaptation is a common feature observed at various stages of sensory processing. Here, we quantified the time course of adaptation in rat somatosensory cortex. Under urethane anesthesia, we juxta-cellularly recorded single neurons (n = 147) while applying a series of whisker deflections at various frequencies (2-32 Hz). For ~90% of neurons, the response per unit of time decreased with frequency. The degree of adaptation increased along the train of deflections and was strongest at the highest frequency. However, a subset of neurons showed facilitation producing higher responses to subsequent deflections. The response latency to consecutive deflections increased both for neurons that exhibited adaptation and for those that exhibited response facilitation. Histological reconstruction of neurons (n = 45) did not reveal a systematic relationship between adaptation profiles and cell types. In addition to the periodic stimuli, we applied a temporally irregular train of deflections with a mean frequency of 8 Hz. For 70% of neurons, the response to the irregular stimulus was greater than that of the 8 Hz regular. This increased response to irregular stimulation was positively correlated with the degree of adaptation. Altogether, our findings demonstrate high levels of diversity among cortical neurons, with a proportion of neurons showing facilitation at specific temporal intervals.
Collapse
Affiliation(s)
- Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia.
| | - Mehdi Adibi
- University of New South Wales, UNSW, Sydney, NSW, Australia
- International School for Advanced Studies - SISSA, Trieste, Italy
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia
| |
Collapse
|
5
|
The feature-specific propagation of orientation and direction adaptation from areas 17 to 21a in cats. Sci Rep 2017; 7:390. [PMID: 28341863 PMCID: PMC5428465 DOI: 10.1038/s41598-017-00419-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/21/2017] [Indexed: 11/30/2022] Open
Abstract
Adaptation plays a key role in visual information processing, and investigations on the adaptation across different visual regions will be helpful to understand how information is processed dynamically along the visual streams. Recent studies have found the enhanced adaptation effects in the early visual system (from LGN to V1) and the dorsal stream (from V1 to MT). However, it remains unclear how adaptation effect propagates along the form/orientation stream in the visual system. In this study, we compared the orientation and direction adaptation evoked by drifting gratings and stationary flashing gratings, as well as moving random dots, in areas 17 and 21a simultaneously of cats. Recorded by single-unit and intrinsic signal optical imaging, induced by both top-up and biased adaptation protocols, the orientation adaptation effect was greater in response decline and preferred orientation shifts in area 21a compared to area 17. However, for the direction adaptation, no difference was observed between these two areas. These results suggest the feature-specific propagation of the adaptation effect along the visual stream.
Collapse
|
6
|
High noise correlation between the functionally connected neurons in emergent V1 microcircuits. Exp Brain Res 2015; 234:523-32. [PMID: 26525713 DOI: 10.1007/s00221-015-4482-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Neural correlations (noise correlations and cross-correlograms) are widely studied to infer functional connectivity between neurons. High noise correlations between neurons have been reported to increase the encoding accuracy of a neuronal population; however, low noise correlations have also been documented to play a critical role in cortical microcircuits. Therefore, the role of noise correlations in neural encoding is highly debated. To this aim, through multi-electrodes, we recorded neuronal ensembles in the primary visual cortex of anaesthetized cats. By computing cross-correlograms, we divulged the functional network (microcircuit) between neurons within an ensemble in relation to a specific orientation. We show that functionally connected neurons systematically exhibit higher noise correlations than functionally unconnected neurons in a microcircuit that is activated in response to a particular orientation. Furthermore, the mean strength of noise correlations for the connected neurons increases steeply than the unconnected neurons as a function of the resolution window used to calculate noise correlations. We suggest that neurons that display high noise correlations in emergent microcircuits feature functional connections which are inevitable for information encoding in the primary visual cortex.
Collapse
|
7
|
Bachatene L, Bharmauria V, Cattan S, Chanauria N, Rouat J, Molotchnikoff S. Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity. BMC Neurosci 2015; 16:64. [PMID: 26453336 PMCID: PMC4600218 DOI: 10.1186/s12868-015-0203-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. RESULTS Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a "homeodynamic" manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. CONCLUSIONS Our results support the "homeostatic plasticity concept" giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons.
