1
|
Kazemi S, Safari S, Komaki S, Karimi SA, Golipoor Z, Komaki A. The effects of carvacrol and p-cymene on Aβ 1-42 -induced long-term potentiation deficit in male rats. CNS Neurosci Ther 2024; 30:e14459. [PMID: 37727020 PMCID: PMC10916422 DOI: 10.1111/cns.14459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is the most common type of dementia in which oxidative stress plays an important role. In this disease, learning and memory and the cellular mechanism associated with it, long-term potentiation (LTP), are impaired. Considering the beneficial effects of carvacrol (CAR) and p-cymene against AD, their effect was assessed on in vivo hippocampal LTP in the perforant pathway (PP)-dentate gyrus (DG) pathway in an Aβ1-42 -induced rat model of AD. METHODS Male Wistar rats were randomly assigned to five groups: sham: intracerebroventricular (ICV) injection of phosphate-buffered saline, Aβ: ICV Aβ1-42 injections, Aβ + CAR (50 mg/kg), Aβ + p-cymene (50 mg/kg), and Aβ + CAR + p-cymene. Administration of CAR and p-cymene was done by gavage daily 4 weeks before and 4 weeks after the Aβ injection. The population spike (PS) amplitude and field excitatory postsynaptic potentials (fEPSP) slope were determined in DG against the applied stimulation to the PP. RESULTS Aβ-treated rats exhibited impaired LTP induction in the PP-DG synapses, resulting in significant reduction in both fEPSP slope and PS amplitude compared to the sham animals. Aβ-treated rats consumed either CAR or p-cymene separately (but not their combination), and showed an enhancement in fEPSP slope and PS amplitude of the DG granular cells. CONCLUSIONS These data indicate that CAR or p-cymene can ameliorate Aβ-associated changes in synaptic plasticity. Surprisingly, the combination of CAR and p-cymene did not yield the same effect, suggesting a potential interaction between the two substances.
Collapse
Affiliation(s)
- Sahifeh Kazemi
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
| | - Samaneh Safari
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Somayeh Komaki
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Zoleikha Golipoor
- Cellular and Molecular Research Center, Faculty of MedicineGuilan University of Medical SciencesRashtIran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
2
|
Ghaderi S, Gholipour P, Komaki A, Shahidi S, Seif F, Bahrami-Tapehebur M, Salehi I, Zarei M, Sarihi A, Rashno M. Underlying mechanisms behind the neuroprotective effect of vanillic acid against diabetes-associated cognitive decline: An in vivo study in a rat model. Phytother Res 2024; 38:1262-1277. [PMID: 38185917 DOI: 10.1002/ptr.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mohammad Bahrami-Tapehebur
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
3
|
Effectiveness of coenzyme Q10 on learning and memory and synaptic plasticity impairment in an aged Aβ-induced rat model of Alzheimer's disease: a behavioral, biochemical, and electrophysiological study. Psychopharmacology (Berl) 2023; 240:951-967. [PMID: 36811650 DOI: 10.1007/s00213-023-06338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
RATIONALE Aging is the major risk factor for Alzheimer's disease (AD), and cognitive and memory impairments are common among the elderly. Interestingly, coenzyme Q10 (Q10) levels decline in the brain of aging animals. Q10 is a substantial antioxidant substance, which has an important role in the mitochondria. OBJECTIVE We assessed the possible effects of Q10 on learning and memory and synaptic plasticity in aged β-amyloid (Aβ)-induced AD rats. METHODS In this study, 40 Wistar rats (24-36 months old; 360-450 g) were randomly assigned to four groups (n = 10 rats/group)-group I: control, group II: Aβ, group III: Q10; 50 mg/kg, and group IV: Q10+Aβ. Q10 was administered orally by gavage daily for 4 weeks before the Aβ injection. The cognitive function and learning and memory of the rats were measured by the novel object recognition (NOR), Morris water maze (MWM), and passive avoidance learning (PAL) tests. Finally, malondialdehyde (MDA), total antioxidant capacity (TAC), total thiol group (TTG), and total oxidant status (TOS) were measured. RESULTS Q10 improved the Aβ-related decrease in the discrimination index in the NOR test, spatial learning and memory in the MWM test, passive avoidance learning and memory in the PAL test, and long-term potentiation (LTP) impairment in the hippocampal PP-DG pathway in aged rats. In addition, Aβ injection significantly increased serum MDA and TOS levels. Q10, however, significantly reversed these parameters and also increased TAC and TTG levels in the Aβ+Q10 group. CONCLUSIONS Our experimental findings suggest that Q10 supplementation can suppress the progression of neurodegeneration that otherwise impairs learning and memory and reduces synaptic plasticity in our experimental animals. Therefore, similar supplemental Q10 treatment given to humans with AD could possibly provide them a better quality of life.
