1
|
Duggirala SX, Honcamp H, Schwartze M, van Amelsvoort T, Pinheiro AP, Linden DEJ, Kotz SA. Exploring neural dynamics in self-voice processing and perception: Implications for hallucination proneness. Psychiatry Res 2025; 348:116461. [PMID: 40184930 DOI: 10.1016/j.psychres.2025.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/18/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
Altered sensory feedback processing and attention control are assumed to contribute to auditory verbal hallucinations, which are experienced by the general population and patients with psychosis, implying a continuum of hallucination proneness (HP). However, the interaction of altered sensory feedback processing and attention control along this HP continuum remains unclear. We tested this interaction using electroencephalography while forty participants varying on HP, self-generated (via a button-press) and passively listened to their own voices. These voices were created by first recording each participant's neutral and angry voice and then morphing them to create final five types of voice stimuli differing in voice quality per participant (100 % neutral, 60-40 % neutral-angry, 50-50 % neutral-angry, 40-60 % neutral-angry, 100 % angry). Regardless of the voice quality, the N100 and P200 suppression effects decreased with increase in HP. This may indicate increased error awareness and attention allocation in high HP individuals for self-voice generation stemming from altered sensory feedback processing, and/or attentional control. The current findings suggest that alterations of the sensory feedback processing and/or attentional control in self-voice production are fundamental characteristics of the continuum of HP, regardless of the clinical status of voice hearers.
Collapse
Affiliation(s)
- Suvarnalata Xanthate Duggirala
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Faculty of Psychology, University of Lisbon, Lisbon, Portugal; Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Faculty of Health and Medical Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Hanna Honcamp
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Faculty of Health and Medical Sciences, Maastricht University, Maastricht, the Netherlands; Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ana P Pinheiro
- Faculty of Psychology, University of Lisbon, Lisbon, Portugal
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Faculty of Health and Medical Sciences, Maastricht University, Maastricht, the Netherlands; Maastricht University Medical Center, Maastricht, the Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Gundlach C, Müller MM. Increased visual alpha-band activity during self-paced finger tapping does not affect early visual stimulus processing. Psychophysiology 2024; 61:e14707. [PMID: 39380314 PMCID: PMC11579237 DOI: 10.1111/psyp.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Alpha-band activity is thought to be involved in orchestrating neural processing within and across brain regions relevant to various functions such as perception, cognition, and motor activity. Across different studies, attenuated alpha-band activity has been linked to increased neural excitability. Yet, there have been conflicting results concerning the consequences of alpha-band modulations for early sensory processing. We here examined whether movement-related alterations in visual alpha-band activity affected the early sensory processing of visual stimuli. For this purpose, in an EEG experiment, participants were engaged in a voluntary finger-tapping task while passively viewing flickering dots. We found extensive and expected movement-related amplitude modulations of motor alpha- and beta-band activity with event-related-desynchronization (ERD) before and during, and event-related-synchronization (ERS) after single voluntary finger taps. Crucially, while a visual alpha-band ERS accompanied the motor alpha-ERD before and during each finger tap, flicker-evoked Steady-State-Visually-Evoked-Potentials (SSVEPs), as a marker of early visual sensory gain, were not modulated in amplitude. As early sensory stimulus processing was unaffected by amplitude-modulated visual alpha-band activity, this argues against the idea that alpha-band activity represents a mechanism by which early sensory gain modulation is implemented. The distinct neural dynamics of visual alpha-band activity and early sensory processing may point to distinct and multiplexed neural selection processes in visual processing.
Collapse
Affiliation(s)
- C. Gundlach
- Wilhelm Wundt Institute for Psychology, Experimental Psychology and MethodsUniversität LeipzigLeipzigGermany
| | - M. M. Müller
- Wilhelm Wundt Institute for Psychology, Experimental Psychology and MethodsUniversität LeipzigLeipzigGermany
| |
Collapse
|
3
|
García-López E, Parmentier FBR. Distraction by unexpected sounds: comparing response repetition and response switching. Front Psychol 2024; 15:1451008. [PMID: 39417033 PMCID: PMC11480036 DOI: 10.3389/fpsyg.2024.1451008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Numerous studies using oddball tasks have shown that unexpected sounds presented in a predictable or repeated sequence (deviant vs. standard sounds) capture attention and negatively impact ongoing behavioral performance. Here, we examine an aspect of this effect that has gone relatively unnoticed: the impact of deviant sounds is stronger for response repetitions than for response switches. Our approach was two-fold. First, we carried out a simulation to estimate the likelihood that stimuli sequences used in past work may not have used balanced proportions of response repetition and switch trials. More specifically, we sought to determine whether the larger distraction effect for response repetitions may have reflected a rarer, and thereby more surprising, occurrence of such trials. To do so, we simulated 10,000 stimuli sets for a 2-AFC task with a proportion of deviant trial of 0.1 or 0.16. Second, we carried out a 2-AFC oddball task in which participants judged the duration of a tone (short vs. long). We carefully controlled the sequence of stimuli to ensure to balance the proportions of response repetitions and response switches across the standard and deviant conditions. The results of the stimuli simulation showed that, contrary to our concerns, response switches were more likely than response repetitions when left uncontrolled for. This suggests that the larger distraction found for response repetition in past work may in fact have been underestimated. In the tone duration judgment task, the results showed a large impact of the response type on distraction as measured by response times: Deviants sounds significantly delayed response repetitions but notably accelerated switches. These findings suggest that deviant sound hinder response repetition and encourage or bias the cognitive system towards a change of responses. We discuss these findings in relation to the adaptive nature of the involuntary detection of unexpected stimuli and in relation to the notion of partial repetition costs. We argue that results are in line with the binding account as well as with the signaling theory.
