1
|
Chen J, Duan L, Xu J, Cheng X. Chitosan based fluorescent interpenetrating network polymeric probes for the sensitive detection and efficient removal of Hg + ions. Carbohydr Polym 2025; 361:123624. [PMID: 40368552 DOI: 10.1016/j.carbpol.2025.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Chitosan (CS) based interpenetrating polymer network (IPN) is formed by cross-linking of CS with another polymer. It exhibits the ability of detecting environmental pollutants. In this work, the cross-linked CS was used as the network skeleton, the RAFT agent could produce an interpenetrating network with CS during the polymerization process, thereby forming a fluorescent hydrogel-type IPN (CS-Cy-PMAm and CS-Cy-PHD). The basic properties of CS-based hydrogels were analyzed by NMR, MS, FT-IR, SEM, TEM, AFM, and so on. This hydrogel prepared by in-situ synthesis technology not only has excellent film-forming properties but also EGME and toluene solvent molecules can significantly enhance the fluorescence of the hydrogel by infiltrating or squeezing the CS network. Due to the chelation of CN, CO, and thioester bonds with Hg+ to block the PET process, the hydrogel exhibited a highly sensitive 46-fold fluorescence enhancement up the Hg+ addition. The detection limit (LOD) of Hg+ was 13 nM, and the adsorption capacity was 84.0 mg·g-1. At the same time, the fluorescent film is made into a colorimetric card, which can realize real-time and portable detection of Hg+. This method expands the application of CS-based IPNs in environmental science and engineering.
Collapse
Affiliation(s)
- Junyu Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Lian Duan
- School of Textiles and Garments, Southwest University, Chongqing 400715, China
| | - Jinlei Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
2
|
Ma W, Zhang Q, Xiang D, Mao K, Xue J, Chen Z, Chen Z, Du W, Zhai K, Zhang H. Metal-Organic Framework (MOF)-Based Sensors for Mercury (Hg) Detection: Design Strategies and Recent Progress. Chemistry 2025; 31:e202403760. [PMID: 39567351 DOI: 10.1002/chem.202403760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Monitoring mercury (Hg) is critical for environmental and public health. Metal-organic framework (MOF)-based sensors demonstrate the advantage of high sensitivity and rapid response. We summarize the advances of MOF sensors for Hg2+ detection from the perspective of MOF type and role in the sensors. First, we introduce three MOFs used in Hg sensors-UIO, ZIF, and MIL-that have demonstrated superior performance. Then, we discuss the specifics of MOF-based sensors for Hg2+ detection in terms of the recognition and signal elements. Currently, the recognition elements include T-rich aptamers, noble metal nanoparticles, central metal ions, and organic functional groups inherent to MOFs. Sensors with fluorescence and colorimetric signals are the two main types of optical MOF sensors used for Hg detection. Electrochemical sensors have also been fabricated, but these are less frequently reported, potentially due to the limited conductivity and cycling stability of MOFs. Notably, dual-signal sensors mitigate background signals interference and enhance the accuracy of Hg2+ detection. Furthermore, to facilitate portability and user-friendliness, portable devices such as microfluidics, paper-based devices, and smartphones have been developed for Hg2+ detection, showcasing potential applications. We also address the challenges related to MOF-based sensors for Hg2+ and future outlook.