Collapse
|
4
|
Arabi A, Karimi SA, Salehi I, Haddadi R, Komaki A. Effects of sesamin on Aβ 1-42-induced oxidative stress and LTP impairment in a rat model of Alzheimer's disease. Metab Brain Dis 2023; 38:1503-1511. [PMID: 36847969 DOI: 10.1007/s11011-023-01191-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
The present study examined the protective effect of sesamin (Ses) on β-amyloid (Aβ)-induced long-term potentiation (LTP) impairment at the PP-DG synapses in male rats. Wistar rats were randomly assigned to seven groups: control, sham, Aβ; ICV Aβ1-42 microinjection, Ses, Aβ + Ses; first, ICV Aβ injections and then receiving Ses, Ses + Aβ: four weeks of pretreatment with Ses and then Aβ injection, and Ses + Aβ + Ses: pre (four weeks) and post (four weeks) treatment with Ses. Ses-treated groups received 30 mg/kg of Ses once a day by oral gavage for four weeks. After the treatment period, the animals were positioned in a stereotaxic device for surgery and field potential recording. The population spike (PS) amplitude and slope of excitatory postsynaptic potentials (EPSP) were evaluated in the DG region. Serum oxidative stress biomarkers (total oxidant status (TOS) and total antioxidant capacity (TAC)) were measured. Aβ impaired LTP induction at the PP-DG synapses evidenced by a decrease in EPSP slope and PS amplitude of LTP. In Aβ rats, Ses increased EPSP slope and PS amplitude of LTP in the DG granular cells. Also, an increase in TOS and a reduction in TAC caused by Aβ were significantly corrected by Ses. Ses could prevent Aβ-induced LTP impairment at the PP-DG synapses in male rats, which can be due to its preventive effects on oxidative stress.
Collapse
Affiliation(s)
- Amir Arabi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
| | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran.
| |
Collapse
|
5
|
Nazari M, Karimi SA, Komaki S, Kourosh Arami M, Komaki A. Underlying mechanisms of long-term potentiation during the inhibition of the cannabinoid CB1 and GABAB receptors in the dentate gyrus of hippocampus. BMC Neurosci 2023; 24:3. [PMID: 36635629 PMCID: PMC9835329 DOI: 10.1186/s12868-022-00767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The release of various neurotransmitters and thereby the excitability of neuronal circuits are regulated by the endocannabinoid system in an activity-dependent manner. Hippocampal long-term potentiation (LTP) is augmented in cannabinoid type 1 (CB1) receptor-deficient mice. CB1 receptors exist on GABAergic axon terminals in the hippocampus. In our previous work, we showed that CB1 antagonists increased the population spike (PS) amplitude, field excitatory post-synaptic potential (fEPSP), and the LTP induction in the dentate gyrus (DG) of the rat hippocampus while the GABAB antagonist decreased these parameters. Determining the underlying mechanisms of the pre- and/or postsynaptic locus of LTP expression is of great importance. In this study, we investigated whether LTP alteration acutely caused by CB1 and GABAB receptor antagonists (AM251 and CGP55845, respectively) happens at the postsynaptic or presynaptic regions, or at both. Therefore, the paired-pulse ratio (PPR) was assessed prior to and following the LTP induction in the studied groups. METHODS Male Wistar rats were randomly assigned to the groups of control, AM251, CGP55845, CGP55845 + AM251. A high-frequency stimulation (HFS) of the perforant path (PP) was used to induce LTP in the DG region. RESULTS Statistical analysis revealed that AM251 produced significant increase in excitatory postsynaptic potential (EPSP) slope and amplitude of PS. Conversely, administration of CGP55845 produced decrease in slope of EPSP. The current results indicated that the PPR was not influenced by LTP induction in the presence of AM251 or CGP55845 either alone or their combination. CONCLUSIONS It can be concluded that the site causing LTP expression is, at least in part, the postsynaptic site because PPR was not influenced by LTP induction in the presence of AM251 or CGP55845 either alone or their combination.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran
| | - Masoumeh Kourosh Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Park J, Won J, Jeon CY, Lim KS, Choi WS, Park SH, Seo J, Cho J, Seong JB, Yeo HG, Kim K, Kim YG, Kim M, Yi KS, Lee Y. XperCT-guided Intra-cisterna Magna Injection of Streptozotocin for Establishing an Alzheimer's Disease Model Using the Cynomolgus Monkey ( Macaca fascicularis). Exp Neurobiol 2022; 31:409-418. [PMID: 36631849 PMCID: PMC9841743 DOI: 10.5607/en22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 01/13/2023] Open
Abstract
