1
|
Shi Y, Wei Z, Feng Y, Gan Y, Li G, Deng Y. Disorders of organic acid metabolism and epilepsy. ACTA EPILEPTOLOGICA 2024; 6:24. [PMID: 40217354 PMCID: PMC11960233 DOI: 10.1186/s42494-024-00167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/15/2024] [Indexed: 04/15/2025] Open
Abstract
Epilepsy can be caused by a variety of causes, such as inborn errors of metabolism, organic acid disorders are the most significant type of metabolic disorders that cause seizures. The clinical manifestations of these diseases are generally nonspecific, and the types of seizures are different. Screening for multisystem clinical symptoms and identifying the underlying etiology are crucial for early treatment of epileptic seizures. This article provides a comprehensive summary of the pathogenesis, clinical features, diagnosis and treatment of epilepsy associated with organic acid metabolism disorders. Furthermore, relevant literature has also been reviewed to assist clinicians in the diagnosis of cases characterized by the coexistence of multisystemic symptoms and epileptic manifestations.
Collapse
Affiliation(s)
- Yuqing Shi
- Xi'an Medical University, Xi'an, 710021, China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Zihan Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Yan Feng
- Xi'an Medical University, Xi'an, 710021, China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Yajing Gan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Guoyan Li
- Xi'an Medical University, Xi'an, 710021, China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Yanchun Deng
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China.
- Xijing Institute of Epileptic Encephalopathy, Xi'an, Shaanxi, 710065, China.
| |
Collapse
|
2
|
Bortoluzzi VT, Ribeiro RT, Pinheiro CV, Castro ET, Tavares TQ, Leipnitz G, Sass JO, Castilho RF, Amaral AU, Wajner M. N-Acetylglutamate and N-acetylmethionine compromise mitochondrial bioenergetics homeostasis and glutamate oxidation in brain of developing rats: Potential implications for the pathogenesis of ACY1 deficiency. Biochem Biophys Res Commun 2023; 684:149123. [PMID: 37871522 DOI: 10.1016/j.bbrc.2023.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Aminoacylase 1 (ACY1) deficiency is an inherited metabolic disorder biochemically characterized by high urinary concentrations of aliphatic N-acetylated amino acids and associated with a broad clinical spectrum with predominant neurological signs. Considering that the pathogenesis of ACY1 is practically unknown and the brain is highly dependent on energy production, the in vitro effects of N-acetylglutamate (NAG) and N-acetylmethionine (NAM), major metabolites accumulating in ACY1 deficiency, on the enzyme activities of the citric acid cycle (CAC), of the respiratory chain complexes and glutamate dehydrogenase (GDH), as well as on ATP synthesis were evaluated in brain mitochondrial preparations of developing rats. NAG mildly inhibited mitochondrial isocitrate dehydrogenase 2 (IDH2) activity, moderately inhibited the activities of isocitrate dehydrogenase 3 (IDH3) and complex II-III of the respiratory chain and markedly suppressed the activities of complex IV and GDH. Of note, the NAG-induced inhibitory effect on IDH3 was competitive, whereas that on GDH was mixed. On the other hand, NAM moderately inhibited the activity of respiratory complexes II-III and GDH activities and strongly decreased complex IV activity. Furthermore, NAM was unable to modify any of the CAC enzyme activities, indicating a selective effect of NAG toward IDH mitochondrial isoforms. In contrast, the activities of citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and of the respiratory chain complexes I and II were not changed by these N-acetylated amino acids. Finally, NAG and NAM strongly decreased mitochondrial ATP synthesis. Taken together, the data indicate that NAG and NAM impair mitochondrial brain energy homeostasis.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Rafael Teixeira Ribeiro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Camila Vieira Pinheiro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Ediandra Tissot Castro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Tailine Quevedo Tavares
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Guilhian Leipnitz
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany.
| | - Roger Frigério Castilho
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Alexandre Umpierrez Amaral
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; PPG Atenção Integral à Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil.