Collapse
Affiliation(s)
- Elena García-López
- Neuropsychology and Cognition Group, Research Institute of Health Sciences, Department of Psychology, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Fabrice B. R. Parmentier
- Neuropsychology and Cognition Group, Research Institute of Health Sciences, Department of Psychology, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Duggirala SX, Schwartze M, Goller LK, Linden DEJ, Pinheiro AP, Kotz SA. Hallucination Proneness Alters Sensory Feedback Processing in Self-voice Production. Schizophr Bull 2024; 50:1147-1158. [PMID: 38824450 PMCID: PMC11349023 DOI: 10.1093/schbul/sbae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
BACKGROUND Sensory suppression occurs when hearing one's self-generated voice, as opposed to passively listening to one's own voice. Quality changes in sensory feedback to the self-generated voice can increase attentional control. These changes affect the self-other voice distinction and might lead to hearing voices in the absence of an external source (ie, auditory verbal hallucinations). However, it is unclear how changes in sensory feedback processing and attention allocation interact and how this interaction might relate to hallucination proneness (HP). STUDY DESIGN Participants varying in HP self-generated (via a button-press) and passively listened to their voice that varied in emotional quality and certainty of recognition-100% neutral, 60%-40% neutral-angry, 50%-50% neutral-angry, 40%-60% neutral-angry, 100% angry, during electroencephalography (EEG) recordings. STUDY RESULTS The N1 auditory evoked potential was more suppressed for self-generated than externally generated voices. Increased HP was associated with (1) an increased N1 response to the self- compared with externally generated voices, (2) a reduced N1 response for angry compared with neutral voices, and (3) a reduced N2 response to unexpected voice quality in sensory feedback (60%-40% neutral-angry) compared with neutral voices. CONCLUSIONS The current study highlights an association between increased HP and systematic changes in the emotional quality and certainty in sensory feedback processing (N1) and attentional control (N2) in self-voice production in a nonclinical population. Considering that voice hearers also display these changes, these findings support the continuum hypothesis.
Collapse
Affiliation(s)
- Suvarnalata Xanthate Duggirala
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Psychology, Faculty of Psychology, University of Lisbon, Lisbon, Portugal
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health and Medical Sciences, Maastricht University, Maastricht, Netherlands
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Lisa K Goller
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health and Medical Sciences, Maastricht University, Maastricht, Netherlands
- Maastricht University Medical Center, Maastricht, Netherlands
| | - Ana P Pinheiro
- Department of Psychology, Faculty of Psychology, University of Lisbon, Lisbon, Portugal
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Wikman P, Salmela V, Sjöblom E, Leminen M, Laine M, Alho K. Attention to audiovisual speech shapes neural processing through feedback-feedforward loops between different nodes of the speech network. PLoS Biol 2024; 22:e3002534. [PMID: 38466713 PMCID: PMC10957087 DOI: 10.1371/journal.pbio.3002534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/21/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Selective attention-related top-down modulation plays a significant role in separating relevant speech from irrelevant background speech when vocal attributes separating concurrent speakers are small and continuously evolving. Electrophysiological studies have shown that such top-down modulation enhances neural tracking of attended speech. Yet, the specific cortical regions involved remain unclear due to the limited spatial resolution of most electrophysiological techniques. To overcome such limitations, we collected both electroencephalography (EEG) (high temporal resolution) and functional magnetic resonance imaging (fMRI) (high spatial resolution), while human participants selectively attended to speakers in audiovisual scenes containing overlapping cocktail party speech. To utilise the advantages of the respective techniques, we analysed neural tracking of speech using the EEG data and performed representational dissimilarity-based EEG-fMRI fusion. We observed that attention enhanced neural tracking and modulated EEG correlates throughout the latencies studied. Further, attention-related enhancement of neural tracking fluctuated in predictable temporal profiles. We discuss how such temporal dynamics could arise from a combination of interactions between attention and prediction as well as plastic properties of the auditory cortex. EEG-fMRI fusion revealed attention-related iterative feedforward-feedback loops between hierarchically organised nodes of the ventral auditory object related processing stream. Our findings support models where attention facilitates dynamic neural changes in the auditory cortex, ultimately aiding discrimination of relevant sounds from irrelevant ones while conserving neural resources.
Collapse
Affiliation(s)
- Patrik Wikman
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Viljami Salmela
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Eetu Sjöblom
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Miika Leminen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- AI and Analytics Unit, Helsinki University Hospital, Helsinki, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
6
|
Wang H, Zhao J, Wang H, Hu C, Peng J, Yue S. Attention and Prediction-Guided Motion Detection for Low-Contrast Small Moving Targets. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:6340-6352. [PMID: 35533156 DOI: 10.1109/tcyb.2022.3170699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Small target motion detection within complex natural environments is an extremely challenging task for autonomous robots. Surprisingly, the visual systems of insects have evolved to be highly efficient in detecting mates and tracking prey, even though targets occupy as small as a few degrees of their visual fields. The excellent sensitivity to small target motion relies on a class of specialized neurons, called small target motion detectors (STMDs). However, existing STMD-based models are heavily dependent on visual contrast and perform poorly in complex natural environments, where small targets generally exhibit extremely low contrast against neighboring backgrounds. In this article, we develop an attention-and-prediction-guided visual system to overcome this limitation. The developed visual system comprises three main subsystems, namely: 1) an attention module; 2) an STMD-based neural network; and 3) a prediction module. The attention module searches for potential small targets in the predicted areas of the input image and enhances their contrast against a complex background. The STMD-based neural network receives the contrast-enhanced image and discriminates small moving targets from background false positives. The prediction module foresees future positions of the detected targets and generates a prediction map for the attention module. The three subsystems are connected in a recurrent architecture, allowing information to be processed sequentially to activate specific areas for small target detection. Extensive experiments on synthetic and real-world datasets demonstrate the effectiveness and superiority of the proposed visual system for detecting small, low-contrast moving targets against complex natural environments.
