1
|
González-Velasco O, Simon M, Yilmaz R, Parlato R, Weishaupt J, Imbusch C, Brors B. Identifying similar populations across independent single cell studies without data integration. NAR Genom Bioinform 2025; 7:lqaf042. [PMID: 40276039 PMCID: PMC12019640 DOI: 10.1093/nargab/lqaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Supervised and unsupervised methods have emerged to address the complexity of single cell data analysis in the context of large pools of independent studies. Here, we present ClusterFoldSimilarity (CFS), a novel statistical method design to quantify the similarity between cell groups across any number of independent datasets, without the need for data correction or integration. By bypassing these processes, CFS avoids the introduction of artifacts and loss of information, offering a simple, efficient, and scalable solution. This method match groups of cells that exhibit conserved phenotypes across datasets, including different tissues and species, and in a multimodal scenario, including single-cell RNA-Seq, ATAC-Seq, single-cell proteomics, or, more broadly, data exhibiting differential abundance effects among groups of cells. Additionally, CFS performs feature selection, obtaining cross-dataset markers of the similar phenotypes observed, providing an inherent interpretability of relationships between cell populations. To showcase the effectiveness of our methodology, we generated single-nuclei RNA-Seq data from the motor cortex and spinal cord of adult mice. By using CFS, we identified three distinct sub-populations of astrocytes conserved on both tissues. CFS includes various visualization methods for the interpretation of the similarity scores and similar cell populations.
Collapse
Affiliation(s)
- Oscar González-Velasco
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Malte Simon
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Rüstem Yilmaz
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Jochen Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Charles D Imbusch
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Jimenez Jaramillo C, Berman A, Fitzgerald J, Brady R, Adams T, Clement N. Neuropathologic Findings in Mowat-Wilson Syndrome at Autopsy, Including a Suprasellar Spindle Cell Lipoma. Pediatr Dev Pathol 2025:10935266251331266. [PMID: 40270440 DOI: 10.1177/10935266251331266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Mowat-Wilson Syndrome is an autosomal dominant disorder caused by de novo heterozygous mutations of ZEB2 on 2q22. It is characterized by developmental delay, Hirschsprung's disease, seizures, and a wide variety of malformations affecting the neurologic, cardiac, and genitourinary systems. Reports describing the findings of Mowat-Wilson Syndrome at autopsy are sparse. Case reports of suprasellar spindle cell lipomas are even rarer, a circumstance that contributes to uncertainty regarding their etiology as true neoplasms rather than congenital malformations. Here we report the gross, histopathologic, and molecular findings of a 4-year-old female with Mowat-Wilson Syndrome presenting with sepsis in the setting of otitis media and incidentally found to have a rare suprasellar spindle cell lipoma demonstrating loss of RB1 by immunohistochemistry, suggestive of a neoplastic etiology.
Collapse
Affiliation(s)
- Couger Jimenez Jaramillo
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Andrew Berman
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Jesse Fitzgerald
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Robert Brady
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Thomas Adams
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Nathan Clement
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| |
Collapse
|
3
|
Kumar S, Fan X, Pattam H, Yan K, Liaw EJ, Ji J, Zaltz E, Song P, Jiang Y, Nishizaki Y, Higashi Y, Cai CL, Lu W. ZEB2 signaling is essential for ureteral smooth muscle cell differentiation and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639741. [PMID: 40060690 PMCID: PMC11888343 DOI: 10.1101/2025.02.23.639741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mowat-Wilson Syndrome (MWS) is a multiple congenital anomaly syndrome caused by mutations in the ZEB2, which plays a critical role in cell fate determination and differentiation during development. Congenital anomalies of the kidney and urinary tract (CAKUT) have been reported in MWS patients. However, the role of ZEB2 in urinary tract development and the cellular and molecular mechanism underlining the CAKUT phenotypes in MWS remains unknown. We performed ZEB2 protein expression analysis in the developing mouse ureter. We generated Zeb2 ureteral mesenchyme-specific conditional knockout mice by crossing Zeb2 floxed mice with Tbx18Cre mice (Zeb2 cKO) and analyzed the urinary tract phenotypes in Zeb2 cKO mice and wild-type littermate controls by gross and histological examination. Ureteral cellular and molecular phenotypes were studied using TAGLN, ACTA2, FOXD1, POSTN, CDH1, TBX18, and SOX9 ureteral cell-specific markers. We found that ZEB2 is expressed in TBX18+ ureteral mesenchymal cells during mouse ureter development. Deletion of Zeb2 in developing ureteral mesenchymal cells causes hydroureter and hydronephrosis phenotypes, leading to obstructive uropathy, kidney failure, and early mortality. Cellular and molecular marker analyses showed that the TAGLN+ACTA2+ ureteral smooth muscle cells (SMCs) layer is not formed in Zeb2 cKO mice at E15.5, but the FOXD1+ and POSTN+ tunica adventitia cells layer is significantly expanded compared to wild-type controls. CDH1+ urothelium cells are reduced considerably in the Zeb2 cKO ureters at E15.5. Mechanistically, we found that Zeb2 cKO mice have significantly decreased TBX18 expression but an increased SOX9 expression in the developing ureter at E14.5 and E15.5 compared to wild-type littermate controls. Our results show that ZEB2 is essential for ureter development by maintaining ureteral mesenchymal cell differentiation into normal ureteral SMCs. Our study also shed new light on the pathological mechanism underlying the developmental abnormalities of the urinary tract phenotypes in MWS patients.
Collapse
Affiliation(s)
- Sudhir Kumar
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Xueping Fan
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Harshita Pattam
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Kun Yan
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Easton Jinhun Liaw
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Jiayi Ji
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Emily Zaltz
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Paul Song
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Yuqiao Jiang
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Yuriko Nishizaki
- Laboratory of Biochemistry, Department of Health and Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Yujiro Higashi
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Chen-Leng Cai
- Center for Developmental and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Weining Lu
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| |
Collapse
|
4
|
Kanwal R, Esposito JE, Jawed B, Zakir SK, Pulcini R, Martinotti R, Botteghi M, Gaudio F, Martinotti S, Toniato E. Exploring the Role of Epithelial-Mesenchymal Transcriptional Factors Involved in Hematological Malignancy and Solid Tumors: A Systematic Review. Cancers (Basel) 2025; 17:529. [PMID: 39941895 PMCID: PMC11817253 DOI: 10.3390/cancers17030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The epithelial mesenchymal transition (EMT) is a biological process in which epithelial cells lose their polarity and adhesion characteristics, and adopt a mesenchymal phenotype. While the EMT naturally occurs during tissue fibrosis, wound healing, and embryonic development, it can be exploited by cancer cells and is strongly associated with cancer stem cell formation, tissue invasiveness, apoptosis, and therapy resistance. Transcription factors (TFs) such as SNAIL, ZEB, and TWIST play a pivotal role in driving the EMT. This systematic review aims to assess the impact of EMT-TFs on hematological malignancy and solid tumors. METHODS English-language literature published between 2010 and 2024 was systematically reviewed, utilizing databases such as PubMed and Google Scholar. RESULTS A total of 3250 studies were extracted. Of these, 92 publications meeting the inclusion criteria were analyzed to elucidate the role of EMT-TFs in cancer. The results demonstrated that the EMT-TFs play a critical role in both hematological and solid tumor development and progression. They promote invasive, migratory, and metastatic properties in these tumors, and contribute to therapeutic challenges by enhancing chemoresistance. A strong correlation between EMT-TFs and poor overall survival has been identified. CONCLUSIONS Our research concluded that EMT-TFs may serve as important predictive and prognostic factors, as well as potential therapeutic targets to mitigate cancer progression.