| | - Moacir Wajner
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Bortoluzzi VT, Ribeiro RT, Zemniaçak ÂB, Cunha SDA, Sass JO, Castilho RF, Amaral AU, Wajner M. Disturbance of mitochondrial functions caused by N-acetylglutamate and N-acetylmethionine in brain of adolescent rats: Potential relevance in aminoacylase 1 deficiency. Neurochem Int 2023; 171:105631. [PMID: 37852579 DOI: 10.1016/j.neuint.2023.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Aminoacylase 1 (ACY1) deficiency is a rare genetic disorder that affects the breakdown of short-chain aliphatic N-acetylated amino acids, leading to the accumulation of these amino acid derivatives in the urine of patients. Some of the affected individuals have presented with heterogeneous neurological symptoms such as psychomotor delay, seizures, and intellectual disability. Considering that the pathological mechanisms of brain damage in this disorder remain mostly unknown, here we investigated whether major metabolites accumulating in ACY1 deficiency, namely N-acetylglutamate (NAG) and N-acetylmethionine (NAM), could be toxic to the brain by examining their in vitro effects on important mitochondrial properties. We assessed the effects of NAG and NAM on membrane potential, swelling, reducing equivalents, and Ca2+ retention capacity in purified mitochondrial preparations obtained from the brain of adolescent rats. NAG and NAM decreased mitochondrial membrane potential, reducing equivalents, and calcium retention capacity, and induced swelling in Ca2+-loaded brain mitochondria supported by glutamate plus malate. Notably, these changes were completely prevented by the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP and by ruthenium red, implying the participation of MPT and Ca2+ in these effects. Our findings suggest that NAG- and NAM-induced disruption of mitochondrial functions involving MPT may represent relevant mechanisms of neuropathology in ACY1 deficiency.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Rafael Teixeira Ribeiro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Ângela Beatris Zemniaçak
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Sâmela de Azevedo Cunha
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany.
| | - Roger Frigério Castilho
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Alexandre Umpierrez Amaral
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; PPG Atenção Integral à Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil.
| | - Moacir Wajner
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Ribeiro RT, Carvalho AVS, Palavro R, Durán-Carabali LE, Zemniaçak ÂB, Amaral AU, Netto CA, Wajner M. L-2-Hydroxyglutaric Acid Administration to Neonatal Rats Elicits Marked Neurochemical Alterations and Long-Term Neurobehavioral Disabilities Mediated by Oxidative Stress. Neurotox Res 2023; 41:119-140. [PMID: 36580261 DOI: 10.1007/s12640-022-00625-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
L-2-Hydroxyglutaric aciduria (L-2-HGA) is an inherited neurometabolic disorder caused by deficient activity of L-2-hydroxyglutarate dehydrogenase. L-2-Hydroxyglutaric acid (L-2-HG) accumulation in the brain and biological fluids is the biochemical hallmark of this disease. Patients present exclusively neurological symptoms and brain abnormalities, particularly in the cerebral cortex, basal ganglia, and cerebellum. Since the pathogenesis of this disorder is still poorly established, we investigated the short-lived effects of an intracerebroventricular injection of L-2-HG to neonatal rats on redox homeostasis in the cerebellum, which is mostly affected in this disorder. We also determined immunohistochemical landmarks of neuronal viability (NeuN), astrogliosis (S100B and GFAP), microglia activation (Iba1), and myelination (MBP and CNPase) in the cerebral cortex and striatum following L-2-HG administration. Finally, the neuromotor development and cognitive abilities were examined. L-2-HG elicited oxidative stress in the cerebellum 6 h after its injection, which was verified by increased reactive oxygen species production, lipid oxidative damage, and altered antioxidant defenses (decreased concentrations of reduced glutathione and increased glutathione peroxidase and superoxide dismutase activities). L-2-HG also decreased the content of NeuN, MBP, and CNPase, and increased S100B, GFAP, and Iba1 in the cerebral cortex and striatum at postnatal days 15 and 75, implying long-standing neuronal loss, demyelination, astrocyte reactivity, and increased inflammatory response, respectively. Finally, L-2-HG administration caused a delay in neuromotor development and a deficit of cognition in adult animals. Importantly, the antioxidant melatonin prevented L-2-HG-induced deleterious neurochemical, immunohistochemical, and behavioral effects, indicating that oxidative stress may be central to the pathogenesis of brain damage in L-2-HGA.