Collapse
Affiliation(s)
- Wei Ma
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qidu Zhang
- College of Civil Engineeing, Tongji University, Shanghai, 200092, China
| | - Dongshan Xiang
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhen Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Kun Zhai
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
3
|
López-Moreno M, Jiménez-Moreno E, Márquez Gallego A, Vera Pasamontes G, Uranga Ocio JA, Garcés-Rimón M, Miguel-Castro M. Red Quinoa Hydrolysates with Antioxidant Properties Improve Cardiovascular Health in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2023; 12:1291. [PMID: 37372021 DOI: 10.3390/antiox12061291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, quinoa has been postulated as an emerging crop for the production of functional foods. Quinoa has been used to obtain plant protein hydrolysates with in vitro biological activity. The aim of the present study was to evaluate the beneficial effect of red quinoa hydrolysate (QrH) on oxidative stress and cardiovascular health in an in vivo experimental model of hypertension (HTN) in the spontaneously hypertensive rat (SHR). The oral administration of QrH at 1000 mg/kg/day (QrHH) showed a significant reduction in SBP from baseline (-9.8 ± 4.5 mm Hg; p < 0.05) in SHR. The mechanical stimulation thresholds did not change during the study QrH groups, whereas in the case of SHR control and SHR vitamin C, a significant reduction was observed (p < 0.05). The SHR QrHH exhibited higher antioxidant capacity in the kidney than the other experimental groups (p < 0.05). The SHR QrHH group showed an increase in reduced glutathione levels in the liver compared to the SHR control group (p < 0.05). In relation to lipid peroxidation, SHR QrHH exhibited a significant decrease in plasma, kidney and heart malondialdehyde (MDA) values compared to the SHR control group (p < 0.05). The results obtained revealed the in vivo antioxidant effect of QrH and its ability to ameliorate HTN and its associated complications.
Collapse
Affiliation(s)
- Miguel López-Moreno
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain
- Grupo de Investigación en Biotecnología Alimentaria, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | | | - Antonio Márquez Gallego
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
| | - Gema Vera Pasamontes
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut), Universidad Rey Juan Carlos de Madrid (URJC), 28933 Alcorcón, Spain
- Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Consejo Superior de Investigación Científicas (CSIC), 28006 Madrid, Spain
| | - José Antonio Uranga Ocio
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut), Universidad Rey Juan Carlos de Madrid (URJC), 28933 Alcorcón, Spain
| | - Marta Garcés-Rimón
- Grupo de Investigación en Biotecnología Alimentaria, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Marta Miguel-Castro
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
4
|
Matsuoka R, Sugano M. Health Functions of Egg Protein. Foods 2022; 11:2309. [PMID: 35954074 PMCID: PMC9368041 DOI: 10.3390/foods11152309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Egg protein is a remarkably abundant source of protein, with an amino acid score of 100 and the highest net protein utilization rate. However, there have been relatively fewer studies investigating the health benefits of egg protein. In this review, we have summarized the available information regarding the health benefits of egg proteins based on human studies. In particular, studies conducted on the characteristics of egg whites, as they are high in pure protein, have reported their various health functions, such as increases in muscle mass and strength enhancement, lowering of cholesterol, and visceral fat reduction. Moreover, to facilitate and encourage the use of egg white protein in future, we also discuss its health functions. These benefits were determined by developing an egg white hydrolysate and lactic-fermented egg whites, with the latter treatment simultaneously improving the egg flavor. The health benefits of the protein hydrolysates from the egg yolk (bone growth effect) and eggshell membrane (knee join pain-lowering effect) have been limited in animal studies. Therefore, the consumption of egg protein may contribute to the prevention of physical frailty and metabolic syndromes.