Collapse
|
7
|
Lao-Rodríguez AB, Przewrocki K, Pérez-González D, Alishbayli A, Yilmaz E, Malmierca MS, Englitz B. Neuronal responses to omitted tones in the auditory brain: A neuronal correlate for predictive coding. SCIENCE ADVANCES 2023; 9:eabq8657. [PMID: 37315139 DOI: 10.1126/sciadv.abq8657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
Prediction provides key advantages for survival, and cognitive studies have demonstrated that the brain computes multilevel predictions. Evidence for predictions remains elusive at the neuronal level because of the complexity of separating neural activity into predictions and stimulus responses. We overcome this challenge by recording from single neurons from cortical and subcortical auditory regions in anesthetized and awake preparations, during unexpected stimulus omissions interspersed in a regular sequence of tones. We find a subset of neurons that responds reliably to omitted tones. In awake animals, omission responses are similar to anesthetized animals, but larger and more frequent, indicating that the arousal and attentional state levels affect the degree to which predictions are neuronally represented. Omission-sensitive neurons also responded to frequency deviants, with their omission responses getting emphasized in the awake state. Because omission responses occur in the absence of sensory input, they provide solid and empirical evidence for the implementation of a predictive process.
Collapse
Affiliation(s)
- Ana B Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Karol Przewrocki
- Computational Neuroscience Lab, Department of Neurophysiology, Donders Centre of Neuroscience, Nijmegen, Netherlands
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Basic Psychology, Psychobiology and Methodology of Behavioral Sciences, University of Salamanca, Salamanca, Spain
| | - Artoghrul Alishbayli
- Computational Neuroscience Lab, Department of Neurophysiology, Donders Centre of Neuroscience, Nijmegen, Netherlands
| | - Evrim Yilmaz
- Computational Neuroscience Lab, Department of Neurophysiology, Donders Centre of Neuroscience, Nijmegen, Netherlands
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Bernhard Englitz
- Computational Neuroscience Lab, Department of Neurophysiology, Donders Centre of Neuroscience, Nijmegen, Netherlands
| |
Collapse
|
8
|
Criscuolo A, Schwartze M, Henry MJ, Obermeier C, Kotz SA. Individual neurophysiological signatures of spontaneous rhythm processing. Neuroimage 2023; 273:120090. [PMID: 37028735 DOI: 10.1016/j.neuroimage.2023.120090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
When sensory input conveys rhythmic regularity, we can form predictions about the timing of upcoming events. Although rhythm processing capacities differ considerably between individuals, these differences are often obscured by participant- and trial-level data averaging procedures in M/EEG research. Here, we systematically assessed neurophysiological variability displayed by individuals listening to isochronous (1.54Hz) equitone sequences interspersed with unexpected (amplitude-attenuated) deviant tones. Our approach aimed at revealing time-varying adaptive neural mechanisms for sampling the acoustic environment at multiple timescales. Rhythm tracking analyses confirmed that individuals encode temporal regularities and form temporal expectations, as indicated in delta-band (1.54Hz) power and its anticipatory phase alignment to expected tone onsets. Zooming into tone- and participant-level data, we further characterized intra- and inter-individual variabilities in phase-alignment across auditory sequences. Further, individual modelling of beta-band tone-locked responses showed that a subset of auditory sequences was sampled rhythmically by superimposing binary (strong-weak; S-w), ternary (S-w-w) and mixed accentuation patterns. In these sequences, neural responses to standard and deviant tones were modulated by a binary accentuation pattern, thus pointing towards a mechanism of dynamic attending. Altogether, the current results point toward complementary roles of delta- and beta-band activity in rhythm processing and further highlight diverse and adaptive mechanisms to track and sample the acoustic environment at multiple timescales, even in the absence of task-specific instructions.
Collapse
Affiliation(s)
- A Criscuolo
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - M Schwartze
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - M J Henry
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany; Department of Psychology, Toronto Metropolitan University, Canada
| | - C Obermeier
- BG Klinikum Bergmannstrost Halle, Halle 06112, Germany; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - S A Kotz
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| |
Collapse
|
9
|
Top-down specific preparatory activations for selective attention and perceptual expectations. Neuroimage 2023; 271:119960. [PMID: 36854351 DOI: 10.1016/j.neuroimage.2023.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Proactive cognition brain models are mainstream nowadays. Within these, preparation is understood as an endogenous, top-down function that takes place prior to the actual perception of a stimulus and improves subsequent behavior. Neuroimaging has shown the existence of such preparatory activity separately in different cognitive domains, however no research to date has sought to uncover their potential similarities and differences. Two of these, often confounded in the literature, are Selective Attention (information relevance) and Perceptual Expectation (information probability). We used EEG to characterize the mechanisms that pre-activate specific contents in Attention and Expectation. In different blocks, participants were cued to the relevance or to the probability of target categories, faces vs. names, in a gender discrimination task. Multivariate Pattern (MVPA) and Representational Similarity Analyses (RSA) during the preparation window showed that both manipulations led to a significant, ramping-up prediction of the relevant or expected target category. However, classifiers trained with data from one condition did not generalize to the other, indicating the existence of unique anticipatory neural patterns. In addition, a Canonical Template Tracking procedure showed that there was stronger anticipatory perceptual reinstatement for relevance than for expectation blocks. Overall, the results indicate that preparation during attention and expectation acts through distinguishable neural mechanisms. These findings have important implications for current models of brain functioning, as they are a first step towards characterizing and dissociating the neural mechanisms involved in top-down anticipatory processing.