Collapse
Affiliation(s)
- Lyes Bachatene
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Vishal Bharmauria
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Sarah Cattan
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nayan Chanauria
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jean Rouat
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Stéphane Molotchnikoff
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
8
|
Bachatene L, Bharmauria V, Cattan S, Chanauria N, Rouat J, Molotchnikoff S. Electrophysiological and firing properties of neurons: Categorizing soloists and choristers in primary visual cortex. Neurosci Lett 2015; 604:103-8. [PMID: 26247539 DOI: 10.1016/j.neulet.2015.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/28/2022]
Abstract
Visual processing in the cortex involves various aspects of neuronal properties such as morphological, electrophysiological and molecular. In particular, the neural firing pattern is an important indicator of dynamic circuitry within a neuronal population. Indeed, in microcircuits, neurons act as soloists or choristers wherein the characteristical activity of a 'soloist' differs from the firing pattern of a 'chorister'. Both cell types correlate their respective firing rate with the global populational activity in a unique way. In the present study, we sought to examine the relationship between the spike shape (thin spike neurons and broad spike neurons) of cortical neurons recorded from V1, their firing levels and their propensity to act as soloists or choristers. We found that thin spike neurons, which exhibited higher levels of firing, generally correlate their activity with the neuronal population (choristers). On the other hand, broad spike neurons showed lower levels of firing and demonstrated weak correlations with the assembly (soloists). A major consequence of the present study is: estimating the correlation of neural spike trains with their neighboring population is a predictive indicator of spike waveforms and firing level. Indeed, we found a continuum distribution of coupling strength ranging from weak correlation-strength (attributed to low-firing neurons) to high correlation-strength (attributed to high-firing neurons). The tendency to exhibit high- or low-firing is conducive to the spike shape of neurons. Our results offer new insights into visual processing by showing how high-firing rate neurons (mostly thin spike neurons) could modulate the neuronal responses within cell-assemblies.
Collapse
Affiliation(s)
- Lyes Bachatene
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada; Neurosciences Computationnelles et Traitement Intelligent des Signaux NECOTIS, Université de Sherbrooke, Québec, Canada
| | - Vishal Bharmauria
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada; Neurosciences Computationnelles et Traitement Intelligent des Signaux NECOTIS, Université de Sherbrooke, Québec, Canada
| | - Sarah Cattan
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada; Neurosciences Computationnelles et Traitement Intelligent des Signaux NECOTIS, Université de Sherbrooke, Québec, Canada
| | - Nayan Chanauria
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada; Neurosciences Computationnelles et Traitement Intelligent des Signaux NECOTIS, Université de Sherbrooke, Québec, Canada
| | - Jean Rouat
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada; Neurosciences Computationnelles et Traitement Intelligent des Signaux NECOTIS, Université de Sherbrooke, Québec, Canada
| | - Stéphane Molotchnikoff
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada; Neurosciences Computationnelles et Traitement Intelligent des Signaux NECOTIS, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
9
|
Bharmauria V, Bachatene L, Cattan S, Chanauria N, Rouat J, Molotchnikoff S. Stimulus-dependent augmented gamma oscillatory activity between the functionally connected cortical neurons in the primary visual cortex. Eur J Neurosci 2015; 41:1587-96. [DOI: 10.1111/ejn.12912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Vishal Bharmauria
- Neurophysiology of the Visual System; Département de Sciences Biologiques; Université de Montréal; CP 6128 Succursale centre-ville Montréal QC H3C 3J7 Canada
| | - Lyes Bachatene
- Neurophysiology of the Visual System; Département de Sciences Biologiques; Université de Montréal; CP 6128 Succursale centre-ville Montréal QC H3C 3J7 Canada
| | - Sarah Cattan
- Neurophysiology of the Visual System; Département de Sciences Biologiques; Université de Montréal; CP 6128 Succursale centre-ville Montréal QC H3C 3J7 Canada
| | - Nayan Chanauria
- Neurophysiology of the Visual System; Département de Sciences Biologiques; Université de Montréal; CP 6128 Succursale centre-ville Montréal QC H3C 3J7 Canada
| | - Jean Rouat
- Neurophysiology of the Visual System; Département de Sciences Biologiques; Université de Montréal; CP 6128 Succursale centre-ville Montréal QC H3C 3J7 Canada
- Département de Génie Électrique et Génie Informatique; Université de Sherbrooke; Sherbrooke QC Canada
| | - Stéphane Molotchnikoff
- Neurophysiology of the Visual System; Département de Sciences Biologiques; Université de Montréal; CP 6128 Succursale centre-ville Montréal QC H3C 3J7 Canada
- Département de Génie Électrique et Génie Informatique; Université de Sherbrooke; Sherbrooke QC Canada
| |
Collapse
|