Collapse
Affiliation(s)
- Rimsha Kanwal
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Jessica Elisabetta Esposito
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| | - Bilal Jawed
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Syed Khuram Zakir
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Riccardo Pulcini
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| | - Riccardo Martinotti
- Residency Program in Clinical Oncology, Faculty of Medicine, Umberto I University Hospital, University of Rome “La Sapienza”, 00185 Rome, Italy;
| | - Matteo Botteghi
- Experimental Pathology Research Group, Department of Clinical and Molecular Sciences, Universita Politecnica delle Marche, 60126 Ancona, Italy;
| | - Francesco Gaudio
- Unit of Haematology, Department of Medicine and Surgeon, F. Miulli University Hospital, LUM University, Casamassima, 70010 Bari, Italy
| | - Stefano Martinotti
- Unit of Clinical Pathology, Department of Medicine and Surgeon, F. Miulli University Hospital, LUM University, Casamassima, 70010 Bari, Italy
| | - Elena Toniato
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| |
Collapse
|
5
|
Hossain WA, St. Peter C, Lovell S, Rafi SK, Butler MG. ZEB2 Gene Pathogenic Variants Across Protein-Coding Regions and Impact on Clinical Manifestations: A Review. Int J Mol Sci 2025; 26:1307. [PMID: 39941075 PMCID: PMC11818587 DOI: 10.3390/ijms26031307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Mowat-Wilson syndrome (MWS) is a rare multi-system genetic disorder caused by variants in the Zinc Finger E-Box-Binding Homeobox 2 (ZEB2) gene. ZEB2 is an autosomal dominant gene containing ten exons within the canonical version transcript (Isoform: O60315-1). The ZEB2 gene encodes six functional domains and seven non-domain regions. This review provides a comprehensive summary of pathogenic variants and their associated MWS clinical characteristics, focusing on ZEB2 pathogenic variants, functional protein domains and non-domain regions with clinical features. A systematic literature search from 2001 to 2023 and of unpublished datasets found 191 individuals with reported clinical features and genotypic data. Genetic defects and clinical manifestations were examined that presumably impact on the structure and function of the ZEB2 gene, thereby causing multiple developmental defects with corresponding clinical presentation. This study found more nonsense ZEB2 variants observed within exon 8, which encodes four of the six protein domains: the CtBP-interacting domain (CID), homeodomain (HD), SMAD-binding domain (SMD or SBD) and part of the N-terminal zinc finger cluster (N-ZF), suggesting exon 8 plays a crucial role in this protein structure and function with multi-organ involvement. Exon 8 defects were found to be statistically more represented for gastrointestinal findings when compared to other exons, while frameshift defects were more often seen for the typical MWS face in non-domain protein regions. In contrast, nonsense or other types of variants in exons 3, 4 and 5 which encode only flanking non-domain regions were observed more often, compared with other exons excluding exon 8, to be specifically involved in the MWS facial gestalt, brain malformations, developmental delay and intellectual disability. Deleterious ZEB2 frameshift (45%) and nonsense (38%) gene variants were most often observed with deletions at 6% and missense at 5%. The genotype and clinical relationships in MWS can provide insights into prognosis, morbidity, clinical surveillance strategies and counseling of family members.
Collapse
Affiliation(s)
- Waheeda A. Hossain
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.A.H.); (C.S.P.); (S.K.R.)
| | - Caroline St. Peter
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.A.H.); (C.S.P.); (S.K.R.)
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Syed K. Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.A.H.); (C.S.P.); (S.K.R.)
| | - Merlin G. Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.A.H.); (C.S.P.); (S.K.R.)
| |
Collapse
|
6
|
Gong Y, Wei N, Shi P, Zhu G. CIRCTMCO3 ALLEVIATES SEPSIS-INDUCED ACUTE KIDNEY INJURY VIA REGULATING MIR-218-5P/ZEB2 AXIS. Shock 2025; 63:168-175. [PMID: 39454632 DOI: 10.1097/shk.0000000000002499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
ABSTRACT Background: Growing evidence has found the critical role of circular RNAs (circRNAs) in sepsis-induced acute kidney injury (S-AKI). CircTMCO3 has been found to be involved in tumor microenvironment changes of ovarian cancer. This study aimed to explore whether circTMCO3 functions in S-AKI, and if so, to elucidate the molecular mechanism. Methods: CircTMCO3 expression was analyzed in lipopolysaccharide (LPS)-induced HK-2 cells and in the kidney tissues of mice treated with cecal ligation and puncture (CLP), respectively. Furthermore, the effects of circTMCO3 on S-AKI and the related mechanisms were evaluated in both models through gain- and/or loss-of-function strategies. Results: CircTMCO3 expression was suppressed in both S-AKI models. Upregulation of circTMCO3 mitigated LPS-induced apoptosis, oxidative stress, and inflammation in HK-2 cells. In contrast, circTMCO3 downregulation exacerbated LPS-induced injuries in HK-2 cells. Intravenous injection of circTMCO3 lentivirus to increase circTMCO3 expression improved renal function and attenuated kidney injury in S-AKI mice, as evidenced by the decrease in serum creatinine and blood urea nitrogen concentrations, amelioration of tubular pathological injury, reduction of renal cell apoptosis, and mitigation of oxidative stress and proinflammatory cytokines (TNF-α, IL-1β, and IL-6). Moreover, circTMCO3 directly targeted miR-218-5p, and the mimic of which abolished the protective effect of circTMCO3 in cell models. ZEB2 was identified to be a target of miR-218-5p; its downregulation not only reversed the impacts of miR-218-5p inhibitor on S-AKI, but also mitigated the effects mediated by circTMCO3 upregulation in vitro . Conclusions: CircTMCO3 protects against S-AKI by regulating miR-218-5p/ZEB2 axis, thereby mediating antiapoptotic, antioxidant, and anti-inflammatory activities. This indicates that increasing circTMCO3 expression might be a future therapeutic method for S-AKI.
Collapse
Affiliation(s)
- Yingfeng Gong
- Graduate School of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Na Wei
- Graduate School of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Peipei Shi
- Neurological Intensive Care Unit, Suzhou Municipal Hospital of Anhui Province, Suzhou City, Anhui Province, China
| | - Gang Zhu
- Neurological Intensive Care Unit, Suzhou Municipal Hospital of Anhui Province, Suzhou City, Anhui Province, China
| |
Collapse
|
7
|
Schuster J, Fatima A, Papadopoulos N, de Guidi C, Sobol M, Dahl N. Generation of a ZEB2 deficient human iPSC line (KICRi002A-4). Stem Cell Res 2024; 80:103521. [PMID: 39121652 DOI: 10.1016/j.scr.2024.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The transcription factor ZEB2 is essential for early embryonic development. Using CRISPR/Cas9, we generated a ZEB2 deficient human iPSC cell line (KICRi002A-4), carrying a homozygous 790 bp deletion in ZEB2 that involves part of exon 5, intron 5 and part of exon 6. The deletion leads to markedly reduced levels of a truncated ZEB2 transcript. No ZEB2 protein was detected by immunopreciptation. The iPSC line expressed pluripotency markers and showed a capacity to differentiate into the three germ layers in vitro. Assessment of genomic integrity revealed a normal karyotype without detectable OFF-target editing. The iPSC line KICRi002A-4 thus offers a valuable resource to study the role of ZEB2 for the commitment and differentiation of various human cell lineages.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden.
| | - Ambrin Fatima
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden; Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Natalia Papadopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Claudia de Guidi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden.
| |
Collapse
|
8
|
Shin T, Song JHT, Kosicki M, Kenny C, Beck SG, Kelley L, Antony I, Qian X, Bonacina J, Papandile F, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in non-coding regions with evolutionary signatures contributes to autism spectrum disorder risk. CELL GENOMICS 2024; 4:100609. [PMID: 39019033 PMCID: PMC11406188 DOI: 10.1016/j.xgen.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Little is known about the role of non-coding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of non-coding regions: human accelerated regions (HARs), which show signatures of positive selection in humans; experimentally validated neural VISTA enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole-genome analysis of >16,600 samples and >4,900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly contribute, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in VEs near OTX1 and SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved non-coding regions in ASD risk and suggest potential mechanisms of how regulatory changes can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Janet H T Song
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha G Beck
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Evan M Bushinsky
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca E Andersen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Nou‐Fontanet L, Martí‐Sánchez L, Martorell L, Casas J, Ortigoza‐Escobar JD. Atypical Mowat-Wilson Syndrome: Dystonia, Choreoathetosis and Cognitive Features. Mov Disord Clin Pract 2024; 11:889-893. [PMID: 38650363 PMCID: PMC11233844 DOI: 10.1002/mdc3.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Laia Nou‐Fontanet
- Pediatric Neurology DepartmentHospital Sant Joan de DéuBarcelonaSpain
| | - Laura Martí‐Sánchez
- Department of Genetic and Molecular Medicine‐IPERInstitut de Recerca Sant Joan de DéuBarcelonaSpain
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine‐IPERInstitut de Recerca Sant Joan de DéuBarcelonaSpain
| | - Jesús Casas
- Pediatric Neurology DepartmentHospital Sant Joan de DéuBarcelonaSpain
| | - Juan Darío Ortigoza‐Escobar
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIBarcelonaSpain
- Movement Disorders Unit, Pediatric Neurology DepartmentInstitut de Recerca Hospital Sant Joan de DéuBarcelonaSpain
- European Reference Network for Rare Neurological Diseases (ERN‐RND)BarcelonaSpain
| |
Collapse
|
10
|
Feng Y, Zhou C, Zhao F, Ma T, Xiao Y, Peng K, Xia R. ZEB2 alleviates Hirschsprung's-associated enterocolitis by promoting the proliferation and differentiation of enteric neural precursor cells via the Notch-1/Jagged-2 pathway. Gene 2024; 912:148365. [PMID: 38485033 DOI: 10.1016/j.gene.2024.148365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Hirschsprung's-associated enterocolitis (HAEC) is a prevalent complication of Hirschsprung's disease (HSCR). Zinc finger E-box binding homeobox 2 (ZEB2) and Notch-1/Jagged-2 are dysregulated in HSCR, but their role in HAEC progression remains poorly understood. We aimed to explore the role and underlying mechanism of enteric neural precursor cells (ENPCs) and the ZEB2/Notch-1/Jagged-2 pathway in HAEC development. METHODS Colon tissues were collected from HSCR and HAEC patients. ENPCs were isolated from the HAEC group and stimulated by lipopolysaccharide (LPS). The expressions of ZEB2/Notch-1/Jagged-2 were measured using RT-qPCR and Western blot. Immunofluorescence and cell counting kit-8 assays were performed to assess the differentiation and proliferation of ENPCs. Inflammatory factors were measured by ELISA kits. Co-immunoprecipitation and bioinformatic analysis were used to explore the interaction between ZEB2 and Notch-1. Small interfering RNA and overexpression vectors were used to investigate the role and mechanism of ZEB2 and Notch-1 in regulating ENPCs' proliferation and differentiation during HAEC progression. RESULTS We observed increased LPS in the colon tissues of HAEC, with downregulated ZEB2 expression and upregulated Notch-1/Jagged-2 expression. ZEB2 interacts with Notch-1. LPS treatment downregulated ZEB2 expression, upregulated Notch-1/Jagged-2 expression, and induced proliferation and differentiation disorders in ENPCs, which were reversed by the knockdown of Notch-1. Furthermore, overexpression of ZEB2 inhibited Notch-1/Jagged-2 signaling and ameliorated inflammation and dysfunction in LPS-induced ENPCs. Notch-1 overexpression enhanced LPS-induced dysfunction, but this effect was antagonized by the overexpression of ZEB2. CONCLUSION Overexpression of ZEB2 ameliorates LPS-induced ENPCs' dysfunction via the Notch-1/Jagged-2 pathway, thus playing a role in HAEC.