Till date, researchers have been developing animal models of Alzheimer's disease (AD) in various species to understand the pathological characterization and molecular mechanistic pathways associated with this condition in humans to identify potential therapeutic treatments. A widely recognized AD model that mimics the pathology of human AD involves the intracerebroventricular (ICV) injection with streptozotocin (STZ). However, ICV injection as an invasive approach has several limitations related to complicated surgical procedures. Therefore, in the present study, we created a customized stereotaxic frame using the XperCT-guided system for injecting STZ in cynomolgus monkeys, aiming to establish an AD model. The anatomical structures surrounding the cisterna magna (CM) were confirmed using CT/MRI fusion images of monkey brain with XperCT, the c-arm cone beam computed tomography. XperCT was used to determine the appropriate direction in which the needle tip should be inserted within the CM region. Cerebrospinal fluid (CSF) was collected to confirm the accurate target site when STZ was injected into the CM. Cynomolgus monkeys were administered STZ dissolved in artificial CSF once every week for 4 weeks via intracisterna magna (ICM) injection using XperCT-guided stereotactic system. The molecular mechanisms underlying the progression of STZ-induced AD pathology were analyzed two weeks after the final injection. The monkeys subjected to XperCT-based STZ injection via the ICM route showed features of AD pathology, including markedly enhanced neuronal loss, synaptic impairment, and tau phosphorylation in the hippocampus. These findings suggest a new approach for the construction of neurodegenerative disease models and development of therapeutic strategies.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sung-hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jiyeon Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea,KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea,KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Minji Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyung Sik Yi
- Department of Radiology, Chungbuk National University Hospital, Cheongju 28644, Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea,KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,To whom correspondence should be addressed. TEL: 82-43-240-6316, FAX: 82-43-240-6309, e-mail:
| |
Collapse
|
7
|
Mohammadkhani R, Ghahremani R, Salehi I, Safari S, Karimi SA, Zarei M. Impairment in social interaction and hippocampal long-term potentiation at perforant pathway-dentate gyrus synapses in a prenatal valproic acid-induced rat model of autism. Brain Commun 2022; 4:fcac221. [PMID: 36092302 PMCID: PMC9453432 DOI: 10.1093/braincomms/fcac221] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/02/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
It is well established that prenatal valproic acid exposure in rats leads to autism-like behaviours and social deficits. Long-term potentiation changes in the brain have been proposed as a potential mechanism in the development of autistic behaviour. However, there are controversies regarding the effect of in utero valproic acid exposure on long-term potentiation. This study examined the social interaction and long-term potentiation induction in perforant pathway-dentate gyrus synapses in male offspring of a rat model of autism induced by prenatal exposure to valproic acid. On Embryonic Day 12.5, the pregnant dams received an injection of 500 mg/kg valproic acid (intraperitoneal) to produce the autism model. The sociability test was performed between Postnatal Days 37 and 40. The offsprings were urethane-anaesthetized and placed into a stereotaxic apparatus for surgery, electrode implantation and field potential recording on Postnatal Days 45–55. In the dentate gyrus region, excitatory postsynaptic potential slope and population spike amplitude were measured. Valproic acid-exposed offspring showed significantly impaired social interaction. The birth weight in valproic acid-exposed rats was significantly lower than in control rats. The ability of dentate gyrus synapses to induce long-term potentiation was hampered by valproic acid exposure. The decreasing excitatory postsynaptic potential slope and population spike amplitude of long-term potentiation provide evidence in favour of this notion. It is widely supposed that the hippocampus plays a central role in the process of learning and memory as well as social interaction and social memory. Therefore, deficiencies in hippocampal synaptic plasticity may be responsible, at least in part, for the social interaction deficits in valproic acid-exposed rats.