Collapse
|
10
|
Parmentier FBR, Leiva A, Andrés P, Maybery MT. Distraction by violation of sensory predictions: Functional distinction between deviant sounds and unexpected silences. PLoS One 2022; 17:e0274188. [PMID: 36067181 PMCID: PMC9447928 DOI: 10.1371/journal.pone.0274188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
It has been established that participants performing a continuous categorization task respond significantly slower following the presentation of unexpected, task-irrelevant, auditory stimuli, compared to a repetitive (standard) sound. Evidence indicates that such distraction emerges because of the violation of sensory predictions. This has typically been studied by measuring the impact of replacing the repeated sound by a different sound on rare and unpredictable trials. Here, we examine the impact of a different type of violation: the mere omission of the standard sound. Capitalizing upon the recent finding that deviant sounds exert distinct effects on response times as a function of whether participants produced or withheld a response on the previous trial, we present the results of an experiment seeking to disentangle two potential effects of sound omission: deviance distraction and the removal of an unspecific warning signal. The results indicate that deviant sound and the unexpected omission of the standard sound impact response times through, at least partially, distinct mechanisms. Deviant sounds affect performance by triggering the orienting of attention towards a new sensory input. Sound omissions, in contrast, appear to affect performance in part because responses no longer benefit from an unspecific warning signal to prepare for action.
Collapse
Affiliation(s)
- Fabrice B. R. Parmentier
- Department of Psychology & Research Institute of Health Sciences, Neuropsychology & Cognition Group, University of the Balearic Islands, Palma, Balearic Islands, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Balearic Islands, Spain
- School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
- * E-mail:
| | - Alicia Leiva
- Department of Psychology, Universitat de Vic-Universitat Central de Catalunya, Catalunya, Spain
| | - Pilar Andrés
- Department of Psychology & Research Institute of Health Sciences, Neuropsychology & Cognition Group, University of the Balearic Islands, Palma, Balearic Islands, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Balearic Islands, Spain
| | - Murray T. Maybery
- School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Pando-Naude V, Patyczek A, Bonetti L, Vuust P. An ALE meta-analytic review of top-down and bottom-up processing of music in the brain. Sci Rep 2021; 11:20813. [PMID: 34675231 PMCID: PMC8531391 DOI: 10.1038/s41598-021-00139-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022] Open
Abstract
A remarkable feature of the human brain is its ability to integrate information from the environment with internally generated content. The integration of top-down and bottom-up processes during complex multi-modal human activities, however, is yet to be fully understood. Music provides an excellent model for understanding this since music listening leads to the urge to move, and music making entails both playing and listening at the same time (i.e., audio-motor coupling). Here, we conducted activation likelihood estimation (ALE) meta-analyses of 130 neuroimaging studies of music perception, production and imagery, with 2660 foci, 139 experiments, and 2516 participants. We found that music perception and production rely on auditory cortices and sensorimotor cortices, while music imagery recruits distinct parietal regions. This indicates that the brain requires different structures to process similar information which is made available either by an interaction with the environment (i.e., bottom-up) or by internally generated content (i.e., top-down).
Collapse
Affiliation(s)
- Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark.
| | - Agata Patyczek
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark
| |
Collapse
|
12
|
Li J, Hong B, Nolte G, Engel AK, Zhang D. Preparatory delta phase response is correlated with naturalistic speech comprehension performance. Cogn Neurodyn 2021; 16:337-352. [PMID: 35401861 PMCID: PMC8934811 DOI: 10.1007/s11571-021-09711-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 01/07/2023] Open
Abstract
While human speech comprehension is thought to be an active process that involves top-down predictions, it remains unclear how predictive information is used to prepare for the processing of upcoming speech information. We aimed to identify the neural signatures of the preparatory processing of upcoming speech. Participants selectively attended to one of two competing naturalistic, narrative speech streams, and a temporal response function (TRF) method was applied to derive event-related-like neural responses from electroencephalographic data. The phase responses to the attended speech at the delta band (1-4 Hz) were correlated with the comprehension performance of individual participants, with a latency of - 200-0 ms relative to the onset of speech amplitude envelope fluctuations over the fronto-central and left-lateralized parietal electrodes. The phase responses to the attended speech at the alpha band also correlated with comprehension performance but with a latency of 650-980 ms post-onset over the fronto-central electrodes. Distinct neural signatures were found for the attentional modulation, taking the form of TRF-based amplitude responses at a latency of 240-320 ms post-onset over the left-lateralized fronto-central and occipital electrodes. Our findings reveal how the brain gets prepared to process an upcoming speech in a continuous, naturalistic speech context.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 334, Mingzhai Building, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 334, Mingzhai Building, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
14
|
Pinheiro AP, Schwartze M, Gutiérrez-Domínguez F, Kotz SA. Real and imagined sensory feedback have comparable effects on action anticipation. Cortex 2020; 130:290-301. [PMID: 32698087 DOI: 10.1016/j.cortex.2020.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023]
Abstract
The forward model monitors the success of sensory feedback to an action and links it to an efference copy originating in the motor system. The Readiness Potential (RP) of the electroencephalogram has been denoted as a neural signature of the efference copy. An open question is whether imagined sensory feedback works similarly to real sensory feedback. We investigated the RP to audible and imagined sounds in a button-press paradigm and assessed the role of sound complexity (vocal vs. non-vocal sound). Sensory feedback (both audible and imagined) in response to a voluntary action modulated the RP amplitude time-locked to the button press. The RP amplitude increase was larger for actions with expected sensory feedback (audible and imagined) than those without sensory feedback, and associated with N1 suppression for audible sounds. Further, the early RP phase was increased when actions elicited an imagined vocal (self-voice) compared to non-vocal sound. Our results support the notion that sensory feedback is anticipated before voluntary actions. This is the case for both audible and imagined sensory feedback and confirms a role of overt and covert feedback in the forward model.
