1
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Baumer-Harrison C, Breza JM, Sumners C, Krause EG, de Kloet AD. Sodium Intake and Disease: Another Relationship to Consider. Nutrients 2023; 15:535. [PMID: 36771242 PMCID: PMC9921152 DOI: 10.3390/nu15030535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequentially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet, commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and are innately palatable at concentrations that are advantageous to physiological homeostasis. The importance of sodium homeostasis is reflected by sodium appetite, an "all-hands-on-deck" response involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved can lead to sodium overconsumption, which numerous studies have considered causal for the development of diseases, such as hypertension. The purpose here is to consider the inverse-how disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each of these processes independently. Then, we highlight the points of overlap and integration of these processes. We propose that the analogous neural circuitry involved in regulating sodium intake and blood pressure, at least in part, underlies the reciprocal relationship between neural control of these functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases influence these circuitries to alter the consumption of sodium.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Joseph M. Breza
- Department of Psychology, College of Arts and Sciences, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Colin Sumners
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Annette D. de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Zheng D, Fu JY, Tang MY, Yu XD, Zhu Y, Shen CJ, Li CY, Xie SZ, Lin S, Luo M, Li XM. A Deep Mesencephalic Nucleus Circuit Regulates Licking Behavior. Neurosci Bull 2022; 38:565-575. [PMID: 35080731 DOI: 10.1007/s12264-021-00817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Licking behavior is important for water intake. The deep mesencephalic nucleus (DpMe) has been implicated in instinctive behaviors. However, whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown. Here, we found that the activity of the DpMe decreased during water intake. Inhibition of vesicular glutamate transporter 2-positive (VGLUT2+) neurons in the DpMe resulted in increased water intake. Somatostatin-expressing (SST+), but not protein kinase C-δ-expressing (PKC-δ+), GABAergic neurons in the central amygdala (CeA) preferentially innervated DpMe VGLUT2+ neurons. The SST+ neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior. Activation of these CeA SST+ GABAergic neurons, but not PKC-δ+ GABAergic neurons, projecting to the DpMe was sufficient to induce licking behavior and promote water intake. These findings redefine the roles of the DpMe and reveal a novel CeASST-DpMeVGLUT2 circuit that regulates licking behavior and promotes water intake.
Collapse
Affiliation(s)
- Di Zheng
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Yu Fu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Yu Tang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Dan Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Jie Shen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shi-Ze Xie
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shan Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Chinese Institute for Brain Research, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China. .,Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, China/Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine Between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Phenotyping neurons activated in the mouse brain during restoration of salt debt. J Chem Neuroanat 2019; 101:101665. [PMID: 31398430 DOI: 10.1016/j.jchemneu.2019.101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
Abstract
Salt overconsumption contributes to hypertension, which is a major risk factor for stroke, heart and kidney disease. Characterising neuronal pathways that may control salt consumption is therefore important for developing novel approaches for reducing salt overconsumption. Here, we identify neurons within the mouse central amygdala (CeA), lateral parabrachial nucleus (LPBN), intermediate nucleus of the solitary tract (iNTS), and caudal NTS (cNTS) that are activated and display Fos immunoreactivity in mice that have consumed salt in order to restore a salt debt, relative to salt replete and salt depleted controls. Double-label immunohistochemical studies revealed that salt restoring mice had significantly greater densities of activated enkephalin neurons within the CeA and iNTS, while statistically significant changes within the LPBN and cNTS were not observed. Furthermore, within the CeA, restoration of salt debt conferred a significant increase in the density of activated calretinin neurons, while there was no change relative to control groups in the density of activated neurons that co-expressed protein kinase C delta (PKC-δ). Taken together, these studies highlight the importance of opioid systems within the CeA and iNTS in neuronal processes associated with salt restoration, and may aid the development of future pharmacological and other strategies for reducing salt overconsumption.
Collapse
|
6
|
Guan L, Qiao H, Wang N, Luo X, Yan J. The purinergic mechanism of the central nucleus of amygdala is involved in the modulation of salt intake in sodium-depleted rats. Brain Res Bull 2018; 143:132-137. [PMID: 30170187 DOI: 10.1016/j.brainresbull.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
The central nucleus of the amygdala (CeA) is a critical region in regulating sodium intake, and interestingly, purinergic receptors reportedly related to fluid balance, are also expressed in CeA. In this study, we investigated whether the purinergic mechanisms of CeA were involved in regulating sodium intake. Male Sprague-Dawley rats had cannulas implanted bilaterally into the CeA and were sodium depleted with furosemide (FURO 20 mg/kg) plus 24 h-sodium deficient food fed. Bilateral injections of the P2X purinergic agonist, α,β-methyleneadenosine 5'-triphosphate (α,β-methylene ATP 1.0, 2.0, 4.0 nmol, respectively) into the CeA region induced dose-related reductions in sodium intake without affecting water intake. Injection of P2X purinergic antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS 4.0 nmol/0.5 μl) into the CeA region did not alter sodium and water intake, however, prior injection of PPADS into the CeA area abolished the inhibitory effects on sodium intake by α,β-methylene ATP. Interestingly, prior injection of γ-aminobutyric acid type A (GABAA) receptor antagonist, bicuculline (4.0 nmol/0.5 μl) into the CeA region partially reversed the deficit of sodium intake induced by α,β-methylene ATP. These results suggest that purinergic receptors in the CeA are involved in the control of sodium intake in the sodium-depleted rats and this negative modulation may be, at least partly, mediated by the GABAA receptor.
Collapse
Affiliation(s)
- Limin Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi, 710061, PR China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi, 710061, PR China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Nan Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jianqun Yan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi, 710061, PR China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
7
|
Abstract
Due to the biological importance of sodium and its relative scarcity within many natural environments, 'salt appetite' has evolved whereby dietary salt is highly sought after and palatable when tasted. In addition to peripheral responses, salt depletion is detected within the brain via circumventricular organs and 11β-hydroxysteroid dehydrogenase type 2 (HSD2) neurons to increase salt appetite. Salt appetite is comprised of two main components. One component is the incentive salience or motivation for salt (i.e. how much salt is 'wanted'). Incentive salience is dynamic and largely depends on internal homeostatic conditions in combination with the detection of relevant cues. It involves the mesolimbic system and structures such as the central amygdala, and opioid signalling within these regions can increase salt intake in rodents. A second key feature is the hedonic palatability of salt (i.e. how much it is 'liked') when it is tasted. After detection on the tongue, gustatory information passes through the brainstem nucleus of the solitary tract and thalamus, before being consciously detected within the gustatory cerebral cortex. The positive or negative hedonic value of this stimulus is also dynamic, and is encoded by a network including the nucleus accumbens, ventral pallidum, and lateral parabrachial nucleus. Opioid signalling within these areas can alter salt intake, and 'liking'. The overconsumption of dietary salt likely contributes to hypertension and associated diseases, and hence further characterising the role played by opioid signalling has important implications for human health.
Collapse
Affiliation(s)
- Craig M Smith
- Faculty of Health, The School of Medicine, Deakin University, Geelong, VIC, 3220, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia. .,The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
8
|
Lateral parabrachial nucleus and opioid mechanisms of the central nucleus of the amygdala in the control of sodium intake. Behav Brain Res 2017; 316:11-17. [DOI: 10.1016/j.bbr.2016.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 11/21/2022]
|