1
|
Drinkuth CR, Lehane MJ, Sartor GC. The effects of (2R,6R)-hydroxynorketamine on oxycodone withdrawal and reinstatement. Drug Alcohol Depend 2023; 253:110987. [PMID: 37864957 PMCID: PMC10842506 DOI: 10.1016/j.drugalcdep.2023.110987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/23/2023]
Abstract
Despite the thousands of lives lost during the ongoing opioid crisis, a scarcity of new and effective clinical treatments for opioid use disorder (OUD) remains. To address this unmet need, some researchers have turned to dissociative and psychedelic drugs to treat multiple psychiatric conditions. In particular, low doses of ketamine have been shown to attenuate opioid withdrawal and drug use in clinical and preclinical studies. However, ketamine has misuse liability and dissociative side effects that may limit its widespread application as a treatment for OUD. More recently, (2R,6R)-hydroxynorketamine (HNK), a ketamine metabolite that lacks misuse potential, has gained attention for its effectiveness in depression and stress models. To uncover its role in OUD, we tested the time-dependent effects of (2R,6R)-HNK on oxycodone withdrawal and reinstatement of oxycodone conditioned place preference (CPP). In male and female oxycodone-dependent mice, we found that 24h pretreatment with (2R,6R)-HNK (10 or 30mg/kg, s.c.) reduced the frequency of withdrawal-like behaviors and global withdrawal scores during naloxone-precipitated withdrawal, whereas 1h pretreatment with (2R,6R)-HNK only reduced paw tremors and the sum of global withdrawal scores but not GWS Z-scores. In other experiments, both 1h and 24h pretreatment with (2R,6R)-HNK (30mg/kg, s.c.) blocked drug-induced reinstatement of oxycodone CPP. Finally, we found (2R,6R)-HNK (30mg/kg, sc) had no effect on locomotor activity and thigmotaxis. Together, these results indicate that acute (2R,6R)-HNK has efficacy in some preclinical models of OUD without producing locomotor or anxiety-like side effects.
Collapse
Affiliation(s)
- Caryssa R Drinkuth
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States
| | - Michael J Lehane
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States
| | - Gregory C Sartor
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
2
|
Chesworth R, Karl T. Cannabidiol (CBD) reduces cocaine-environment memory in mice. Pharmacol Biochem Behav 2020; 199:173065. [DOI: 10.1016/j.pbb.2020.173065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
|
3
|
Torres-Berrio A, Nava-Mesa MO. The opioid system in stress-induced memory disorders: From basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:327-338. [PMID: 30118823 DOI: 10.1016/j.pnpbp.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Cognitive and emotional impairment are a serious consequence of stress exposure and are core features of neurological and psychiatric conditions that involve memory disorders. Indeed, acute and chronic stress are high-risk factors for the onset of post-traumatic stress disorder (PTSD) and Alzheimer's disease (AD), two devastating brain disorders associated with memory dysfunction. Besides the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, stress response also involves the activation of the opioid system in brain regions associated with stress regulation and memory processing. In this context, it is possible that stress-induced memory disorders may be attributed to alterations in the interaction between the neuroendocrine stress system and the opioid system. In this review, we: (1) describe the effects of acute and chronic stress on memory, and the modulatory role of the opioid system, (2) discuss the contribution of the opioid system to the pathophysiology of PTSD and AD, and (3) present evidence of current and potential therapies that target the opioid receptors to treat PTSD- and AD-associated symptoms.