Collapse
Affiliation(s)
- Ana P Pinheiro
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal; Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands.
| | - Michael Schwartze
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | | | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
15
|
Pinheiro AP, Schwartze M, Amorim M, Coentre R, Levy P, Kotz SA. Changes in motor preparation affect the sensory consequences of voice production in voice hearers. Neuropsychologia 2020; 146:107531. [PMID: 32553846 DOI: 10.1016/j.neuropsychologia.2020.107531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a cardinal symptom of psychosis but are also present in 6-13% of the general population. Alterations in sensory feedback processing are a likely cause of AVH, indicative of changes in the forward model. However, it is unknown whether such alterations are related to anomalies in forming an efference copy during action preparation, selective for voices, and similar along the psychosis continuum. By directly comparing psychotic and nonclinical voice hearers (NCVH), the current study specifies whether and how AVH proneness modulates both the efference copy (Readiness Potential) and sensory feedback processing for voices and tones (N1, P2) with event-related brain potentials (ERPs). METHODS Controls with low AVH proneness (n = 15), NCVH (n = 16) and first-episode psychotic patients with AVH (n = 16) engaged in a button-press task with two types of stimuli: self-initiated and externally generated self-voices or tones during EEG recordings. RESULTS Groups differed in sensory feedback processing of expected and actual feedback: NCVH displayed an atypically enhanced N1 to self-initiated voices, while N1 suppression was reduced in psychotic patients. P2 suppression for voices and tones was strongest in NCVH, but absent for voices in patients. Motor activity preceding the button press was reduced in NCVH and patients, specifically for sensory feedback to self-voice in NCVH. CONCLUSIONS These findings suggest that selective changes in sensory feedback to voice are core to AVH. These changes already show in preparatory motor activity, potentially reflecting changes in forming an efference copy. The results provide partial support for continuum models of psychosis.
Collapse
Affiliation(s)
- Ana P Pinheiro
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal.
| | - Michael Schwartze
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Maria Amorim
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Coentre
- Serviço de Psiquiatria e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte EPE, Lisboa, Portugal; Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Levy
- Serviço de Psiquiatria e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte EPE, Lisboa, Portugal
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Heins N, Pomp J, Kluger DS, Trempler I, Zentgraf K, Raab M, Schubotz RI. Incidental or Intentional? Different Brain Responses to One's Own Action Sounds in Hurdling vs. Tap Dancing. Front Neurosci 2020; 14:483. [PMID: 32477059 PMCID: PMC7237737 DOI: 10.3389/fnins.2020.00483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Most human actions produce concomitant sounds. Action sounds can be either part of the action goal (GAS, goal-related action sounds), as for instance in tap dancing, or a mere by-product of the action (BAS, by-product action sounds), as for instance in hurdling. It is currently unclear whether these two types of action sounds-incidental or intentional-differ in their neural representation and whether the impact on the performance evaluation of an action diverges between the two. We here examined whether during the observation of tap dancing compared to hurdling, auditory information is a more important factor for positive action quality ratings. Moreover, we tested whether observation of tap dancing vs. hurdling led to stronger attenuation in primary auditory cortex, and a stronger mismatch signal when sounds do not match our expectations. We recorded individual point-light videos of newly trained participants performing tap dancing and hurdling. In the subsequent functional magnetic resonance imaging (fMRI) session, participants were presented with the videos that displayed their own actions, including corresponding action sounds, and were asked to rate the quality of their performance. Videos were either in their original form or scrambled regarding the visual modality, the auditory modality, or both. As hypothesized, behavioral results showed significantly lower rating scores in the GAS condition compared to the BAS condition when the auditory modality was scrambled. Functional MRI contrasts between BAS and GAS actions revealed higher activation of primary auditory cortex in the BAS condition, speaking in favor of stronger attenuation in GAS, as well as stronger activation of posterior superior temporal gyri and the supplementary motor area in GAS. Results suggest that the processing of self-generated action sounds depends on whether we have the intention to produce a sound with our action or not, and action sounds may be more prone to be used as sensory feedback when they are part of the explicit action goal. Our findings contribute to a better understanding of the function of action sounds for learning and controlling sound-producing actions.