Collapse
Affiliation(s)
| | - Michihiro Sugano
- Kyushu University, Fukuoka 819-0395, Japan;
- Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
- Chair of the Japan Egg Science Society, Tokyo 182-0002, Japan
| |
Collapse
|
5
|
Rizzetti DA, Corrales P, Uranga-Ocio JA, Medina-Gómez G, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Potential benefits of egg white hydrolysate in the prevention of Hg-induced dysfunction in adipose tissue. Food Funct 2022; 13:5996-6007. [PMID: 35575219 DOI: 10.1039/d2fo00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the effects of egg white hydrolysate (EWH) on the lipid and glycemic metabolism disruption in the white adipose tissue (WAT) dysfunction induced by mercury (Hg). Experimental: Wistar rats were treated for 60 days: control (saline, intramuscular - i.m.); hydrolysate (EWH, gavage, 1 g kg-1 day-1); mercury (HgCl2, i.m., 1st dose 4.6 μg kg-1, subsequent doses 0.07 μg kg-1 day-1) and hydrolysate-mercury (EWH-HgCl2). Hg level and histological analyses were performed in epididymal WAT (eWAT), pancreas and liver. GRP78, CHOP, PPARα, PPARγ, leptin, adiponectin, and CD11 mRNA expressions were analyzed in eWAT. The plasma lipid profile, glucose, and insulin levels were measured. Antioxidant status was also evaluated in the plasma and liver. Results: EWH intake prevented the reduced eWAT weight, adipocyte size, insulin levels, and antioxidant defenses and the increased glucose and triglyceride levels induced by Hg exposure; hepatic glutathione levels were higher in rats co-treated with EWH. The increased mRNA expression of CHOP, PPARα, and leptin induced by Hg was reduced in co-treated rats. EWH did not modify the elevated mRNA expression of GRP78, PPARγ and adiponectin in Hg-treated rats. Increased levels of Hg were found in the liver; the co-treatment did not alter this parameter. EWH prevented the morphological and metabolic disorder induced by Hg, by improving antioxidant defenses, inactivating pro-apoptotic pathways and normalizing the mRNA expression of PPARs and adipokines. Its effects enabled an increase in insulin levels and a normal balance between the fat storage and expenditure mechanisms in WAT. Conclusions: EWH may have potential benefits in the prevention and management of Hg-related metabolic disorders.
Collapse
Affiliation(s)
- Danize Aparecida Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Patricia Corrales
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain.
| | - José Antonio Uranga-Ocio
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain. .,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain
| | - Gema Medina-Gómez
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain.
| | - Franck Maciel Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468, Vitória, Espírito Santo, Brazil.
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain.
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Gazme B, Rezaei K, Udenigwe CC. Epitope mapping and the effects of various factors on the immunoreactivity of main allergens in egg white. Food Funct 2022; 13:38-51. [PMID: 34908097 DOI: 10.1039/d1fo01867a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egg white has high protein content and numerous biological/functional properties. However, reported allergenicity for some of the proteins in egg white is an issue that needs to be paid exclusive attention. A consideration of the structure of IgE epitopes and their sequences, as well as a comprehensive understanding of the effects of various processes on epitopes and the impact of the gastrointestinal tract on them, can help target such issues. The current study focuses on the identified IgE epitopes in egg white proteins and evaluation of the effects of the gastrointestinal digestion, carbohydrate moiety, food matrix, microbial fermentation, recombinant allergen, heat treatment, Maillard reaction and combination of various processes and gastrointestinal digestion on egg white allergenicity. Although the gastrointestinal tract reduces the immunoreactivity of native egg white proteins, some of the IgE epitope-containing fragments remain intact during the digestion process. It has been found that the gastrointestinal tract can have both positive and negative impacts on the IgE binding activities of egg white proteins. Elimination of the carbohydrate moiety leads to a reduction in the immunoreactivity of ovalbumin. But, such effects from the carbohydrate parts in the IgE binding activity need to be explored further. In addition, the interaction between the egg white proteins and the food matrix leads to various effects from the gastrointestinal tract on the digestion of egg white proteins and their subsequent immunoreactivity. Further on this matter, studies have shown that both microbial fermentation and Maillard reaction can reduce the IgE binding activities of egg white proteins. Also, as an alternate approach, the thermal process can be used to treat the egg white proteins, which may result in the reduction or increase in their IgE binding activities depending on the conditions used in the process. Overall, based on the reported data, the allergenicity levels of egg white proteins can be mitigated or escalated depending on the conditions applied in the processing of the food products containing egg white. So far, no practical solutions have been reported to eliminate such allergenicity.