Collapse
Affiliation(s)
- Reihaneh Mohammadkhani
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| | - Reza Ghahremani
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand , Birjand 9717434765 , Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| | - Samaneh Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan 65178/518 , Iran
| |
Collapse
|
8
|
Li Q, Liu Y, Liu, B, Sun H. Development and Optimization of Antisolvent Cooling Coupled Crystallization Process for Coenzyme Q10. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiuju Li
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050018 P. R. China
| | - Yihang Liu
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050018 P. R. China
| | - Baoshu Liu,
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050018 P. R. China
| | - Hua Sun
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050018 P. R. China
| |
Collapse
|
9
|
Karimi SA, Komaki S, Taheri M, Omidi G, Kourosh-Arami M, Salehi I, Komaki A. Effects of the hydroalcoholic extract of Rosa damascena on hippocampal long-term potentiation in rats fed high-fat diet. J Physiol Sci 2021; 71:14. [PMID: 33926383 PMCID: PMC10717342 DOI: 10.1186/s12576-021-00797-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
High-fat diets (HFDs) and obesity can cause serious health problems, such as neurodegenerative diseases and cognitive impairments. Consumption of HFD is associated with reduction in hippocampal synaptic plasticity. Rosa damascena (R. damascena) is traditionally used as a dietary supplement for many disorders. This study was carried out to determine the beneficial effect of hydroalcoholic extract of R. damascena on in vivo hippocampal synaptic plasticity (long-term potentiation, LTP) in the perforant pathway (PP)-dentate gyrus (DG) pathway in rats fed with an HFD. Male Wistar rats were randomly assigned to four groups: Control, R. damascena extract (1 g/kg bw daily for 30 days), HFD (for 90 days) and HFD + extract. The population spike (PS) amplitude and slope of excitatory post-synaptic potentials (EPSP) were measured in DG area in response to stimulation applied to the PP. Serum oxidative stress biomarkers [total thiol group (TTG) and superoxide dismutase (SOD)] were measured. The results showed the HFD impaired LTP induction in the PP-DG synapses. This conclusion is supported by decreased EPSP slope and PS amplitude of LTP. R. damascena supplementation in HFD animals enhanced EPSP slope and PS amplitude of LTP in the granular cell of DG. Consumption of HFD decreased TTG and SOD. R. damascena extract consumption in the HFD animals enhanced TTG and SOD. These data indicate that R. damascena dietary supplementation can ameliorate HFD-induced alteration of synaptic plasticity, probably through its significant antioxidant effects and activate signalling pathways, which are critical in controlling synaptic plasticity.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Taheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
| |
Collapse
|
10
|
Thapak P, Bishnoi M, Sharma SS. Pharmacological Inhibition of Transient Receptor Potential Melastatin 2 (TRPM2) Channels Attenuates Diabetes-induced Cognitive Deficits in Rats: A Mechanistic Study. Curr Neurovasc Res 2020; 17:249-258. [DOI: 10.2174/1567202617666200415142211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023]
Abstract
Background:
Diabetes is a chronic metabolic disorder affecting the central nervous system.
A growing body of evidence has depicted that high glucose level leads to the activation of the
transient receptor potential melastatin 2 (TRPM2) channels. However, there are no studies targeting
TRPM2 channels in diabetes-induced cognitive decline using a pharmacological approach.
Objective:
The present study intended to investigate the effects of 2-aminoethoxydiphenyl borate
(2-APB), a TRPM2 inhibitor, in diabetes-induced cognitive impairment.