Collapse
Affiliation(s)
- Yong Feng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Chonggao Zhou
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Fan Zhao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Tidong Ma
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Yong Xiao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Kun Peng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Renpeng Xia
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China.
| |
Collapse
|
11
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
12
|
Pereira CA, Reis-de-Oliveira G, Pierone BC, Martins-de-Souza D, Kaster MP. Depicting the molecular features of suicidal behavior: a review from an "omics" perspective. Psychiatry Res 2024; 332:115682. [PMID: 38198856 DOI: 10.1016/j.psychres.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Background Suicide is one of the leading global causes of death. Behavior patterns from suicide ideation to completion are complex, involving multiple risk factors. Advances in technologies and large-scale bioinformatic tools are changing how we approach biomedical problems. The "omics" field may provide new knowledge about suicidal behavior to improve identification of relevant biological pathways associated with suicidal behavior. Methods We reviewed transcriptomic, proteomic, and metabolomic studies conducted in blood and post-mortem brains from individuals who experienced suicide or suicidal behavior. Omics data were combined using systems biology in silico, aiming at identifying major biological mechanisms and key molecules associated with suicide. Results Post-mortem samples of suicide completers indicate major dysregulations in pathways associated with glial cells (astrocytes and microglia), neurotransmission (GABAergic and glutamatergic systems), neuroplasticity and cell survivor, immune responses and energy homeostasis. In the periphery, studies found alterations in molecules involved in immune responses, polyamines, lipid transport, energy homeostasis, and amino and nucleic acid metabolism. Limitations We included only exploratory, non-hypothesis-driven studies; most studies only included one brain region and whole tissue analysis, and focused on suicide completers who were white males with almost none confounding factors. Conclusions We can highlight the importance of synaptic function, especially the balance between the inhibitory and excitatory synapses, and mechanisms associated with neuroplasticity, common pathways associated with psychiatric disorders. However, some of the pathways highlighted in this review, such as transcriptional factors associated with RNA splicing, formation of cortical connections, and gliogenesis, point to mechanisms that still need to be explored.
Collapse
Affiliation(s)
- Caibe Alves Pereira
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bruna Caroline Pierone
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
| | - Manuella Pinto Kaster
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.
| |
Collapse
|
13
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Shin T, Song JH, Kosicki M, Kenny C, Beck SG, Kelley L, Qian X, Bonacina J, Papandile F, Antony I, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in noncoding regions with evolutionary signatures contributes to autism spectrum disorder risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.19.23295780. [PMID: 37790480 PMCID: PMC10543033 DOI: 10.1101/2023.09.19.23295780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Janet H.T. Song
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Michael Kosicki
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Samantha G. Beck
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Evan M. Bushinsky
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Rebecca E. Andersen
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Len A. Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
16
|
Wan X, Liao J, Lai H, Zhang S, Cui J, Chen C. Roles of microRNA-192 in diabetic nephropathy: the clinical applications and mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1179161. [PMID: 37396169 PMCID: PMC10309560 DOI: 10.3389/fendo.2023.1179161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common and intractable microvascular complications of diabetes worldwide, serving as the main cause of terminal renal disease. Due to the lack of early specific symptoms and diagnostic markers, DN severely threatens the sufferer's life. MicroRNA-192 (miR-192) was early identified in human renal cortical tissue and stored and excreted in urine as microvesicles. MiR-192 was found to be involved in the development of DN. For the first time, the present review summarized all the current evidence on the topic of the roles of miR-192 in DN. Finally, 28 studies (ten clinical trials and eighteen experimental studies) were eligible for thorough reviewing. Most of the clinical trials (7/10, 70%) indicated miR-192 might be a protective factor for DN development and progression, while the majority of experimental studies (14/18, 78%) suggested miR-192 might be a pathogenic factor for DN. Mechanistically, miR-192 interacts with various direct targeted proteins (i.e., ZEB1, ZEB2, SIP1, GLP1R, and Egr1) and signaling cascades (i.e., SMAD/TGF-β and PTEN/PI3K/AKT), together contribute to the pathogenesis of DN through epithelial-to-mesenchymal transition (EMT), extracellular matrix deposition, and fibrosis formation. The current review highlights the dual role of miR-192 in the development of DN. Low serum miR-192 expression could be applied for the early prediction of DN (the early stage of DN), while the high miR-192 level in renal tissues and urine may imply the progression of DN (the late stage of DN). Further investigations are still warranted to illustrate this inconsistent phenomenon, which may facilitate promoting the therapeutic applications of miR-192 in predicting and treating DN.
Collapse
Affiliation(s)
- Xiaoqing Wan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Hongting Lai
- Clinical Medical College, Tianjin Medical University, Tianjin, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianling Cui
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
17
|
Güleray Lafcı N, Karaosmanoglu B, Taskiran EZ, Simsek-Kiper PO, Utine GE. Mutated Transcripts of ZEB2 Do Not Undergo Nonsense-Mediated Decay in Mowat-Wilson Syndrome. Mol Syndromol 2023; 14:258-265. [PMID: 37323203 PMCID: PMC10267494 DOI: 10.1159/000528769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/16/2022] [Indexed: 12/03/2023] Open
Abstract
Introduction Mowat-Wilson syndrome (MWS) is an autosomal-dominant complex developmental disorder characterized by distinctive facial appearance, intellectual disability, epilepsy, and various clinically heterogeneous abnormalities reminiscent of neurocristopathies. MWS is caused by haploinsufficiency of ZEB2 due to heterozygous point mutations and copy number variations. Case Presentation We report on two unrelated affected individuals with novel ZEB2indel mutations, molecularly confirming the diagnosis of MWS. Quantitative real-time polymerase chain reaction (PCR) for the comparison of total transcript levels and allele-specific quantitative real-time PCR were also performed and demonstrated that the truncating mutations did not lead to nonsense-mediated decay as expected. Conclusion ZEB2 encodes a multifunctional pleiotropic protein. Novel mutations in ZEB2 should be reported in order that genotype-phenotype correlations might be established in this clinically heterogeneous syndrome. Further cDNA and protein studies may help elucidate the underlying pathogenetic mechanisms of MWS since nonsense-mediated RNA decay was found to be absent in only a few studies including this study.
Collapse
Affiliation(s)
- Naz Güleray Lafcı
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ekim Z. Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Pelin Ozlem Simsek-Kiper
- Department of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gülen Eda Utine
- Department of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Zhang T, Li C, Deng J, Jia Y, Qu L, Ning Z. Chicken Hypothalamic and Ovarian DNA Methylome Alteration in Response to Forced Molting. Animals (Basel) 2023; 13:ani13061012. [PMID: 36978553 PMCID: PMC10044502 DOI: 10.3390/ani13061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic modifications play an important role in regulating animal adaptation to external stress. To explore how DNA methylation regulates the expression levels of related genes during forced molting (FM) of laying hens, the hypothalamus and ovary tissues were analyzed at five periods using Whole-Genome Bisulfite Sequencing. The results show that methylation levels fluctuated differently in the exon, intron, 5′UTR, 3′UTR, promoter, and intergenic regions of the genome during FM. In addition, 16 differentially methylated genes (DMGs) regulating cell aging, immunity, and development were identified in the two reversible processes of starvation and redevelopment during FM. Comparing DMGs with differentially expressed genes (DEGs) obtained in the same periods, five hypermethylated DMGs (DSTYK, NKTR, SMOC1, SCAMP3, and ATOH8) that inhibited the expression of DEGs were found. Therefore, DMGs epigenetically modify the DEGs during the FM process of chickens, leading to the rapid closure and restart of their reproductive function and a re-increase in the egg-laying rate. Therefore, this study further confirmed that epigenetic modifications could regulate gene expression during FM and provides theoretical support for the subsequent optimization of FM technology.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengfeng Li
- Hubei Shendan Healthy Food Co., Ltd., Xiaogan 432600, China
| | - Jianwen Deng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Correspondence:
| |
Collapse
|
19
|
Kumar S, Fan X, Rasouly HM, Sharma R, Salant DJ, Lu W. ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis. JCI Insight 2023; 8:e158418. [PMID: 36445780 PMCID: PMC9870089 DOI: 10.1172/jci.insight.158418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
FOXD1+ cell-derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific conditional knockout of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2-cKO mouse kidneys. Zeb2-deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers, including PDGFRβ, CSPG4, desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development, whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.