Collapse
Affiliation(s)
- Nina Heins
- Department of Psychology, University of Muenster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Jennifer Pomp
- Department of Psychology, University of Muenster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Daniel S. Kluger
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Ima Trempler
- Department of Psychology, University of Muenster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Karen Zentgraf
- Department of Movement Science and Training in Sports, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Markus Raab
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
- School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Ricarda I. Schubotz
- Department of Psychology, University of Muenster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| |
Collapse
|
17
|
Bouwer FL, Honing H, Slagter HA. Beat-based and Memory-based Temporal Expectations in Rhythm: Similar Perceptual Effects, Different Underlying Mechanisms. J Cogn Neurosci 2020; 32:1221-1241. [PMID: 31933432 DOI: 10.1162/jocn_a_01529] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Predicting the timing of incoming information allows the brain to optimize information processing in dynamic environments. Behaviorally, temporal expectations have been shown to facilitate processing of events at expected time points, such as sounds that coincide with the beat in musical rhythm. Yet, temporal expectations can develop based on different forms of structure in the environment, not just the regularity afforded by a musical beat. Little is still known about how different types of temporal expectations are neurally implemented and affect performance. Here, we orthogonally manipulated the periodicity and predictability of rhythmic sequences to examine the mechanisms underlying beat-based and memory-based temporal expectations, respectively. Behaviorally and using EEG, we looked at the effects of beat-based and memory-based expectations on auditory processing when rhythms were task-relevant or task-irrelevant. At expected time points, both beat-based and memory-based expectations facilitated target detection and led to attenuation of P1 and N1 responses, even when expectations were task-irrelevant (unattended). For beat-based expectations, we additionally found reduced target detection and enhanced N1 responses for events at unexpected time points (e.g., off-beat), regardless of the presence of memory-based expectations or task relevance. This latter finding supports the notion that periodicity selectively induces rhythmic fluctuations in neural excitability and furthermore indicates that, although beat-based and memory-based expectations may similarly affect auditory processing of expected events, their underlying neural mechanisms may be different.
Collapse
|
18
|
Pinheiro AP, Schwartze M, Gutierrez F, Kotz SA. When temporal prediction errs: ERP responses to delayed action-feedback onset. Neuropsychologia 2019; 134:107200. [DOI: 10.1016/j.neuropsychologia.2019.107200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/26/2022]
|
19
|
George N, Sunny MM. Challenges to the Modularity Thesis Under the Bayesian Brain Models. Front Hum Neurosci 2019; 13:353. [PMID: 31649518 PMCID: PMC6796786 DOI: 10.3389/fnhum.2019.00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
Modularity assumption is central to most theoretical and empirical approaches in cognitive science. The Bayesian Brain (BB) models are a class of neuro-computational models that aim to ground perception, cognition, and action under a single computational principle of prediction-error minimization. It is argued that the proposals of BB models contradict the modular nature of mind as the modularity assumption entails computational separation of individual modules. This review examines how BB models address the assumption of modularity. Empirical evidences of top-down influence on early sensory processes is often cited as a case against the modularity thesis. In the modularity thesis, such top-down effects are attributed to attentional modulation of the output of an early impenetrable stage of sensory processing. The attentional-mediation argument defends the modularity thesis. We analyse this argument using the novel conception of attention in the BB models. We attempt to reconcile classical bottom-up vs. top-down dichotomy of information processing, within the information passing scheme of the BB models. Theoretical considerations and empirical findings associated with BB models that address the modularity assumption is reviewed. Further, we examine the modularity of perceptual and motor systems.
Collapse
Affiliation(s)
- Nithin George
- Centre for Cognitive Science, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Meera Mary Sunny
- Centre for Cognitive Science, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
20
|
Trauer SM, Müller MM, Kotz SA. Expectation Gates Neural Facilitation of Emotional Words in Early Visual Areas. Front Hum Neurosci 2019; 13:281. [PMID: 31507390 PMCID: PMC6716056 DOI: 10.3389/fnhum.2019.00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
The current study examined whether emotional expectations gate attention to emotional words in early visual cortex. Color cues informed about word valence and onset latency. We observed a stimulus-preceding negativity prior to the onset of cued words that was larger for negative than for neutral words. This indicates that in anticipation of emotional words more attention was allocated to them than to neutral words before target onset. During stimulus presentation the steady-state visual evoked potential (SSVEP), elicited by flickering words, was attenuated for cued compared to uncued words, indicating sharpened sensory activity, i.e., expectation suppression. Most importantly, the SSVEP was more enhanced for negative than neutral words when these were cued. Uncued conditions did not differ in SSVEP amplitudes, paralleling previous studies reporting lexico-semantic but not early visual effects of emotional words. We suggest that cueing mediates re-entrant engagement of visual resources by providing an early “affective gist” of an upcoming word. Consequently, visual single-word studies may have underestimated attentional effects of emotional words and their anticipation during reading.
Collapse
Affiliation(s)
- Sophie M Trauer
- Lehrstuhl für Allgemeine Psychologie, Institut für Psychologie, Universität Leipzig, Leipzig, Germany
| | - Matthias M Müller
- Lehrstuhl für Allgemeine Psychologie, Institut für Psychologie, Universität Leipzig, Leipzig, Germany
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
21
|
Pinheiro AP, Schwartze M, Kotz SA. Voice-selective prediction alterations in nonclinical voice hearers. Sci Rep 2018; 8:14717. [PMID: 30283058 PMCID: PMC6170384 DOI: 10.1038/s41598-018-32614-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
Auditory verbal hallucinations (AVH) are a cardinal symptom of psychosis but also occur in 6–13% of the general population. Voice perception is thought to engage an internal forward model that generates predictions, preparing the auditory cortex for upcoming sensory feedback. Impaired processing of sensory feedback in vocalization seems to underlie the experience of AVH in psychosis, but whether this is the case in nonclinical voice hearers remains unclear. The current study used electroencephalography (EEG) to investigate whether and how hallucination predisposition (HP) modulates the internal forward model in response to self-initiated tones and self-voices. Participants varying in HP (based on the Launay-Slade Hallucination Scale) listened to self-generated and externally generated tones or self-voices. HP did not affect responses to self vs. externally generated tones. However, HP altered the processing of the self-generated voice: increased HP was associated with increased pre-stimulus alpha power and increased N1 response to the self-generated voice. HP did not affect the P2 response to voices. These findings confirm that both prediction and comparison of predicted and perceived feedback to a self-generated voice are altered in individuals with AVH predisposition. Specific alterations in the processing of self-generated vocalizations may establish a core feature of the psychosis continuum.