Collapse
Affiliation(s)
- Behzad Gazme
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, 415 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Muthukumaran M, Waseem Basha Z, Venkatachalam K, Rasheeth A. A New Chemically Modified Carbon Paste Electrode Derived from Aloe Vera Xanthate Nanoparticles to Detect Mercury Ions. ELECTROANAL 2021. [DOI: 10.1002/elan.202100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Muthukumaran
- Department of Analytical Chemistry University of Madras Guindy Campus Chennai India
| | - Z. Waseem Basha
- P.G. & Research Department of Chemistry The New College (Autonomous) Chennai India
| | - K. Venkatachalam
- Department of Analytical Chemistry University of Madras Guindy Campus Chennai India
| | - A. Rasheeth
- P.G. & Research Department of Chemistry The New College (Autonomous) Chennai India
| |
Collapse
|
8
|
Miguel M, Vassallo DV, Wiggers GA. Bioactive Peptides and Hydrolysates from Egg Proteins as a New Tool for Protection Against Cardiovascular Problems. Curr Pharm Des 2021; 26:3676-3683. [PMID: 32216734 DOI: 10.2174/1381612826666200327181458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
The aim of the present work is to review the potential beneficial effects of dietary supplementation with bioactive egg protein hydrolysates or peptides on cardiometabolic changes associated with oxidative stress. The development of nutritionally improved food products designed to address specific health concerns is of particular interest because many bioactive food compounds can be potentially useful in various physiological functions such as for reducing oxidative stress. The results presented suggest that egg hydrolysates or derived peptides could be included in the diet to prevent and/or reduce some cardiometabolic complications associated with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación em Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Dalton V Vassallo
- Department of Physiological Sciences, Universidade Federal do Espirito Santo and School of Medicine of Santa Casa de Misericordia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitoria, Espirito Santo, Brazil
| | - Giulia A Wiggers
- Cardiovascular Physiology Research Group, Federal University of Pampa, BR 472 - Km 592 - PO box 118. Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Escobar AG, Rizzetti DA, Piagette JT, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Antioxidant Properties of Egg White Hydrolysate Prevent Mercury-Induced Vascular Damage in Resistance Arteries. Front Physiol 2020; 11:595767. [PMID: 33329045 PMCID: PMC7714919 DOI: 10.3389/fphys.2020.595767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022] Open
Abstract
Aim: We investigated the antioxidant protective power of egg white hydrolysate (EWH) against the vascular damage induced by mercury chloride (HgCl2) exposure in resistance arteries. Methods: Male Wistar rats received for 60 days: (I) intramuscular injections (i.m.) of saline and tap water by gavage - Untreated group; (II) 4.6 μg/kg of HgCl2 i.m. for the first dose and subsequent doses of 0.07 μg/kg/day and tap water by gavage - HgCl2 group; (III) saline i.m. and 1 g/kg/day of EWH by gavage - EWH group, or (IV) the combination of the HgCl2 i.m. and EWH by gavage - EWH + HgCl2 group. Blood pressure (BP) was indirectly measured and dose-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), and noradrenaline (NE) were assessed in mesenteric resistance arteries (MRA), as in situ production of superoxide anion, nitric oxide (NO) release, vascular reactive oxygen species (ROS), lipid peroxidation, and antioxidant status. Results: Egg white hydrolysate prevented the elevation in BP and the vascular dysfunction after HgCl2 exposure; restored the NO-mediated endothelial modulation and inhibited the oxidative stress and inflammatory pathways induced by HgCl2. Conclusion: Egg white hydrolysate seems to be a useful functional food to prevent HgCl2-induced vascular toxic effects in MRA.