Collapse
|
20
|
Pachajoa H, Gomez-Pineda E, Giraldo-Ocampo S, Lores J. Mowat-Wilson Syndrome as a Differential Diagnosis in Patients with Congenital Heart Defects and Dysmorphic Facies. Pharmgenomics Pers Med 2022; 15:913-918. [PMID: 36345475 PMCID: PMC9636884 DOI: 10.2147/pgpm.s380908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Mowat-Wilson syndrome is a rare, autosomal dominant neurodevelopmental disorder characterized by distinctive facial gestalt and intellectual disability that is often associated with microcephaly, seizures and multiple congenital anomalies, mainly heart defects. More than 350 patients and 180 genetic variants in the ZEB2 gene, have been reported with an estimated frequency of 1 per 70,000 births. Here we report a Colombian female patient with facial gestalt, intellectual disability, microcephaly, congenital heart defects, hypothyroidism and middle ear defect associated with the nonsense pathogenic variant c.2761C>T (p.Arg921Ter) in the ZEB2 gene. This case contributes to the understanding of the clinical complications and the natural history of this complex and clinically heterogeneous disorder but also to the awareness that patients with heart congenital defects and dysmorphic facies may present an underlying genetic disorder.
Collapse
Affiliation(s)
- Harry Pachajoa
- Genetics Division, Fundación Valle del Lili, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
- Correspondence: Harry Pachajoa, Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia, Tel +57 5552334 ext 7653, Email
| | - Eidith Gomez-Pineda
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | | | - Juliana Lores
- Genetics Division, Fundación Valle del Lili, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| |
Collapse
|
21
|
Schuster J, Klar J, Khalfallah A, Laan L, Hoeber J, Fatima A, Sequeira VM, Jin Z, Korol SV, Huss M, Nordgren A, Anderlid BM, Gallant C, Birnir B, Dahl N. ZEB2 haploinsufficient Mowat-Wilson syndrome induced pluripotent stem cells show disrupted GABAergic transcriptional regulation and function. Front Mol Neurosci 2022; 15:988993. [PMID: 36353360 PMCID: PMC9637781 DOI: 10.3389/fnmol.2022.988993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 07/30/2023] Open
Abstract
Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor ZEB2. Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability. To get insights into GABAergic development and function in MWS we investigated ZEB2 haploinsufficient induced pluripotent stem cells (iPSC) of MWS subjects together with iPSC of healthy donors. Analysis of RNA-sequencing data at two time points of GABAergic development revealed an attenuated interneuronal identity in MWS subject derived iPSC with enrichment of differentially expressed genes required for transcriptional regulation, cell fate transition and forebrain patterning. The ZEB2 haploinsufficient neural stem cells (NSCs) showed downregulation of genes required for ventral telencephalon specification, such as FOXG1, accompanied by an impaired migratory capacity. Further differentiation into GABAergic interneuronal cells uncovered upregulation of transcription factors promoting pallial and excitatory neurons whereas cortical markers were downregulated. The differentially expressed genes formed a neural protein-protein network with extensive connections to well-established epilepsy genes. Analysis of electrophysiological properties in ZEB2 haploinsufficient GABAergic cells revealed overt perturbations manifested as impaired firing of repeated action potentials. Our iPSC model of ZEB2 haploinsufficient GABAergic development thus uncovers a dysregulated gene network leading to immature interneurons with mixed identity and altered electrophysiological properties, suggesting mechanisms contributing to the neuropathogenesis and seizures in MWS.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ayda Khalfallah
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Loora Laan
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Jan Hoeber
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ambrin Fatima
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Velin Marita Sequeira
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Zhe Jin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sergiy V. Korol
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mikael Huss
- Wallenberg Long-Term Bioinformatics Support, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Gallant
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
22
|
Liu F, Wu Y, Li Z, Wan R. Identification of MMACHC and ZEB2 mutations causing coexistent cobalamin C disease and Mowat-Wilson syndrome in a 2-year-old girl. Clin Chim Acta 2022; 533:31-39. [PMID: 35709987 DOI: 10.1016/j.cca.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
Abstract
Cobalamin C (cblC) disease and Mowat-Wilson syndrome (MWS) are rare hereditary diseases. To date, there have been no reports of people suffering from these two genetic diseases, or whether there is any correlation between the two diseases. We reported a 2-year-old girl with both cblC disease and MWS. The patient initially manifested as slow weight gain, hypotonia, broad nasal bridge, high forehead, high palate arch, ear crease, patent ductus arteriosus, atrial and ventricular septal defect and bilateral mild ventriculomegaly in the neonatal period. However, as the baby grew older, the typical facial features became more prominent, and overall developmental delays were noted at the subsequent follow-up, with the motor and cognitive development significantly lagging behind that of other children of the same age. At 26 days old, laboratory tests revealed remarkably elevated levels of serum homocysteine, C3/C2 and urine organic acid. Whole-exome sequencing detected compound heterozygous variants in MMACHC, including one previously reported mutation [c.609G > A (p.W203X) and a novel missense mutation[ c.643 T > C (p.Y215H)]. The computer simulations of the protein structure analysis of the novel missense mutation showed the variant p.Y215H replaced a neutral amino acid with a strongly basic lysine, which broken the local structure by changing the carbon chain skeleton and decreasing the interaction with adjacent amino acid. This is expected to damage the utilization of vitamin B12 and influence the synthesis of AdoCbl and MeCbl, contributing to its pathogenicity. Thus, clinical and genetic examinations confirmed the cblC disease. Another heterozygous variant in ZEB2 [NM_014795; loss1(exon:2-10)(all); 127901 bp] was detected by whole-exome sequencing. The heterozygous 3.04 Mb deletion in EB2 [GRCH37]del(2)(q22.2q22.3) (chr2:142237964-145274917) was also confirmed by genome-wide copy number variations (CNVs) scan, which was pathogenic and led to the diagnosis of Mowat-Wilson syndrome. The biochemical indicators associated with cblC disease in the patient were well controlled after treatment with vitamin B12 and betaine. Here, a patient with coexisting cblC disease and MWS caused by different pathogenic genes was reported, which enriched the clinical research on these two rare genetic diseases.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, the 980th Hospital of the People's Liberation Army Joint Service Support Force (Bethune International Peace Hospital), Shijiazhuang 050082, Hebei, China.
| | - Yuanyuan Wu
- Department of Genetics and Reproduction, the 980th Hospital of the People's Liberation Army Joint Service Support Force (Bethune International Peace Hospital), Shijiazhuang 050082, Hebei, China
| | - Zhi Li
- Department of Pediatrics, the 980th Hospital of the People's Liberation Army Joint Service Support Force (Bethune International Peace Hospital), Shijiazhuang 050082, Hebei, China
| | - Ruihua Wan
- Department of Pediatrics, the 980th Hospital of the People's Liberation Army Joint Service Support Force (Bethune International Peace Hospital), Shijiazhuang 050082, Hebei, China
| |
Collapse
|
23
|
Cellular Model of Malignant Transformation of Primary Human Astrocytes Induced by Deadhesion/Readhesion Cycles. Int J Mol Sci 2022; 23:ijms23094471. [PMID: 35562862 PMCID: PMC9103552 DOI: 10.3390/ijms23094471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 01/07/2023] Open
Abstract
Astrocytoma is the most common and aggressive tumor of the central nervous system. Genetic and environmental factors, bacterial infection, and several other factors are known to be involved in gliomagenesis, although the complete underlying molecular mechanism is not fully understood. Tumorigenesis is a multistep process involving initiation, promotion, and progression. We present a human model of malignant astrocyte transformation established by subjecting primary astrocytes from healthy adults to four sequential cycles of forced anchorage impediment (deadhesion). After limiting dilution of the surviving cells obtained after the fourth deadhesion/readhesion cycle, three clones were randomly selected, and exhibited malignant characteristics, including increased proliferation rate and capacity for colony formation, migration, and anchorage-independent growth in soft agar. Functional assay results for these clonal cells, including response to temozolomide, were comparable to U87MG—a human glioblastoma-derived cell lineage—reinforcing malignant cell transformation. RNA-Seq analysis by next-generation sequencing of the transformed clones relative to the primary astrocytes revealed upregulation of genes involved in the PI3K/AKT and Wnt/β-catenin signaling pathways, in addition to upregulation of genes related to epithelial–mesenchymal transition, and downregulation of genes related to aerobic respiration. These findings, at a molecular level, corroborate the change in cell behavior towards mesenchymal-like cell dedifferentiation. This linear progressive model of malignant human astrocyte transformation is unique in that neither genetic manipulation nor treatment with carcinogens are used, representing a promising tool for testing combined therapeutic strategies for glioblastoma patients, and furthering knowledge of astrocytoma transformation and progression.