Collapse
Affiliation(s)
- Ana P Pinheiro
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal. .,Neuropsychophysiology Lab, School of Psychology, University of Minho, Braga, Portugal.
| | - Michael Schwartze
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neuropsychology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
22
|
Affiliation(s)
- Dingcheng Yang
- Washington Institute for Health Sciences, Arlington, VA, United States
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA, United States
- Department of Neurosciences, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
23
|
Merrikhi Y, Ebrahimpour R, Daliri A. Perceptual manifestations of auditory modulation during speech planning. Exp Brain Res 2018; 236:1963-1969. [DOI: 10.1007/s00221-018-5278-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
|
24
|
Additive and interactive effects of spatial attention and expectation on perceptual decisions. Sci Rep 2018; 8:6732. [PMID: 29712941 PMCID: PMC5928039 DOI: 10.1038/s41598-018-24703-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/06/2018] [Indexed: 11/08/2022] Open
Abstract
Spatial attention and expectation are two critical top-down mechanisms controlling perceptual inference. Based on previous research it remains unclear whether their influence on perceptual decisions is additive or interactive. We developed a novel multisensory approach that orthogonally manipulated spatial attention (i.e. task-relevance) and expectation (i.e. signal probability) selectively in audition and evaluated their effects on observers' responses in vision. Critically, while experiment 1 manipulated expectation directly via the probability of task-relevant auditory targets across hemifields, experiment 2 manipulated it indirectly via task-irrelevant auditory non-targets. Surprisingly, our results demonstrate that spatial attention and signal probability influence perceptual decisions either additively or interactively. These seemingly contradictory results can be explained parsimoniously by a model that combines spatial attention, general and spatially selective response probabilities as predictors with no direct influence of signal probability. Our model provides a novel perspective on how spatial attention and expectation facilitate effective interactions with the environment.
Collapse
|
25
|
Abstract
It is of the utmost importance for an organism to rapidly detect and react to changes in its environment. The oddball paradigm has repeatedly been used to explore the underlying cognitive and neurophysiological components of change detection. It is also used to investigate the special role of emotional content in perception and attention (emotional oddball paradigm; EOP). In this article, the EOP is systematically reviewed. The EOP is, for instance, used as a tool to address questions as to what degree emotional deviant stimuli trigger orientation reactions, which role the emotional context plays in the processing of deviant information, and how the processing of emotional deviant information differs interindividually (including clinical populations). Two main variants with regard to the emotionality of standards and deviants are defined. Most of the identified EOP studies report EEG data but an overview of behavioral data is also provided in this review. We integrate evidence from 99 EOP experiments and shape the EOP's theoretical background under the consideration of other paradigms’ mechanisms and theories.
Collapse
|
26
|
The Cumulative Effects of Predictability on Synaptic Gain in the Auditory Processing Stream. J Neurosci 2017; 37:6751-6760. [PMID: 28607165 PMCID: PMC5508257 DOI: 10.1523/jneurosci.0291-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/02/2023] Open
Abstract
Stimulus predictability can lead to substantial modulations of brain activity, such as shifts in sustained magnetic field amplitude, measured with magnetoencephalography (MEG). Here, we provide a mechanistic explanation of these effects using MEG data acquired from healthy human volunteers (N = 13, 7 female). In a source-level analysis of induced responses, we established the effects of orthogonal predictability manipulations of rapid tone-pip sequences (namely, sequence regularity and alphabet size) along the auditory processing stream. In auditory cortex, regular sequences with smaller alphabets induced greater gamma activity. Furthermore, sequence regularity shifted induced activity in frontal regions toward higher frequencies. To model these effects in terms of the underlying neurophysiology, we used dynamic causal modeling for cross-spectral density and estimated slow fluctuations in neural (postsynaptic) gain. Using the model-based parameters, we accurately explain the sensor-level sustained field amplitude, demonstrating that slow changes in synaptic efficacy, combined with sustained sensory input, can result in profound and sustained effects on neural responses to predictable sensory streams. SIGNIFICANCE STATEMENT Brain activity can be strongly modulated by the predictability of stimuli it is currently processing. An example of such a modulation is a shift in sustained magnetic field amplitude, measured with magnetoencephalography. Here, we provide a mechanistic explanation of these effects. First, we establish the oscillatory neural correlates of independent predictability manipulations in hierarchically distinct areas of the auditory processing stream. Next, we use a biophysically realistic computational model to explain these effects in terms of the underlying neurophysiology. Finally, using the model-based parameters describing neural gain modulation, we can explain the previously unexplained effects observed at the sensor level. This demonstrates that slow modulations of synaptic gain can result in profound and sustained effects on neural activity.
Collapse
|
27
|
Sherwell C, Garrido MI, Cunnington R. Timing in Predictive Coding: The Roles of Task Relevance and Global Probability. J Cogn Neurosci 2017; 29:780-792. [DOI: 10.1162/jocn_a_01085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Predictive coding models of attention propose that attention and prediction operate synergistically to optimize perception, as reflected in interactive effects on early sensory neural responses. It is yet unclear whether attention and prediction based on the temporal attributes of expected events operate in a similar fashion. We investigated how attention and prediction based on timing interact by manipulating the task relevance and a priori probability of auditory stimulus onset timing within a go/no-go task while recording EEG. Preparatory activity, as indexed via the contingent negative variation, reflected temporally specific anticipation as a function of both attention and prediction. Higher stimulus probability led to significant predictive N1 suppression; however, we failed to find an effect of task relevance on N1 amplitude and an interaction of task relevance with prediction. We suggest the predictability of sensory timing is the predominant influence on early sensory responses where a priori probabilities allow for strong prior beliefs. When this is the case, we find that the effects of temporal prediction on early sensory responses are independent of the task relevance of sensory stimuli. Our findings contribute to the expansion of predictive coding frameworks to include the role of timing in sensory processing.