Collapse
Affiliation(s)
- Alyne Goulart Escobar
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Danize Aparecida Rizzetti
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Janaina Trindade Piagette
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Franck Maciel Peçanha
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Vitória, Brazil
| | - Marta Miguel
- Bioactivity and Food Analysis Department, Instituto de Investigación en Ciencias de la Alimentación, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Graduate Program in Biochemistry and Multicentric Graduate Program in Physiological Sciences, Universidade Federal do Pampa, Uruguaiana, Brazil
| |
Collapse
|
10
|
Moreno-Fernández S, Garcés-Rimón M, Miguel M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Hasan A, Nanakali NMQ, Salihi A, Rasti B, Sharifi M, Attar F, Derakhshankhah H, Mustafa IA, Abdulqadir SZ, Falahati M. Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. Talanta 2020; 215:120939. [PMID: 32312429 DOI: 10.1016/j.talanta.2020.120939] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Mercury (Hg) is known as a poisonous heavy metal which stimulates a wide range of adverse effects on the human health. Therefore, development of some feasible, practical and highly sensitive platforms would be desirable in determination of Hg2+ level as low as nmol L-1 or pmol L-1. Different approaches such as ICP-MS, AAS/AES, and nanomaterial-based nanobiosensors have been manipulated for determination of Hg2+ level. However, these approaches suffer from expensive instruments and complicated sample preparation. Recently, nanozymes have been assembled to address some disadvantages of conventional methods in the detection of Hg2+. Along with the outstanding progress in nanotechnology and computational approaches, pronounced improvement has been attained in the field of nanozymes, recently. To accentuate these progresses, this review presents an overview on the different reports of Hg2+-induced toxicity on the different tissues followed by various conventional approaches validated for the determination of Hg2+ level. Afterwards, different types of nanozymes like AuNPs, PtNPs for quantitative detection of Hg2+ were surveyed. Finally, the current challenges and the future directions were explored to alleviate the limitation of nanozyme-based platforms with potential engineering in detection of heavy metals, namely Hg2+. The current overview can provide outstanding information to develop nano-based platforms for improvement of LOD and LOQ of analytical methods in sensitive detection of Hg2+ and other heavy metals.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| | - Nadir Mustafa Qadir Nanakali
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Biology, College of Science, Cihan University-Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Inaam Ahmad Mustafa
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Shang Ziyad Abdulqadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Vera G, Girón R, Martín-Fontelles MI, Abalo R. Radiographic dose-dependency study of loperamide effects on gastrointestinal motor function in the rat. Temporal relationship with nausea-like behavior. Neurogastroenterol Motil 2019; 31:e13621. [PMID: 31117152 DOI: 10.1111/nmo.13621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Loperamide is a potent mu opioid receptor agonist available over the counter to treat diarrhea. Although at therapeutic doses loperamide is devoid of central effects, it may exert them if used at high doses or combined with drugs that increase its systemic and/or central bioavailability. Recently, public health and scientific interest on loperamide has increased due to a growing trend of misuse and abuse, and consequent reports on its toxicity. Our aim was to evaluate in the rat the effects of increasing loperamide doses, with increasing likelihood to induce central effects, on gastrointestinal motor function (including gastric dysmotility and nausea-like behavior). METHODS Male Wistar rats received an intraperitoneal injection of vehicle or loperamide (0.1, 1, or 10 mg kg-1 ). Three sets of experiments were performed to evaluate: (a) central effects (somatic nociceptive thresholds, immobility time, core temperature, spontaneous locomotor activity); (b) general gastrointestinal motility (serial X-rays were taken 0-8 hours after intragastric barium administration and analyzed semiquantitatively, morphometrically, and densitometrically); and (c) bedding intake (a rodent indirect marker of nausea). Animals from sets 1 and 3 were used to evaluate gastric dysmotility ex vivo at 2 and 4 hours after administration, respectively. KEY RESULTS Loperamide significantly induced antinociception, hypothermia, and hypolocomotion (but not catalepsy) at high doses and dose-dependently reduced gastrointestinal motor function, with the intestine exhibiting higher sensitivity than the stomach. Whereas bedding intake occurred early and transiently, gastric dysmotility was much more persistent. CONCLUSIONS AND INFERENCES Our results suggest that loperamide-induced nausea and gastric dysmotility might be temporally dissociated.