Collapse
|
24
|
Zhao Z, Hu X, Wang J, Wang J, Hou Y, Chen S. Zinc finger E-Box binding homeobox 2 (ZEB2)-induced astrogliosis protected neuron from pyroptosis in cerebral ischemia and reperfusion injury. Bioengineered 2021; 12:12917-12930. [PMID: 34852714 PMCID: PMC8809936 DOI: 10.1080/21655979.2021.2012551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022] Open
Abstract
Ischemia injury can cause cell death or impairment of neuron and astrocytes, and thus induce loss of nerve function. central nervous systems injury induces an aberrant activation of astrocytes called astrogliosis. Pyroptosis, which is a kind of programmed cell death, was proved play an important role in ischemia injury. Zinc Finger E-Box Binding Homeobox 2 (ZEB2) promoted neuron astrogliosis, which play a protected role in neuron regeneration. However, its precise mechanism remains unclear. This study investigated the mechanism of ZEB2 on astrogliosis and neuron regeneration after cerebral ischemia reperfusion condition. To confirm our hypothesis, Neurons and astrocytes were isolated from fetal Sprague Dawley rats, in vivo Middle Cerebral Artery Occlusion/reperfusion (MCAO/R) rat model and in vitro oxygen-glucose deprivation/reperfusion (OGD/R)-treated astrocytes and neurocytes model were constructed. Our results showed that ZEB2 was expressed in nucleus of astrocyte and upregulated after OGD/R induction, ZEB2 promoted astrogliosis. Further upregulation of ZEB2 promoted the astrogliosis, which promoted neuron proliferation and regeneration by decreased pyroptosis. Moreover, this finding was further confirmed in vivo MCAO/R rat model. Overexpression of ZEB2 promoted astrogliosis, which decreased infarct volume and accumulated recovery of neurological function by alleviated pyroptosis. This finding revealed that ZEB2 was a regulator of the astrogliosis after ischemia/reperfusion injury, and then astrogliosis promoted neuron regeneration via decreased neuron pyroptosis. Therefore, ZEB2 may be a potential therapeutic target for ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhixin Zhao
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Jie Wang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Yong Hou
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Suyun Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| |
Collapse
|
25
|
Branch CL, Semenov GA, Wagner DN, Sonnenberg BR, Pitera AM, Bridge ES, Taylor SA, Pravosudov VV. The genetic basis of spatial cognitive variation in a food-caching bird. Curr Biol 2021; 32:210-219.e4. [PMID: 34735793 DOI: 10.1016/j.cub.2021.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Spatial cognition is used by most organisms to navigate their environment. Some species rely particularly heavily on specialized spatial cognition to survive, suggesting that a heritable component of cognition may be under natural selection. This idea remains largely untested outside of humans, perhaps because cognition in general is known to be strongly affected by learning and experience.1-4 We investigated the genetic basis of individual variation in spatial cognition used by non-migratory food-caching birds to recover food stores and survive harsh montane winters. Comparing the genomes of wild, free-living birds ranging from best to worst in their performance on a spatial cognitive task revealed significant associations with genes involved in neuron growth and development and hippocampal function. These results identify candidate genes associated with differences in spatial cognition and provide a critical link connecting individual variation in spatial cognition with natural selection.
Collapse
Affiliation(s)
- Carrie L Branch
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.
| | - Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Dominique N Wagner
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Benjamin R Sonnenberg
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Angela M Pitera
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Eli S Bridge
- Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Vladimir V Pravosudov
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
26
|
Ricci E, Fetta A, Garavelli L, Caraffi S, Ivanovski I, Bonanni P, Accorsi P, Giordano L, Pantaleoni C, Romeo A, Arena A, Bonetti S, Boni A, Chiarello D, Di Pisa V, Epifanio R, Faravelli F, Finardi E, Fiumara A, Grioni D, Mammi I, Negrin S, Osanni E, Raviglione F, Rivieri F, Rizzi R, Savasta S, Tarani L, Zanotta N, Dormi A, Vignoli A, Canevini M, Cordelli DM. Further delineation and long-term evolution of electroclinical phenotype in Mowat Wilson Syndrome. A longitudinal study in 40 individuals. Epilepsy Behav 2021; 124:108315. [PMID: 34619538 DOI: 10.1016/j.yebeh.2021.108315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epilepsy is a main feature of Mowat Wilson Syndrome (MWS), a congenital malformation syndrome caused by ZEB2 variants. The aim of this study was to investigate the long-term evolution of the electroclinical phenotype of MWS in a large population. METHODS Forty-individuals with a genetically confirmed diagnosis were enrolled. Three age groups were identified (t1 = 0-4; t2 = 5-12; t3 = >13 years); clinical data and EEG records were collected, analyzed, and compared for age group. Video-EEG recorded seizures were reviewed. RESULTS Thirty-six of 40 individuals had epilepsy, of whom 35/35 aged >5 years. Almost all (35/36) presented focal seizures at onset (mean age at onset 3.4 ± 2.3 SD) that persisted, reduced in frequency, in 7/22 individuals after the age of 13. Absences occurred in 22/36 (mean age at onset 7.2 ± 0.9 SD); no one had absences before 6 and over 16 years old. Paroxysmal interictal abnormalities in sleep also followed an age-dependent evolution with a significant increase in frequency at school age (p = 0.002) and a reduction during adolescence (p = 0.008). Electrical Status Epilepticus during Sleep occurred in 14/36 (13/14 aged 5-13 years old at onset). Seven focal seizure ictal video-EEGs were collected: all were long-lasting and more visible clinical signs were often preceded by prolonged electrical and/or subtle (erratic head and eye orientation) seizures. Valproic acid was confirmed as the most widely used and effective drug, followed by levetiracetam. CONCLUSIONS Epilepsy is a major sign of MWS with a characteristic, age-dependent, electroclinical pattern. Improvement with adolescence/adulthood is usually observed. Our data strengthen the hypothesis of a GABAergic transmission imbalance underlying ZEB2-related epilepsy.
Collapse
Affiliation(s)
- Emilia Ricci
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy.
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Caraffi
- Medical Genetics Unit, Department of Mother and Child, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ivan Ivanovski
- Insitut für Medizinische Genetik, Universität Zürich, Zürich, Switzerland
| | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | - Patrizia Accorsi
- Child Neurology and Psychiatry Unit, Spedali Civili Brescia, Brescia, Italy
| | - Lucio Giordano
- Child Neurology and Psychiatry Unit, Spedali Civili Brescia, Brescia, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonino Romeo
- Pediatric Neurology Unit and Epilepsy Center, 'Fatebenefratelli e Oftalmico' Hospital, Milan, Italy
| | - Alessia Arena
- Department of Clinical and Experimental Medicine, Regional Referral Center for Inborn Errors Metabolism, Pediatric Clinic, University of Catania, Catania, Italy
| | - Silvia Bonetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Antonella Boni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Daniela Chiarello
- Department of Neurosciences, Center for Epilepsy Surgery "C. Munari,", Niguarda Hospital, Milan, Italy
| | - Veronica Di Pisa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Roberta Epifanio
- Clinical Neurophysiology Unit, IRCCS E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Francesca Faravelli
- Clinical Genetics, NE Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Erica Finardi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Agata Fiumara
- Department of Clinical and Experimental Medicine, Regional Referral Center for Inborn Errors Metabolism, Pediatric Clinic, University of Catania, Catania, Italy
| | - Daniele Grioni
- Child Neurophysiological Unit, San Gerardo Hospital, Monza, Italy
| | - Isabella Mammi
- Medical Genetics Unit, Dolo General Hospital, Venezia, Italy
| | - Susanna Negrin
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | - Elisa Osanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | | | | | - Romana Rizzi
- Neurology Unit Department of Neuro-Motor Diseases Local Health Authority of Reggio Emilia-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | | | - Luigi Tarani
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Zanotta
- Clinical Neurophysiology Unit, IRCCS E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Ada Dormi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, Department of Health Sciences, University of Milan, Milan, Italy
| | - Mariapaola Canevini
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Duccio M Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Weidle UH, Nopora A. MicroRNAs Involved in Small-cell Lung Cancer as Possible Agents for Treatment and Identification of New Targets. Cancer Genomics Proteomics 2021; 18:591-603. [PMID: 34479913 DOI: 10.21873/cgp.20283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Small-cell lung cancer, a neuro-endocrine type of lung cancers, responds very well to chemotherapy-based agents. However, a high frequency of relapse due to adaptive resistance is observed. Immunotherapy-based treatments with checkpoint inhibitors has resulted in improvement of treatment but the responses are not as impressive as in other types of tumor. Therefore, identification of new targets and treatment modalities is an important issue. After searching the literature, we identified eight down-regulated microRNAs involved in radiation- and chemotherapy-induced resistance, as well as three up-regulated and four down-regulated miRNAs with impacts on proliferation, invasion and apoptosis of small-cell lung cancer cells in vitro. Furthermore, one up-regulated and four down-regulated microRNAs with in vivo activity in SCLC cell xenografts were identified. The identified microRNAs are candidates for inhibition or reconstitution therapy. The corresponding targets are candidates for inhibition or functional reconstitution with antibody-based moieties or small molecules.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
28
|
Bahado-Singh RO, Vishweswaraiah S, Aydas B, Radhakrishna U. Artificial intelligence and placental DNA methylation: newborn prediction and molecular mechanisms of autism in preterm children. J Matern Fetal Neonatal Med 2021; 35:8150-8159. [PMID: 34404318 DOI: 10.1080/14767058.2021.1963704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) represents a heterogeneous group of disorders with a complex genetic and epigenomic etiology. DNA methylation is the most extensively studied epigenomic mechanism and correlates with altered gene expression. Artificial intelligence (AI) is a powerful tool for group segregation and for handling the large volume of data generated in omics experiments. METHODS We performed genome-wide methylation analysis for differential methylation of cytosine nucleotide (CpG) was performed in 20 postpartum placental tissue samples from preterm births. Ten newborns went on to develop autism (Autistic Disorder subtype) and there were 10 unaffected controls. AI including Deep Learning (AI-DL) platforms were used to identify and rank cytosine methylation markers for ASD detection. Ingenuity Pathway Analysis (IPA) to identify genes and molecular pathways that were dysregulated in autism. RESULTS We identified 4870 CpG loci comprising 2868 genes that were significantly differentially methylated in ASD compared to controls. Of these 431 CpGs met the stringent EWAS threshold (p-value <5 × 10-8) along with ≥10% methylation difference between CpGs in cases and controls. DL accurately predicted autism with an AUC (95% CI) of 1.00 (1-1) and sensitivity and specificity of 100% using a combination of 5 CpGs [cg13858611 (NRN1), cg09228833 (ZNF217), cg06179765 (GPNMB), cg08814105 (NKX2-5), cg27092191 (ZNF267)] CpG markers. IPA identified five prenatally dysregulated molecular pathways linked to ASD. CONCLUSIONS The present study provides substantial evidence that epigenetic differences in placental tissue are associated with autism development and raises the prospect of early and accurate detection of the disorder.