Collapse
Affiliation(s)
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
4
|
Ciccocioppo R, Borruto AM, Domi A, Teshima K, Cannella N, Weiss F. NOP-Related Mechanisms in Substance Use Disorders. Handb Exp Pharmacol 2019; 254:187-212. [PMID: 30968214 PMCID: PMC6641545 DOI: 10.1007/164_2019_209] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995 and has been widely studied since. The role of the N/OFQ system in drug abuse has attracted researchers' attention since its initial discovery. The first two scientific papers describing the effect of intracranial injection of N/OFQ appeared 20 years ago and reported efficacy of the peptide in attenuating alcohol intake, whereas heroin self-administration was insensitive. Since then more than 100 scientific articles investigating the role of the N/OFQ and N/OFQ receptor (NOP) system in drug abuse have been published. The present article provides an historical overview of the advances in the field with focus on three major elements. First, the most robust data supportive of the efficacy of NOP agonists in treating drug abuse come from studies in the field of alcohol research, followed by psychostimulant and opioid research. In contrast, activation of NOP appears to facilitate nicotine consumption. Second, emerging data challenge the assumption that activation of NOP is the most appropriate strategy to attenuate consumption of substances of abuse. This assumption is based first on the observation that animals carrying an overexpression of NOP system components are more prone to consume substances of abuse, whereas NOP knockout rats are less motivated to self-administer heroin, alcohol, and cocaine. Third, administration of NOP antagonists also reduces alcohol consumption. In addition, NOP blockade reduces nicotine self-administration. Hypothetical mechanisms explaining this apparent paradox are discussed. Finally, we focus on the possibility that co-activation of NOP and mu opioid (MOP) receptors is an alternative strategy, readily testable in the clinic, to reduce the consumption of psychostimulants, opiates, and, possibly, alcohol.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Koji Teshima
- Research Unit/Neuroscience, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Friedbert Weiss
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
6
|
Zaveri NT, Marquez PV, Meyer ME, Hamid A, Lutfy K. The Nociceptin Receptor (NOP) Agonist AT-312 Blocks Acquisition of Morphine- and Cocaine-Induced Conditioned Place Preference in Mice. Front Psychiatry 2018; 9:638. [PMID: 30555362 PMCID: PMC6281746 DOI: 10.3389/fpsyt.2018.00638] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/12/2018] [Indexed: 11/22/2022] Open
Abstract
Treatment of drug addiction remains an unmet medical need due to the dearth of approved pharmacotherapies. There are no approved treatments for cocaine addiction, whereas the current opioid crisis has revealed the stark reality of the limited options to treat prescription and illicit opioid abuse. Preclinical studies in rodents and nonhuman primates have shown that orphanin FQ/nociceptin (N/OFQ), the endogenous ligand for the nociceptin opioid receptor (NOP) reduces the rewarding effects of several abused substances, including opioids, psychostimulants and alcohol. A few nonpeptide small-molecule NOP agonists have also shown efficacy in attenuating the rewarding effects of various abused drugs. We previously demonstrated that a high affinity small-molecule NOP agonist AT-312 selectively reduced the rewarding effects of ethanol in the conditioned place preference paradigm in mice. In the present study, we examined if AT-312 (3 mg/kg, i.p. or s.c. respectively), would alter the rewarding action of morphine (7.5 mg/kg, s.c.) or cocaine (15 mg/kg, i.p.). The effect of AT-312 on morphine- and cocaine-induced motor stimulation was also assessed on the conditioning days. The role of the NOP receptor in the effects of AT-312 was further confirmed by conducting the place conditioning experiments in NOP knockout mice and compared to their wild-type controls. Our results showed that AT-312 significantly reduced the acquisition of morphine and cocaine CPP in wild-type mice but not in mice lacking NOP receptors. AT-312 also suppressed morphine-induced and completely abolished cocaine-induced motor stimulation in NOP wild-type mice, but not in NOP knockout mice. These results show that small-molecule NOP receptor agonists have promising efficacy for attenuating the rewarding effects of morphine and cocaine, and may have potential as pharmacotherapy for opioid and psychostimulant addiction or for treating polydrug addiction.
