1
|
Łuczyńska K, Zhang Z, Pietras T, Zhang Y, Taniguchi H. NFE2L1/Nrf1 serves as a potential therapeutical target for neurodegenerative diseases. Redox Biol 2024; 69:103003. [PMID: 38150994 PMCID: PMC10788251 DOI: 10.1016/j.redox.2023.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
The failure of the proper protein turnover in the nervous system is mainly linked to a variety of neurodegenerative disorders. Therefore, a better understanding of key protein degradation through the ubiquitin-proteasome system is critical for effective prevention and treatment of those disorders. The proteasome expression is tightly regulated by a CNC (cap'n'collar) family of transcription factors, amongst which the nuclear factor-erythroid 2-like bZIP factor 1 (NFE2L1, also known as Nrf1, with its long isoform TCF11 and short isoform LCR-F1) has been identified as an indispensable regulator of the transcriptional expression of the ubiquitin-proteasome system. However, much less is known about how the pivotal role of NFE2L1/Nrf1, as compared to its homologous NFE2L2 (also called Nrf2), is translated to its physiological and pathophysiological functions in the nervous system insomuch as to yield its proper cytoprotective effects against neurodegenerative diseases. The potential of NFE2L1 to fulfill its unique neuronal function to serve as a novel therapeutic target for neurodegenerative diseases is explored by evaluating the hitherto established preclinical and clinical studies of Alzheimer's and Parkinson's diseases. In this review, we have also showcased a group of currently available activators of NFE2L1, along with an additional putative requirement of this CNC-bZIP factor for healthy longevity based on the experimental evidence obtained from its orthologous SKN1-A in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Poland; The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957, Warsaw, Poland
| | - Zhengwen Zhang
- Laboratory of Neuroscience, Institute of Cognitive Neuroscience and School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, England, United Kingdom
| | - Tadeusz Pietras
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957, Warsaw, Poland; Department of Clinical Pharmacology, Medical University of Lodz, 90-153, Łódź, Poland
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Poland.
| |
Collapse
|
2
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
3
|
Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Res Rev 2022; 82:101756. [PMID: 36243357 DOI: 10.1016/j.arr.2022.101756] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Nuclear Factor-Erythroid Factor 2 (Nrf2) is an important transcription factor that regulates the expression of large number of genes in healthy and disease states. Nrf2 is made up of 605 amino acids and contains 7 conserved regions known as Nrf2-ECH homology domains. Nrf2 regulates the expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy and mitochondrial function in all organs of the human body, in the peripheral and central nervous systems. Mounting evidence also suggests that altered expression of Nrf2 is largely involved in aging, neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's diseases, Amyotrophic lateral sclerosis, Stroke, Multiple sclerosis and others. The purpose of this article is to detail the essential role of Nrf2 in oxidative stress, antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic/mitophagic degradation, and metabolism in aging and neurodegenerative diseases. This article also highlights the Nrf2 structural and functional activities in healthy and disease states, and also discusses the current status of Nrf2 research and therapeutic strategies to treat aging and neurodegenerative diseases.
Collapse
|
4
|
The Role of the NRF2 Pathway in Maintaining and Improving Cognitive Function. Biomedicines 2022; 10:biomedicines10082043. [PMID: 36009590 PMCID: PMC9405981 DOI: 10.3390/biomedicines10082043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a redox-sensitive transcription factor that binds to the antioxidant response element consensus sequence, decreasing reactive oxygen species and regulating the transcription of a wide array of genes, including antioxidant and detoxifying enzymes, regulating genes involved in mitochondrial function and biogenesis. Moreover, NRF2 has been shown to directly regulate the expression of anti-inflammatory mediators reducing the expression of pro-inflammatory cytokines. In recent years, attention has turned to the role NRF2 plays in the brain in different diseases such Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and others. This review focused on the evidence, derived in vitro, in vivo and from clinical trials, supporting a role for NRF2 activation in maintaining and improving cognitive function and how its activation can be used to elicit neuroprotection and lead to cognitive enhancement. The review also brings a critical discussion concerning the possible prophylactic and/or therapeutic use of NRF2 activators in treating cognitive impairment-related conditions.
Collapse
|
5
|
Boas SM, Joyce KL, Cowell RM. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants (Basel) 2021; 11:antiox11010008. [PMID: 35052512 PMCID: PMC8772787 DOI: 10.3390/antiox11010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress has been implicated in the etiology and pathobiology of various neurodegenerative diseases. At baseline, the cells of the nervous system have the capability to regulate the genes for antioxidant defenses by engaging nuclear factor erythroid 2 (NFE2/NRF)-dependent transcriptional mechanisms, and a number of strategies have been proposed to activate these pathways to promote neuroprotection. Here, we briefly review the biology of the transcription factors of the NFE2/NRF family in the brain and provide evidence for the differential cellular localization of NFE2/NRF family members in the cells of the nervous system. We then discuss these findings in the context of the oxidative stress observed in two neurodegenerative diseases, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and present current strategies for activating NFE2/NRF-dependent transcription. Based on the expression of the NFE2/NRF family members in restricted populations of neurons and glia, we propose that, when designing strategies to engage these pathways for neuroprotection, the relative contributions of neuronal and non-neuronal cell types to the overall oxidative state of tissue should be considered, as well as the cell types which have the greatest intrinsic capacity for producing antioxidant enzymes.