Collapse
Affiliation(s)
- Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, USA
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
29
|
Epifanova E, Salina V, Lajkó D, Textoris-Taube K, Naumann T, Bormuth O, Bormuth I, Horan S, Schaub T, Borisova E, Ambrozkiewicz MC, Tarabykin V, Rosário M. Adhesion dynamics in the neocortex determine the start of migration and the post-migratory orientation of neurons. SCIENCE ADVANCES 2021; 7:eabf1973. [PMID: 34215578 PMCID: PMC11060048 DOI: 10.1126/sciadv.abf1973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.
Collapse
Affiliation(s)
- Ekaterina Epifanova
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Valentina Salina
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Denis Lajkó
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Biochemistry, Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Naumann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Functional Neuroanatomy, Charitéplatz 1, 10117 Berlin, Germany
| | - Olga Bormuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingo Bormuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephen Horan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Theres Schaub
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ekaterina Borisova
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Mateusz C Ambrozkiewicz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Victor Tarabykin
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Marta Rosário
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
30
|
Cordelli DM, Di Pisa V, Fetta A, Garavelli L, Maltoni L, Soliani L, Ricci E. Neurological Phenotype of Mowat-Wilson Syndrome. Genes (Basel) 2021; 12:genes12070982. [PMID: 34199024 PMCID: PMC8305916 DOI: 10.3390/genes12070982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
Mowat-Wilson Syndrome (MWS) (OMIM # 235730) is a rare disorder due to ZEB2 gene defects (heterozygous mutation or deletion). The ZEB2 gene is a widely expressed regulatory gene, extremely important for the proper prenatal development. MWS is characterized by a specific facial gestalt and multiple musculoskeletal, cardiac, gastrointestinal, and urogenital anomalies. The nervous system involvement is extensive and constitutes one of the main features in MWS, heavily affecting prognosis and life quality of affected individuals. This review aims to comprehensively organize and discuss the neurological and neurodevelopmental phenotype of MWS. First, we will describe the role of ZEB2 in the formation and development of the nervous system by reviewing the preclinical studies in this regard. ZEB2 regulates the neural crest cell differentiation and migration, as well as in the modulation of GABAergic transmission. This leads to different degrees of structural and functional impairment that have been explored and deepened by various authors over the years. Subsequently, the different neurological aspects of MWS (head and brain malformations, epilepsy, sleep disorders, and enteric and peripheral nervous system involvement, as well as developmental, cognitive, and behavioral features) will be faced one at a time and extensively examined from both a clinical and etiopathogenetic point of view, linking them to the ZEB2 related pathways.
Collapse
Affiliation(s)
- Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
- Correspondence:
| | - Veronica Di Pisa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Lucia Maltoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Emilia Ricci
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, 20142 Milan, Italy;
| |
Collapse
|
31
|
Tumor Suppressive Effects of miR-124 and Its Function in Neuronal Development. Int J Mol Sci 2021; 22:ijms22115919. [PMID: 34072894 PMCID: PMC8198231 DOI: 10.3390/ijms22115919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNA-124 (miR-124) is strongly expressed in neurons, and its expression increases as neurons mature. Through DNA methylation in the miR-124 promoter region and adsorption of miR-124 by non-coding RNAs, miR-124 expression is known to be reduced in many cancer cells, especially with high malignancy. Recently, numerous studies have focused on miR-124 due to its promising tumor-suppressive effects; however, the overview of their results is unclear. We surveyed the tumor-suppressive effect of miR-124 in glial cell lineage cancers, which are the most frequently reported cancer types involving miR-124, and in lung, colon, liver, stomach, and breast cancers, which are the top five causes of cancer death. Reportedly, miR-124 not only inhibits proliferation and accelerates apoptosis, but also comprehensively suppresses tumor malignant transformation. Moreover, we found that miR-124 exerts its anti-tumor effects by regulating a wide range of target genes, most notably STAT3 and EZH2. In addition, when compared to the original role of miR-124 in neuronal development, we found that the miR-124 target genes that contribute to neuronal maturation share similarities with genes that cause cancer cell metastasis and epithelial-mesenchymal transition. We believe that the two apparently unrelated fields, cancer and neuronal development, can bring new discoveries to each other through the study of miR-124.
Collapse
|
32
|
Zeb2 Is a Regulator of Astrogliosis and Functional Recovery after CNS Injury. Cell Rep 2021; 31:107834. [PMID: 32610135 DOI: 10.1016/j.celrep.2020.107834] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
The astrocytic response to injury is characterized on the cellular level, but our understanding of the molecular mechanisms controlling the cellular processes is incomplete. The astrocytic response to injury is similar to wound-healing responses in non-neural tissues that involve epithelial-to-mesenchymal transitions (EMTs) and upregulation in ZEB transcription factors. Here we show that injury-induced astrogliosis increases EMT-related genes expression, including Zeb2, and long non-coding RNAs, including Zeb2os, which facilitates ZEB2 protein translation. In mouse models of either contusive spinal cord injury or transient ischemic stroke, the conditional knockout of Zeb2 in astrocytes attenuates astrogliosis, generates larger lesions, and delays the recovery of motor function. These findings reveal ZEB2 as an important regulator of the astrocytic response to injury and suggest that astrogliosis is an EMT-like process, which provides a conceptual connection for the molecular and cellular similarities between astrogliosis and wound-healing responses in non-neural tissue.
Collapse
|
33
|
Fardi M, Mohammadi A, Baradaran B, Safaee S. ZEB2 Knock-down Induces Apoptosis in Human Myeloid Leukemia HL-60 Cells. Curr Gene Ther 2021; 21:149-159. [PMID: 33475058 DOI: 10.2174/1566523221999210120210017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is the most prevalent type of cancer in the adult hematopoietic system. Conventional therapies are associated with unfavorable side effects in individuals diagnosed with AML. These after-effects with partial remission reflect the urgent need for novel therapeutic approaches for inducing apoptosis, specifically in malignant cells, without affecting other cells. As a transcription factor (TF), ZEB2 (Zinc Finger E-Box Binding Homeobox 2) regulates the expression of specific genes in normal conditions. However, increased expression of ZEB2 is reported in various cancers, especially in AML, which is related to a higher degree of apoptosis inhibition of malignant cells. In this work, the role of ZEB2 in apoptosis inhibition is surveyed through ZEB2 specific knocking-down in human myeloid leukemia HL-60 cells. MATERIALS AND METHODS Transfection of HL-60 cells was conducted using ZEB2-siRNA at concentrations of 20, 40, 60, and 80 pmol within 24, 48, and 72 h. After determining the optimum dose and time, flow cytometry was used to measure the apoptosis rate. The MTT assay was also utilized to evaluate the cytotoxic impact of transfection on the cells. The expression of candidate genes was measured before and after transfection using qRT-PCR. RESULTS According to obtained results, suppression of ZEB2 expression through siRNA was associated with the induction of apoptosis, increased pro-apoptotic, and decreased anti-apoptotic gene expression. Transfection of ZEB2-siRNA was also associated with reduced cell proliferation and viability. CONCLUSION Our study results suggest that ZEB2 suppression in myeloid leukemia cells through apoptosis induction could be a proper therapeutic method.