Collapse
Affiliation(s)
- Gema Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rocío Girón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Khueychai S, Jangpromma N, Daduang S, Klaynongsruang S. Effects of alkaline hydrolysis and storage conditions on the biological activity of ostrich egg white. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Siriporn Khueychai
- Department of Biochemistry, Faculty of Science Khon Kaen University Khon Kaen Thailand
- The Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Nisachon Jangpromma
- The Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science Khon Kaen University Khon Kaen Thailand
- Department of Integrated Science, Forensic Science Program, Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Sakda Daduang
- The Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science Khon Kaen University Khon Kaen Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science Khon Kaen University Khon Kaen Thailand
- The Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
14
|
Rizzetti DA, Corrales P, Piagette JT, Uranga-Ocio JA, Medina-Gomez G, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Chronic mercury at low doses impairs white adipose tissue plasticity. Toxicology 2019; 418:41-50. [PMID: 30807803 DOI: 10.1016/j.tox.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/23/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The toxic effects of mercury (Hg) are involved in homeostasis of energy systems such as lipid and glucose metabolism, and white adipose tissue dysfunction is considered as a central mechanism leading to metabolic disorders. OBJECTIVE The aim of this study was to determine the effects of chronic inorganic Hg exposure at low doses on the lipid and glycemic metabolism. METHODS Male Wistar rats were divided into two groups and treated for 60 days with: saline solution, i.m. (Untreated) and mercury chloride, i.m. - 1st dose 4.6 μg/kg, subsequent doses 0.07 μg/kg/day - (Mercury). Histological analyses, Hg levels measurement and GRP78, CHOP, PPARα, PPARγ, leptin, adiponectin and CD11 mRNA expressions were performed in epididymal white adipose tissue (eWAT). Glucose, triglycerides, total cholesterol and insulin plasma levels were also measured. RESULTS Hg exposure reduced the absolute and relative eWAT weights, adipocyte size, plasma insulin levels, glucose tolerance, antioxidant defenses and increased plasma glucose and triglyceride levels. In addition, CHOP, GRP78, PPARα, PPARγ, leptin and adiponectin mRNA expressions were increased in Hg-treated animals. No differences in Hg concentration were found in eWAT between the untreated and Hg groups. These results suggest that the reduction in adipocyte size is related to the impaired antioxidant defenses, endoplasmic reticulum (ER) stress, the disrupted PPARs and adipokines mRNA expression induced by the metal in eWAT. These disturbances possibly induced a decrease in circulating insulin levels, an imbalance between lipolysis and lipogenesis mechanisms in eWAT, with an increase in fatty acids mobilization, a reduction in glucose uptake and an activation of pro-apoptotic pathways, leading to hyperglycemia and hyperlipidemia. CONCLUSIONS Hg is a powerful environmental WAT disruptor that influences signaling events and impairs metabolic activity and hormonal balance of adipocytes.
Collapse
Affiliation(s)
- Danize Aparecida Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil; Polytechnic School, Federal University of Santa Maria, Av. Roraima, n° 1000, Santa Maria, Rio Grande do Sul, Brazil.
| | - Patricia Corrales
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Antenas s/n, Alcorcón, Spain.
| | - Janaina Trindade Piagette
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| | | | - Gema Medina-Gomez
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Antenas s/n, Alcorcón, Spain.
| | - Franck Maciel Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468, Vitória, Espírito Santo, Brazil.
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain.
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Requena T, Miguel M, Garcés-Rimón M, Martínez-Cuesta MC, López-Fandiño R, Peláez C. Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food Funct 2018; 8:437-443. [PMID: 28091678 DOI: 10.1039/c6fo01571a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is limited information that relates the intake of food-derived bioactive peptides and the gut microbiota. We have previously described a pepsin hydrolysate of egg white (EWH) that ameliorates fat accumulation and dyslipidemia, while reducing oxidative stress and inflammation markers in obese Zucker rats. The aim of this study was to associate the beneficial effects of EWH with gut microbiota changes in these animals. Obese Zucker rats received daily 750 mg kg-1 EWH in drinking water for 12 weeks and faeces were analysed for microbial composition and metabolic compounds in comparison with Zucker lean rats and obese controls. EWH supplementation modulated the microbiological characteristics of the obese rats to values similar to those of the lean rats. Specifically, counts of total bacteria, Lactobacillus/Enterococcus and Clostridium leptum in EWH fed obese Zucker rats were more similar to the lean rats than to the obese controls. Besides, feeding the obese Zucker rats with EWH reduced (P < 0.05) the faecal concentration of lactic acid. The physiological benefits of EWH in the improvement of obesity associated complications of Zucker rats could be associated with a more lean-like gut microbiota and a tendency to diminish total short-chain fatty acids (SCFA) production and associated obesity complications. The results warrant the use of pepsin egg white hydrolysate as a bioactive food ingredient.