Collapse
Affiliation(s)
- Stephanie M. Boas
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Kathlene L. Joyce
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Rita M. Cowell
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
6
|
Cuadrado A. Brain-Protective Mechanisms of Transcription Factor NRF2: Toward a Common Strategy for Neurodegenerative Diseases. Annu Rev Pharmacol Toxicol 2021; 62:255-277. [PMID: 34637322 DOI: 10.1146/annurev-pharmtox-052220-103416] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodegenerative diseases are characterized by the loss of homeostatic functions that control redox and energy metabolism, neuroinflammation, and proteostasis. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is a master controller of these functions, and its overall activity is compromised during aging and in these diseases. However, NRF2 can be activated pharmacologically and is now being considered a common therapeutic target. Many gaps still exist in our knowledge of the specific role that NRF2 plays in specialized brain cell functions or how these cells respond to the hallmarks of these diseases. This review discusses the relevance of NRF2 to several hallmark features of neurodegenerative diseases and the current status of pharmacological activators that might pass through the blood-brain barrier and provide a disease-modifying effect. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid, Madrid 28049, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid 28029, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid 28046, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain;
| |
Collapse
|
7
|
Wang H, Lv J, Jiang N, Huang H, Wang Q, Liu X. Ginsenoside Re protects against chronic restraint stress-induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice. Phytother Res 2021; 35:2523-2535. [PMID: 33783035 DOI: 10.1002/ptr.6947] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
Exposure to chronic stress negatively affects the development of cognition, characterized by learning and memory decline. Ginsenoside Re (GRe), an active compound derived from Panax ginseng, exhibited neuroprotective activity in various neurological diseases. In this study, the protective effect of GRe on chronic restraint stress (CRS)-induced memory deficit was investigated. The mice were experienced 35 days of the CRS induction. The GRe was administered daily orally (10, 20, or 40 mg/kg) during the next 3 weeks stress session and the behavior test period. The CRS-induced memory impairment mice were subjected to behavioral tasks, such as the Y-maze, novel objects recognition, and step-through passive avoidance tests. Nissl staining was used to examine the neuron numbers. The levels of antioxidant enzymes, malondialdehyde, and proinflammatory factor were determined by kits and ELISA assays. The expressions of brain-derived neurotrophic factor (BDNF), NOD-like receptor protein 3 (NLRP3), nuclear factor erythroid-2 related factor 2 (Nrf2) and synapse-associated proteins (synaptophysin, SYP, and postsynaptic density 95, PSD95) were measured by Western blotting. Behavioral assessments indicated that GRe could ameliorate the cognitive impairment of CRS-induced mice, as indicated by increased responses in Y-maze (p < .05), novel objects recognition (p < .01), and step-through passive avoidance tests (p < .01). In addition, GRe treatment significantly decreased the neuronal loss in CRS mice in histological examination. Moreover, chronic GRe treatment significantly ameliorated the down-regulated the expressions of BDNF, Nrf2, heme oxygenase (HO)-1, SYP, and PSD95, as well as up-regulated NLRP3, the adaptor protein ASC, and Caspase-1 protein expression in the hippocampus of CRS-treated mice. Taken together, these findings suggest that GRe has a potential therapeutic effect on memory impairment in C57BL/6J mice exposed to CRS paradigm.
Collapse
Affiliation(s)
- Haixia Wang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Affiliated TCM Hospital/School of Pharmacy/Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant, Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Zweig JA, Brandes MS, Brumbach BH, Caruso M, Wright KM, Quinn JF, Soumyanath A, Gray NE. Loss of NRF2 accelerates cognitive decline, exacerbates mitochondrial dysfunction, and is required for the cognitive enhancing effects of Centella asiatica during aging. Neurobiol Aging 2021; 100:48-58. [PMID: 33486357 PMCID: PMC7920997 DOI: 10.1016/j.neurobiolaging.2020.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
The water extract of Centella asiatica (CAW) improves cognitive and mitochondrial function and activates the nuclear factor erythroid 2-related factor 2 (NRF2) regulated antioxidant response pathway in aged mice. Here we investigate whether NRF2 activation is required for the cognitive and mitochondrial effects of prolonged CAW exposure during aging. Five-month-old NRF2 knockout (NRF2KO) and wild-type mice were treated with CAW for 1, 7, or 13 months. Each cohort underwent cognitive testing and hippocampal mitochondrial analyses. Age-related cognitive decline was accelerated in NRF2KO mice and while CAW treatment improved cognitive performance in wild-type mice, it had no effect on NRF2KO animals. Hippocampal mitochondrial function also declined further with age in NRF2KO mice and greater hippocampal mitochondrial dysfunction was associated with poorer cognitive performance in both genotypes. Long-term CAW treatment did not affect mitochondrial endpoints in animals of either genotype. These data indicate that loss of NRF2 results in accelerated age-related cognitive decline and worsened mitochondrial deficits. NRF2 also appears to be required for the cognitive enhancing effects of CAW during aging.
Collapse
Affiliation(s)
- Jonathan A Zweig
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Mikah S Brandes
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Barbara H Brumbach
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten M Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Neurology and Parkinson's Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|