Collapse
Affiliation(s)
- Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P, Kelava I, Wunderlich S, Martin U, Wray GA, McDole K, Lancaster MA. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 2021; 184:2084-2102.e19. [PMID: 33765444 PMCID: PMC8054913 DOI: 10.1016/j.cell.2021.02.050] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion. Human brain organoids are expanded relative to nonhuman apes prior to neurogenesis Ape neural progenitors go through a newly identified transition morphotype state Delayed morphological transition with shorter cell cycles underlie human expansion ZEB2 is as an evolutionary regulator of this transition
Collapse
Affiliation(s)
- Silvia Benito-Kwiecinski
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefano L Giandomenico
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Magdalena Sutcliffe
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Erlend S Riis
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Paula Freire-Pritchett
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Gregory A Wray
- Department of Biology, Duke University, Biological Sciences Building, 124 Science Drive, Durham, NC 27708, USA
| | - Kate McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
35
|
Safaee S, Fardi M, Hemmat N, Khosravi N, Derakhshani A, Silvestris N, Baradaran B. Silencing ZEB2 Induces Apoptosis and Reduces Viability in Glioblastoma Cell Lines. Molecules 2021; 26:molecules26040901. [PMID: 33572092 PMCID: PMC7916008 DOI: 10.3390/molecules26040901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Glioma is an aggressive type of brain tumor that originated from neuroglia cells, accounts for about 80% of all malignant brain tumors. Glioma aggressiveness has been associated with extreme cell proliferation, invasion of malignant cells, and resistance to chemotherapies. Due to resistance to common therapies, glioma affected patients’ survival has not been remarkably improved. ZEB2 (SIP1) is a critical transcriptional regulator with various functions during embryonic development and wound healing that has abnormal expression in different malignancies, including brain tumors. ZEB2 overexpression in brain tumors is attributed to an unfavorable state of the malignancy. Therefore, we aimed to investigate some functions of ZEB2 in two different glioblastoma U87 and U373 cell lines. Methods: In this study, we investigated the effect of ZEB2 knocking down on the apoptosis, cell cycle, cytotoxicity, scratch test of the two malignant brain tumor cell lines U87 and U373. Besides, we investigated possible proteins and microRNA, SMAD2, SMAD5, and miR-214, which interact with ZEB2 via in situ analysis. Then we evaluated candidate gene expression after ZEB2-specific knocking down. Results: We found that ZEB2 suppression induced apoptosis in U87 and U373 cell lines. Besides, it had cytotoxic effects on both cell lines and reduced cell migration. Cell cycle analysis showed cell cycle arrest in G0/G1 and apoptosis induction in U87 and U373 cell lines receptively. Also, we have found that SAMAD2/5 expression was reduced after ZEB2-siRNA transfection and miR-214 upregulated after transfection. Conclusions: In line with previous investigations, our results indicated a critical oncogenic role for ZEB2 overexpression in brain glioma tumors. These properties make ZEB2 an essential molecule for further studies in the treatment of glioma cancer.
Collapse
Affiliation(s)
- Sahar Safaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
| | - Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
- Hematology Division, Immunology Department, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
| | - Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (N.S.); or (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (S.S.); (M.F.); (N.H.); (N.K.); (A.D.)
- Correspondence: (N.S.); or (B.B.)
| |
Collapse
|
36
|
Vivinetto AL, Cave JW. Zeb2 directs EMT-like processes that underlies the glial response to injury. Neural Regen Res 2021; 16:1788-1790. [PMID: 33510078 PMCID: PMC8328788 DOI: 10.4103/1673-5374.306078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
37
|
Circ_0001247 functions as a miR-1270 sponge to accelerate cervical cancer progression by up-regulating ZEB2 expression level. Biotechnol Lett 2021; 43:745-755. [PMID: 33386495 DOI: 10.1007/s10529-020-03059-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is increasing evidence that circular RNA (circRNA) disorders have an impact on the progression of various malignancies. The expression characteristics, function and underlying mechanism of circ_0001247 in cervical cancer (CC) have not been confirmed. METHODS GSE147483 datasets of circRNAs expression in CC cell line and normal cervical cell line were retrieved from GEO database, and the circRNA with significant difference was selected; circ_0001247, miR-1270, and Zinc finger E-box binding homeobox 2 (ZEB2) expressions in CC tissues and cell lines were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) assay; cell counting kit-8 (CCK-8) assay and BrdU assay were applied to monitor the proliferative ability of CC cells; Transwell assay was conducted to examine the migration and invasion of CC cells, and flow cytometry was used to evaluate the apoptosis; Western blot assay was adopted to detect ZEB2 protein expressions; dual-luciferase report gene assay was used to verify the targeting relationship between circ_0001247 and miR-1270, and miR-1270 and the 3'UTR of ZEB2. RESULTS Analysis of GSE147483 suggested that circ_0001247 could probably be an oncogenic circRNA in CC. Compared with that in adjacent tissues and normal cervical epithelial cells, circ_0001247 expression in CC tissues and cell lines was significantly increased; knocking down circ_0001247 expression could inhibit the proliferation and metastasis of CC cells, and promote apoptosis, while circ_0001247 overexpression worked oppositely; circ_0001247 sponged miR-1270 in CC cells; miR-1270 diminished the promoting effect of circ_0001247 by inactivating the ZEB2. CONCLUSION Circ_0001247 promotes progression of CC by sponging miR-1270 to upregulate ZEB2 expression level.
Collapse
|
38
|
Pijuan J, Rodríguez-Sanz M, Natera-de Benito D, Ortez C, Altimir A, Osuna-López M, Roura M, Ugalde M, Van de Vondel L, Reina-Castillón J, Fons C, Benítez R, Nascimento A, Hoenicka J, Palau F. Translational Diagnostics: An In-House Pipeline to Validate Genetic Variants in Children with Undiagnosed and Rare Diseases. J Mol Diagn 2020; 23:71-90. [PMID: 33223419 DOI: 10.1016/j.jmoldx.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Diagnosis is essential for the management and treatment of patients with rare diseases. In a group of patients, the genetic study identifies variants of uncertain significance or inconsistent with the phenotype; therefore, it is urgent to develop novel strategies to reach the definitive diagnosis. Herein, we develop the in-house Translational Diagnostics Program (TDP) to validate genetic variants as part of the diagnostic process with the close collaboration of physicians, clinical scientists, and research scientists. The first 7 of 33 consecutive patients for whom exome-based tests were not diagnostic were investigated. The TDP pipeline includes four steps: (i) phenotype assessment, (ii) literature review and prediction of in silico pathogenicity, (iii) experimental functional studies, and (iv) diagnostic decision-making. Re-evaluation of the phenotype and re-analysis of the exome allowed the diagnosis in one patient. In the remaining patients, the studies included either cDNA cloning or PCR-amplified genomic DNA, or the use of patients' fibroblasts. A comparative computational analysis of confocal microscopy images and studies related to the protein function was performed. In five of these six patients, evidence of pathogenicity of the genetic variant was found, which was validated by physicians. The current research demonstrates the feasibility of the TDP to support and resolve intramural medical problems when the clinical significance of the patient variant is unknown or inconsistent with the phenotype.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - María Rodríguez-Sanz
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Arola Altimir
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Mireia Osuna-López
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Roura
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Maddi Ugalde
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Liedewei Van de Vondel
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judith Reina-Castillón
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carme Fons
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Raúl Benítez
- Automatic Control Department and Biomedical Engineering Research Center, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Department of Genetic Medicine-IPER, Hospital Sant Joan de Déu, Barcelona, Spain; Clinic Institute of Medicine and Dermatology, Hospital Clínic, Barcelona, Spain; Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
39
|
Intrinsic Balance between ZEB Family Members Is Important for Melanocyte Homeostasis and Melanoma Progression. Cancers (Basel) 2020; 12:cancers12082248. [PMID: 32796736 PMCID: PMC7465899 DOI: 10.3390/cancers12082248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
It has become clear that cellular plasticity is a main driver of cancer therapy resistance. Consequently, there is a need to mechanistically identify the factors driving this process. The transcription factors of the zinc-finger E-box-binding homeobox family, consisting of ZEB1 and ZEB2, are notorious for their roles in epithelial-to-mesenchymal transition (EMT). However, in melanoma, an intrinsic balance between ZEB1 and ZEB2 seems to determine the cellular state by modulating the expression of the master regulator of melanocyte homeostasis, microphthalmia-associated transcription factor (MITF). ZEB2 drives MITF expression and is associated with a differentiated/proliferative melanoma cell state. On the other hand, ZEB1 is correlated with low MITF expression and a more invasive, stem cell-like and therapy-resistant cell state. This intrinsic balance between ZEB1 and ZEB2 could prove to be a promising therapeutic target for melanoma patients. In this review, we will summarise what is known on the functional mechanisms of these transcription factors. Moreover, we will look specifically at their roles during melanocyte-lineage development and homeostasis. Finally, we will overview the current literature on ZEB1 and ZEB2 in the melanoma context and link this to the 'phenotype-switching' model of melanoma cellular plasticity.