Collapse
Affiliation(s)
- Nurulain T Zaveri
- Astraea Therapeutics, LLC, Mountain View, California, CA, United States
| | - Paul V Marquez
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Michael E Meyer
- Astraea Therapeutics, LLC, Mountain View, California, CA, United States
| | - Abdul Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
7
|
Bernardi RE, Broccoli L, Hirth N, Justice NJ, Deussing JM, Hansson AC, Spanagel R. Dissociable Role of Corticotropin Releasing Hormone Receptor Subtype 1 on Dopaminergic and D1 Dopaminoceptive Neurons in Cocaine Seeking Behavior. Front Behav Neurosci 2017; 11:221. [PMID: 29180955 PMCID: PMC5693884 DOI: 10.3389/fnbeh.2017.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
The ability of many drugs of abuse, including cocaine, to mediate reinforcement and drug-seeking behaviors is in part mediated by the corticotropin-releasing hormone (CRH) system, in which CRH exerts its effects partly via the CRH receptor subtype 1 (CRHR1) in extra-hypothalamic areas. In fact, CRHR1 expressed in regions of the mesolimbic dopamine (DA) system have been demonstrated to modify cocaine-induced DA release and alter cocaine-mediated behaviors. Here we examined the role of neuronal selectivity of CRHR1 within the mesolimbic system on cocaine-induced behaviors. First we used a transgenic mouse line expressing GFP under the control of the Crhr1 promoter for double fluorescence immunohistochemistry to demonstrate the cellular location of CRHR1 in both dopaminergic and D1 dopaminoceptive neurons. We then studied cocaine sensitization, self-administration, and reinstatement in inducible CRHR1 knockouts using the CreERT2/loxP in either dopamine transporter (DAT)-containing neurons (DAT-Crhr1) or dopamine receptor 1 (D1)-containing neurons (D1-Crhr1). For sensitization testing, mice received five daily injections of cocaine (15 mg/kg IP). For self-administration, mice received eight daily 2 h cocaine (0.5 mg/kg per infusion) self-administration sessions followed by extinction and reinstatement testing. There were no differences in the acute or sensitized locomotor response to cocaine in DAT-Crhr1 or D1-Crhr1 mice and their respective controls. Furthermore, both DAT-Crhr1 and D1-Crhr1 mice reliably self-administered cocaine at the level of controls. However, DAT-Crhr1 mice demonstrated a significant increase in cue-induced reinstatement relative to controls, whereas D1-Crhr1 mice demonstrated a significant decrease in cue-induced reinstatement relative to controls. These data demonstrate the involvement of CRHR1 in cue-induced reinstatement following cocaine self-administration, and implicate a bi-directional role of CRHR1 for cocaine craving.
Collapse
Affiliation(s)
- Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Laura Broccoli
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas, Houston, TX, United States
| | - Jan M Deussing
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
8
|
de Guglielmo G, Matzeu A, Kononoff J, Mattioni J, Martin-Fardon R, George O. Cebranopadol Blocks the Escalation of Cocaine Intake and Conditioned Reinstatement of Cocaine Seeking in Rats. J Pharmacol Exp Ther 2017; 362:378-384. [PMID: 28645915 PMCID: PMC5539589 DOI: 10.1124/jpet.117.241042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022] Open
Abstract
Cebranopadol is a novel agonist of nociceptin/orphanin FQ peptide (NOP) and opioid receptors with analgesic properties that is being evaluated in clinical Phase 2 and Phase 3 trials for the treatment of chronic and acute pain. Recent evidence indicates that the combination of opioid and NOP receptor agonism may be a new treatment strategy for cocaine addiction. We sought to extend these findings by examining the effects of cebranopadol on cocaine self-administration (0.5 mg/kg/infusion) and cocaine conditioned reinstatement in rats with extended access to cocaine. Oral administration of cebranopadol (0, 25, and 50 μg/kg) reversed the escalation of cocaine self-administration in rats that were given extended (6 hour) access to cocaine, whereas it did not affect the self-administration of sweetened condensed milk (SCM). Cebranopadol induced conditioned place preference but did not affect locomotor activity during the conditioning sessions. Finally, cebranopadol blocked the conditioned reinstatement of cocaine seeking. These results show that oral cebranopadol treatment prevented addiction-like behaviors (i.e., the escalation of intake and reinstatement), suggesting that it may be a novel strategy for the treatment of cocaine use disorder. However, the conditioned place preference that was observed after cebranopadol administration suggests that this compound may have some intrinsic rewarding effects.
Collapse
Affiliation(s)
| | - Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Jenni Kononoff
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Julia Mattioni
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
9
|
Kallupi M, Scuppa G, de Guglielmo G, Calò G, Weiss F, Statnick MA, Rorick-Kehn LM, Ciccocioppo R. Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction. Neuropsychopharmacology 2017; 42:695-706. [PMID: 27562376 PMCID: PMC5240182 DOI: 10.1038/npp.2016.171] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/14/2022]
Abstract
The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the NOP/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal, and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin, and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125, or 0.5 mg/infusion) both under a fixed ratio 1 and a progressive ratio schedule of reinforcement compared with wild-type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 μg/infusion) and ethanol (10% v/v) self-administration, they showed significantly lower drug intake compared with Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.
Collapse
Affiliation(s)
- Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Giulia Scuppa
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Giordano de Guglielmo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Girolamo Calò
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Statnick
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN USA
| | | | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032 Italy, Tel: +39 07 3740 3313, Fax: +39 07 3740 3325, E-mail:
| |
Collapse
|