Collapse
Affiliation(s)
- Rafael Teixeira Ribeiro
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Andrey Vinícios Soares Carvalho
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rafael Palavro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Luz Elena Durán-Carabali
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Ângela Beatris Zemniaçak
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada Do Alto Uruguai E das Missões, Av. Sete de Setembro, Erechim, RS, 162199709-910, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, Porto Alegre, RS, 235090035-007, Brazil.
| |
Collapse
|
5
|
Veiga‐da‐Cunha M, Van Schaftingen E, Bommer GT. Inborn errors of metabolite repair. J Inherit Metab Dis 2020; 43:14-24. [PMID: 31691304 PMCID: PMC7041631 DOI: 10.1002/jimd.12187] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
It is traditionally assumed that enzymes of intermediary metabolism are extremely specific and that this is sufficient to prevent the production of useless and/or toxic side-products. Recent work indicates that this statement is not entirely correct. In reality, enzymes are not strictly specific, they often display weak side activities on intracellular metabolites (substrate promiscuity) that resemble their physiological substrate or slowly catalyse abnormal reactions on their physiological substrate (catalytic promiscuity). They thereby produce non-classical metabolites that are not efficiently metabolised by conventional enzymes. In an increasing number of cases, metabolite repair enzymes are being discovered that serve to eliminate these non-classical metabolites and prevent their accumulation. Metabolite repair enzymes also eliminate non-classical metabolites that are formed through spontaneous (ie, not enzyme-catalysed) reactions. Importantly, genetic deficiencies in several metabolite repair enzymes lead to 'inborn errors of metabolite repair', such as L-2-hydroxyglutaric aciduria, D-2-hydroxyglutaric aciduria, 'ubiquitous glucose-6-phosphatase' (G6PC3) deficiency, the neutropenia present in Glycogen Storage Disease type Ib or defects in the enzymes that repair the hydrated forms of NADH or NADPH. Metabolite repair defects may be difficult to identify as such, because the mutated enzymes are non-classical enzymes that act on non-classical metabolites, which in some cases accumulate only inside the cells, and at rather low, yet toxic, concentrations. It is therefore likely that many additional metabolite repair enzymes remain to be discovered and that many diseases of metabolite repair still await elucidation.
Collapse
Affiliation(s)
| | - Emile Van Schaftingen
- de Duve InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO)UCLouvainBrusselsBelgium
| | - Guido T. Bommer
- de Duve InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO)UCLouvainBrusselsBelgium
| |
Collapse
|
6
|
Metabolite Repair Enzymes Control Metabolic Damage in Glycolysis. Trends Biochem Sci 2019; 45:228-243. [PMID: 31473074 DOI: 10.1016/j.tibs.2019.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Hundreds of metabolic enzymes work together smoothly in a cell. These enzymes are highly specific. Nevertheless, under physiological conditions, many perform side-reactions at low rates, producing potentially toxic side-products. An increasing number of metabolite repair enzymes are being discovered that serve to eliminate these noncanonical metabolites. Some of these enzymes are extraordinarily conserved, and their deficiency can lead to diseases in humans or embryonic lethality in mice, indicating their central role in cellular metabolism. We discuss how metabolite repair enzymes eliminate glycolytic side-products and prevent negative interference within and beyond this core metabolic pathway. Extrapolating from the number of metabolite repair enzymes involved in glycolysis, hundreds more likely remain to be discovered that protect a wide range of metabolic pathways.
Collapse
|
7
|
|
8
|
Ribeiro RT, Zanatta Â, Amaral AU, Leipnitz G, de Oliveira FH, Seminotti B, Wajner M. Experimental Evidence that In Vivo Intracerebral Administration of L-2-Hydroxyglutaric Acid to Neonatal Rats Provokes Disruption of Redox Status and Histopathological Abnormalities in the Brain. Neurotox Res 2018; 33:681-692. [DOI: 10.1007/s12640-018-9874-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 01/15/2023]
|