Methods:
Streptozotocin (STZ, 50 mg/kg, i.p.) was used to induce diabetes in rats. Animals were
randomly divided into the treatment group, model group and age-matched control and pre se
group. 2-APB treatment was given for three weeks to the animals. After 10 days of behavioural
treatment, parameters were performed. Animals were sacrificed at 10th week of diabetic induction
and the hippocampus and cortex were isolated. After that, protein and mRNA expression study
was performed in the hippocampus. Acetylcholinesterase (AchE) activity was done in the cortex.
Results: :
Our study showed the 10th week diabetic animals developed cognitive impairment, which
was evident from the behavioural parameters. Diabetic animals depicted an increase in the TRPM2
mRNA and protein expression in the hippocampus as well as increased AchE activity in the cortex.
However, memory associated proteins were down-regulated, namely Ca2+/calmodulin-dependent
protein kinase II (CaMKII-Thr286), glycogen synthase kinase 3 beta (GSK-3β-Ser9), cAMP
response element-binding protein (CREB-Ser133), and postsynaptic density protein 95 (PSD-95).
Gene expression of parvalbumin, calsequestrin and brain-derived neurotrophic factor (BDNF)
were down-regulated while mRNA level of calcineurin A/ protein phosphatase 3 catalytic subunit
alpha (PPP3CA) was upregulated in the hippocampus of diabetic animals. A three-week treatment
with 2-APB significantly ameliorated the alteration in behavioural cognitive parameters in diabetic
rats. Moreover, 2-APB also down-regulated the expression of TRPM2 mRNA and protein in the
hippocampus as well as AchE activity in the cortex of diabetic animals as compared to diabetic
animals. Moreover, the 2-APB treatment also upregulated the CaMKII (Thr-286), GSK-3β (Ser9),
CREB (Ser133), and PSD-95 expression and mRNA levels of parvalbumin, calsequestrin, and
BDNF while mRNA level of calcineurin A was down-regulated in the hippocampus of diabetic
animals.
Conclusion: :
This study confirms the ameliorative effect of TRPM2 channel inhibitor in the diabetes-
induced cognitive deficits. Inhibition of TRPM2 channels reduced the calcium associated
downstream signaling and showed a neuroprotective effect of TRPM2 channels in diabetesinduced
cognitive impairment.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Punjab, India
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| |
Collapse
|
11
|
Park J, Won J, Seo J, Yeo HG, Kim K, Kim YG, Jeon CY, Kam MK, Kim YH, Huh JW, Lee SR, Lee DS, Lee Y. Streptozotocin Induces Alzheimer's Disease-Like Pathology in Hippocampal Neuronal Cells via CDK5/Drp1-Mediated Mitochondrial Fragmentation. Front Cell Neurosci 2020; 14:235. [PMID: 32903692 PMCID: PMC7438738 DOI: 10.3389/fncel.2020.00235] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant brain insulin signaling plays a critical role in the pathology of Alzheimer’s disease (AD). Mitochondrial dysfunction plays a role in the progression of AD, with excessive mitochondrial fission in the hippocampus being one of the pathological mechanisms of AD. However, the molecular mechanisms underlying the progression of AD and mitochondrial fragmentation induced by aberrant brain insulin signaling in the hippocampal neurons are poorly understood. Therefore, we investigated the molecular mechanistic signaling associated with mitochondrial dynamics using streptozotocin (STZ), a diabetogenic compound, in the hippocampus cell line, HT-22 cells. In this metabolic dysfunctional cellular model, hallmarks of AD such as neuronal apoptosis, synaptic loss, and tau hyper-phosphorylation are induced by STZ. We found that in the mitochondrial fission protein Drp1, phosphorylation is increased in STZ-treated HT-22 cells. We also determined that inhibition of mitochondrial fragmentation suppresses STZ-induced AD-like pathology. Furthermore, we found that phosphorylation of Drp1 was induced by CDK5, and inhibition of CDK5 suppresses STZ-induced mitochondrial fragmentation and AD-like pathology. Therefore, these findings indicate that mitochondrial morphology and functional regulation may be a strategy of potential therapeutic for treating abnormal metabolic functions associated with the pathogenesis of AD.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Min Kyoung Kam
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| |
Collapse
|