Collapse
Affiliation(s)
- Teresa Requena
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Marta Miguel
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Marta Garcés-Rimón
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - M Carmen Martínez-Cuesta
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Carmen Peláez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
16
|
Hippocampal Dysfunction Provoked by Mercury Chloride Exposure: Evaluation of Cognitive Impairment, Oxidative Stress, Tissue Injury and Nature of Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7878050. [PMID: 29849915 PMCID: PMC5914100 DOI: 10.1155/2018/7878050] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
Mercury (Hg) is a highly toxic metal, which can be found in its inorganic form in the environment. This form presents lower liposolubility and lower absorption in the body. In order to elucidate the possible toxicity of inorganic Hg in the hippocampus, we investigated the potential of low doses of mercury chloride (HgCl2) to promote hippocampal dysfunction by employing a chronic exposure model. For this, 56 rats were exposed to HgCl2 (0.375 mg/kg/day) via the oral route for 45 days. After the exposure period, the animals were submitted to the cognitive test of fear memory. The hippocampus was collected for the measurement of total Hg levels, analysis of oxidative stress, and evaluation of cytotoxicity, apoptosis, and tissue injury. It was observed that chronic exposure to inorganic Hg promotes an increase in mercury levels in this region and damage to short- and long-term memory. Furthermore, we found that this exposure model provoked oxidative stress, which led to cytotoxicity and cell death by apoptosis, affecting astrocytes and neurons in the hippocampus. Our study demonstrated that inorganic Hg, even with its low liposolubility, is able to produce deleterious effects in the central nervous system, resulting in cognitive impairment and hippocampal damage when administered for a long time at low doses in rats.
Collapse
|
17
|
Ordoñez S, Flores MU, Patiño F, Reyes IA, Islas H, Reyes M, Méndez E, Palacios EG. Kinetic Analysis of the Decomposition Reaction of the Mercury Jarosite in NaOH Medium. INT J CHEM KINET 2017. [DOI: 10.1002/kin.21116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sayra Ordoñez
- Área Académica de Ciencias de la Tierra y Materiales; Universidad Autónoma del Estado de Hidalgo; 42184 Hidalgo México
| | - Mizraim U. Flores
- Área de Electromecánica Industrial; Universidad Tecnológica de Tulancingo; 43642 Tulancingo Hidalgo México
| | - Francisco Patiño
- Ingeniería en Energía; Universidad Politécnica Metropolitana de Hidalgo; 43860 Tulancingo, Tolcayuca Hidalgo México
| | - Iván A. Reyes
- Catedrático CONACYT-Instituto de Metalurgia; Universidad Autónoma de San Luis Potosí; 78210 San Luis Potosí S.L.P. México
| | - Hernán Islas
- Área Académica de Ciencias de la Tierra y Materiales; Universidad Autónoma del Estado de Hidalgo; 42184 Hidalgo México
| | - Martín Reyes
- Área Académica de Ciencias de la Tierra y Materiales; Universidad Autónoma del Estado de Hidalgo; 42184 Hidalgo México
| | - Eliecer Méndez
- Área Académica de Ciencias de la Tierra y Materiales; Universidad Autónoma del Estado de Hidalgo; 42184 Hidalgo México
| | - Elia G. Palacios
- Departamento de Ingeniería en Metalurgia y Materiales; ESIQIE-IPN, UPALM; 07738 México, D.F. México
| |
Collapse
|
18
|
Martinez CS, Vera G, Ocio JAU, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Aluminum exposure for 60days at an equivalent human dietary level promotes peripheral dysfunction in rats. J Inorg Biochem 2017; 181:169-176. [PMID: 28865725 DOI: 10.1016/j.jinorgbio.2017.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022]
Abstract