Collapse
|
28
|
Falk S, Maslow E, Thum G, Hoole P. Temporal variability in sung productions of adolescents who stutter. JOURNAL OF COMMUNICATION DISORDERS 2016; 62:101-114. [PMID: 27323225 DOI: 10.1016/j.jcomdis.2016.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Singing has long been used as a technique to enhance and reeducate temporal aspects of articulation in speech disorders. In the present study, differences in temporal structure of sung versus spoken speech were investigated in stuttering. In particular, the question was examined if singing helps to reduce VOT variability of voiceless plosives, which would indicate enhanced temporal coordination of oral and laryngeal processes. Eight German adolescents who stutter and eight typically fluent peers repeatedly spoke and sang a simple German congratulation formula in which a disyllabic target word (e.g., /'ki:ta/) was repeated five times. Every trial, the first syllable of the word was varied starting equally often with one of the three voiceless German stops /p/, /t/, /k/. Acoustic analyses showed that mean VOT and stop gap duration reduced during singing compared to speaking while mean vowel and utterance duration was prolonged in singing in both groups. Importantly, adolescents who stutter significantly reduced VOT variability (measured as the Coefficient of Variation) during sung productions compared to speaking in word-initial stressed positions while the control group showed a slight increase in VOT variability. However, in unstressed syllables, VOT variability increased in both adolescents who do and do not stutter from speech to song. In addition, vowel and utterance durational variability decreased in both groups, yet, adolescents who stutter were still more variable in utterance duration independent of the form of vocalization. These findings shed new light on how singing alters temporal structure and in particular, the coordination of laryngeal-oral timing in stuttering. Future perspectives for investigating how rhythmic aspects could aid the management of fluent speech in stuttering are discussed. LEARNING OUTCOMES Readers will be able to describe (1) current perspectives on singing and its effects on articulation and fluency in stuttering and (2) acoustic parameters such as VOT variability which indicate the efficiency of control and coordination of laryngeal-oral movements. They will understand and be able to discuss (3) how singing reduces temporal variability in the productions of adolescents who do and do not stutter and 4) how this is linked to altered articulatory patterns in singing as well as to its rhythmic structure.
Collapse
Affiliation(s)
- Simone Falk
- Institute of German Philology, Ludwig-Maximilians-University, Schellingstr. 3, 80799 Munich, Germany; Laboratoire Parole et Langage, UMR 7309, Aix-Marseille University, CNRS, Aix-en-Provence, France.
| | - Elena Maslow
- Institute of Phonetics and Speech Processing, Ludwig-Maximilians-University, Munich, Germany
| | - Georg Thum
- Counselling Service for Stuttering, Institute of Clinical Speech Therapy and Education (Spra-chheilpädagogik), Ludwig-Maximilians-University, Munich, Germany
| | - Philip Hoole
- Institute of Phonetics and Speech Processing, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
29
|
Daliri A, Max L. Modulation of Auditory Responses to Speech vs. Nonspeech Stimuli during Speech Movement Planning. Front Hum Neurosci 2016; 10:234. [PMID: 27242494 PMCID: PMC4870268 DOI: 10.3389/fnhum.2016.00234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/04/2016] [Indexed: 01/07/2023] Open
Abstract
Previously, we showed that the N100 amplitude in long latency auditory evoked potentials (LLAEPs) elicited by pure tone probe stimuli is modulated when the stimuli are delivered during speech movement planning as compared with no-speaking control conditions. Given that we probed the auditory system only with pure tones, it remained unknown whether the nature and magnitude of this pre-speech auditory modulation depends on the type of auditory stimulus. Thus, here, we asked whether the effect of speech movement planning on auditory processing varies depending on the type of auditory stimulus. In an experiment with nine adult subjects, we recorded LLAEPs that were elicited by either pure tones or speech syllables when these stimuli were presented prior to speech onset in a delayed-response speaking condition vs. a silent reading control condition. Results showed no statistically significant difference in pre-speech modulation of the N100 amplitude (early stages of auditory processing) for the speech stimuli as compared with the nonspeech stimuli. However, the amplitude of the P200 component (later stages of auditory processing) showed a statistically significant pre-speech modulation that was specific to the speech stimuli only. Hence, the overall results from this study indicate that, immediately prior to speech onset, modulation of the auditory system has a general effect on early processing stages but a speech-specific effect on later processing stages. This finding is consistent with the hypothesis that pre-speech auditory modulation may play a role in priming the auditory system for its role in monitoring auditory feedback during speech production.
Collapse
Affiliation(s)
- Ayoub Daliri
- Speech Lab, Department of Speech, Language and Hearing Sciences, Boston UniversityBoston, MA, USA; Laboratory for Speech Physiology and Motor Control, Department of Speech and Hearing Sciences, University of WashingtonSeattle, WA, USA
| | - Ludo Max
- Laboratory for Speech Physiology and Motor Control, Department of Speech and Hearing Sciences, University of WashingtonSeattle, WA, USA; Haskins LaboratoriesNew Haven, CT, USA
| |
Collapse
|