Collapse
|
40
|
Abstract
Mowat-Wilson syndrome (MWS) is a syndromic form of Hirschsprung disease that is characterized by variable degrees of intellectual disability, characteristic facial dysmorphism, and a diverse set of other congenital malformations due to haploinsufficiency of ZEB2. A variety of brain malformations have been described in neuroimaging studies of MWS patients, and the role of ZEB2 in the brain has been studied in a multitude of genetically engineered mouse models that are now available. However, a paucity of autopsy information limits our ability to correlate data from neuroimaging studies and animal models with actual MWS patient tissues. Here, we report the autopsy neuropathology of a 19-year-old male patient with MWS. Autopsy neuropathology findings correlated well with the reported MWS neuroimaging data and are in keeping with data from genetically engineered MWS mouse models. This autopsy enhances our understanding of ZEB2 function in human brain development and demonstrates the reliability of MWS murine models.
Collapse
Affiliation(s)
- Miriam R Conces
- Department of Pathology & Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Anna Hughes
- Department of Pathology & Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher R Pierson
- Department of Pathology & Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
41
|
Hu Y, Peng Q, Ma K, Li S, Rao C, Zhong B, Lu X. A novel nonsense mutation of ZEB2 gene in a Chinese patient with Mowat-Wilson syndrome. J Clin Lab Anal 2020; 34:e23413. [PMID: 32519765 PMCID: PMC7521239 DOI: 10.1002/jcla.23413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/08/2023] Open
Abstract
Background Mowat‐Wilson syndrome (MWS) is a rare genetic disorder characterized by intellectual disability, distinctive facial features, and multiple anomalies caused by haploinsufficiency of the ZEB2 gene. We investigated the genetic causes of MWS in a 14‐year‐old girl who had characteristic features of MWS. Methods Clinical data and peripheral blood DNA samples were collected from the proband. Following extraction of genomic DNA, whole‐exome sequencing was conducted to detect genetic variants. Bioinformatics analysis was carried out to predict the function of the mutant gene. Results Mutation analysis of the proband identified a novel nonsense mutation (c.250G > T, p.E84*) within exon 3 of the ZEB2 gene. This novel alteration resulted in a termination codon at amino acid position 84, which was predicted to encode a truncated protein. This variant was not present in unrelated healthy control samples that were obtained from the exome sequence databases ExAc browser (http://exac.broadinstitute.org/) and gnomAD browser (http://gnomad.broadinstitute.org/). It is a novel variant that was determined to be a deleterious mutation according to the variant interpretation guidelines of the ACMG. The results of our study suggest that the p.E84* mutation in the ZEB2 gene was probably the pathogenic mutation that caused MWS in the proband. Conclusions This study reports the novel mutation in the proband will provide a basic foundation for further investigations to elucidate the ZEB2‐related mechanisms of MWS.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Pediatrics Hematology, Dongguan Children's Hospital, Dongguan, China
| | - Qi Peng
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Medical laboratory, Dongguan Children's Hospital, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan City, Dongguan, China
| | - Keze Ma
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan City, Dongguan, China.,Pediatric Intensive Care Unit, Dongguan Children's Hospital, Dongguan, China
| | - Siping Li
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Medical laboratory, Dongguan Children's Hospital, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan City, Dongguan, China
| | - Chunbao Rao
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Medical laboratory, Dongguan Children's Hospital, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan City, Dongguan, China
| | - Baimao Zhong
- Department of Pediatrics Hematology, Dongguan Children's Hospital, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Pediatric Intensive Care Unit, Dongguan Children's Hospital, Dongguan, China
| | - Xiaomei Lu
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Medical laboratory, Dongguan Children's Hospital, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan City, Dongguan, China
| |
Collapse
|
42
|
Deryckere A, Stappers E, Dries R, Peyre E, van den Berghe V, Conidi A, Zampeta FI, Francis A, Bresseleers M, Stryjewska A, Vanlaer R, Maas E, Smal IV, van IJcken WFJ, Grosveld FG, Nguyen L, Huylebroeck D, Seuntjens E. Multifaceted actions of Zeb2 in postnatal neurogenesis from the ventricular-subventricular zone to the olfactory bulb. Development 2020; 147:dev184861. [PMID: 32253238 DOI: 10.1242/dev.184861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 03/01/2024]
Abstract
The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Elke Stappers
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Ruben Dries
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Elise Peyre
- GIGA-Stem Cells and GIGA-Neurosciences, Liège University, Liège 4000, Belgium
| | - Veronique van den Berghe
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - F Isabella Zampeta
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Annick Francis
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Marjolein Bresseleers
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Agata Stryjewska
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Ria Vanlaer
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Elke Maas
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven 3000, Belgium
| | - Ihor V Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
- Center for Biomics-Genomics, Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Liège University, Liège 4000, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
43
|
Weinstein N, Mendoza L, Álvarez-Buylla ER. A Computational Model of the Endothelial to Mesenchymal Transition. Front Genet 2020; 11:40. [PMID: 32226439 PMCID: PMC7080988 DOI: 10.3389/fgene.2020.00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells (ECs) form the lining of lymph and blood vessels. Changes in tissue requirements or wounds may cause ECs to behave as tip or stalk cells. Alternatively, they may differentiate into mesenchymal cells (MCs). These processes are known as EC activation and endothelial-to-mesenchymal transition (EndMT), respectively. EndMT, Tip, and Stalk EC behaviors all require SNAI1, SNAI2, and Matrix metallopeptidase (MMP) function. However, only EndMT inhibits the expression of VE-cadherin, PECAM1, and VEGFR2, and also leads to EC detachment. Physiologically, EndMT is involved in heart valve development, while a defective EndMT regulation is involved in the physiopathology of cardiovascular malformations, congenital heart disease, systemic and organ fibrosis, pulmonary arterial hypertension, and atherosclerosis. Therefore, the control of EndMT has many promising potential applications in regenerative medicine. Despite the fact that many molecular components involved in EC activation and EndMT have been characterized, the system-level molecular mechanisms involved in this process have not been elucidated. Toward this end, hereby we present Boolean network model of the molecular involved in the regulation of EC activation and EndMT. The simulated dynamic behavior of our model reaches fixed and cyclic patterns of activation that correspond to the expected EC and MC cell types and behaviors, recovering most of the specific effects of simple gain and loss-of-function mutations as well as the conditions associated with the progression of several diseases. Therefore, our model constitutes a theoretical framework that can be used to generate hypotheses and guide experimental inquiry to comprehend the regulatory mechanisms behind EndMT. Our main findings include that both the extracellular microevironment and the pattern of molecular activity within the cell regulate EndMT. EndMT requires a lack of VEGFA and sufficient oxygen in the extracellular microenvironment as well as no FLI1 and GATA2 activity within the cell. Additionally Tip cells cannot undergo EndMT directly. Furthermore, the specific conditions that are sufficient to trigger EndMT depend on the specific pattern of molecular activation within the cell.
Collapse
Affiliation(s)
- Nathan Weinstein
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
44
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
45
|
Wang K, Yang S, Gao Y, Zhang C, Sui Q. MicroRNA-769-3p inhibits tumor progression in glioma by suppressing ZEB2 and inhibiting the Wnt/β-catenin signaling pathway. Oncol Lett 2019; 19:992-1000. [PMID: 31897212 PMCID: PMC6924179 DOI: 10.3892/ol.2019.11135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the crucial role of microRNAs (miRNAs) in human cancers. The present study aimed to investigate the clinical and functional roles of miR-769-3p in glioma, as well as the underlying molecular mechanisms. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine the expression levels of miR-769-3p in glioma tissues and cells. Receiver operating characteristic (ROC) curve analysis was applied to calculate the diagnostic value of miR-769-3p. The 5-year survival rate of patients was calculated using Kaplan-Meier analysis and Cox regression analysis. Cell experiments were used to investigate the functional role of miR-769-3p in glioma. The gene target of miR-769-3p was predicted by TargetScan. Changes in the levels of Wnt signaling-related proteins were measured by western blotting. miR-769-3p was significantly downregulated in glioma tissues and serum, as well as in glioma cell lines (P<0.001). miR-769-3p expression was significantly associated with the World Health Organization grade and Karnofsky performance score. The ROC curves demonstrated that serum miR-769-3p level reliably distinguished patients with glioma from healthy individuals. High tissue miR-769-3p expression predicted poor overall survival in patients with glioma (log-rank P=0.001) and was identified as an independent prognostic factor. In addition, zinc finger E-box binding homeobox 2 (ZEB2) was demonstrated to be a direct target of miR-769-3p in glioma cells using a luciferase assay. miR-769-3p upregulation suppressed the activity of the Wnt/β-catenin signaling pathway in glioma cells. In conclusion, miR-769-3p may serve as a diagnostic and prognostic biomarker in patients with glioma and target ZEB2 to inhibit tumor progression via the Wnt/β-catenin signaling pathway. miR-769-3p may be a novel therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Shasha Yang
- Department of Burns, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Yishen Gao
- Department of Neurosurgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Caihong Zhang
- Department of Ultrasound, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Qiangbo Sui
- Department of Neurosurgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|