Aluminum (Al) is a neurotoxic associated with a number of chronic human diseases. We investigated the effects of Al exposure at doses similar to human dietary levels and at a high level exposure to Al on the peripheral nervous system. Wistar male rats were divided into two major groups and received orally: 1) First group - Low level - rats were subdivided and treated for 60days: a) Control - received ultrapure water; b) AlCl3 - received Al at 8.3mg/kg body weight (bw) for 60days; and 2) Second group - High level - rats were subdivided and treated for 42days: C) Control - received ultrapure water through oral gavage; d) AlCl3 - received Al at 100mg/kg bw for 42days. Von Frey hair test, plantar test, the presence of catalepsy and the spontaneous motor activity were investigated. Reactive oxygen species, lipid peroxidation and total antioxidant capacity, immunohistochemistry to investigate the nerve inflammation and, the specific presence of Al in the sciatic nerve fibers were investigated. Al exposure at a representative human dietary level promotes the development of mechanical allodynia, catalepsy, increased inflammation in the sciatic nerve, systemic oxidative stress and, is able to be retained in the sciatic nerve. The effects of low-dose Al were similar to those found in rats exposed to Al at a dose much higher (100mg/kg). Our findings suggest that Al may be considered toxic for the peripheral nervous system, thus inducing peripheral dysfunction.
Collapse
Affiliation(s)
- Caroline Silveira Martinez
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, BR 472, Km 592, PO box 118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Gema Vera
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain
| | - José Antonio Uranga Ocio
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain
| | - Franck Maciel Peçanha
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, BR 472, Km 592, PO box 118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo, and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, 29040-090 Vitória, Espírito Santo, Brazil
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, BR 472, Km 592, PO box 118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
19
|
Rizzetti DA, Martinez CS, Escobar AG, da Silva TM, Uranga-Ocio JA, Peçanha FM, Vassallo DV, Castro MM, Wiggers GA. Egg white-derived peptides prevent male reproductive dysfunction induced by mercury in rats. Food Chem Toxicol 2016; 100:253-264. [PMID: 28043836 DOI: 10.1016/j.fct.2016.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
Oxidative stress in known to contribute to the male reproductive dysfunction induced by mercury (Hg). Our study tested the hypothesis that the egg white hydrolysate (EWH), a potent antioxidant in vitro, is able to prevent the effects of prolonged Hg exposure on male reproductive system in rats. For this, rats were treated for 60 days with: a) Untreated - saline solution (i.m.); b) Hydrolysate - EWH (1 g/kg/day, gavage); c) Mercury - HgCl2 (1st dose 4.6 μg/kg, subsequent doses 0.07 μg/kg/day, i.m.); d) Hydrolysate-Mercury. At the end of the treatment, sperm motility, count and morphological studies were performed; Reactive Oxygen Species (ROS) levels, lipid peroxidation, antioxidant capacity, histological and immunohistochemical assays on testis and epididymis were also carried out. As results, HgCl2-treatment decreased sperm number, increased sperm transit time in epididymis and impaired sperm morphology. However, these harmful effects were prevented by EWH. HgCl2-treatment also increased ROS levels, lipid peroxidation and antioxidant capacity in testis and epididymis as well as promoted testicular inflammation and histological changes in epididymis. EWH improved histological and immunohistochemical alterations, probably due to its antioxidant property. In conclusion, the EWH could represent a powerful natural alternative to protect the male reproductive system against Hg-induced sperm toxicity.
Collapse
Affiliation(s)
- Danize Aparecida Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Caroline Silveira Martinez
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne Goulart Escobar
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Taiz Martins da Silva
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | | | - Franck Maciel Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468, Vitória, Espírito Santo, Brazil
| | - Marta Miguel Castro
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|