1
|
Zavala-Tecuapetla C, Orozco-Suárez S, Vega-García A, Manjarrez-Marmolejo J. An Evaluation of Cation-Chloride Cotransporters NKCC1 and KCC2 in Carbamazepine-Resistant Rats. Int J Mol Sci 2025; 26:4764. [PMID: 40429905 DOI: 10.3390/ijms26104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Approximately one-third of epileptic patients do not respond adequately to drug therapy, leading to the development of drug-resistant epilepsy. Given the established role of dysregulated expression of two cation-chloride cotransporter proteins, NKCC1 and KCC2, in susceptibility to convulsion generation and epilepsy development, the present study evaluates the anticonvulsant potential of bumetanide (BUM, 10 mg/kg, i.p.) and probenecid (PROB, 50 mg/kg, i.p.), the potential of adenosine receptor activation (NECA, 1 mg/kg, i.p.) to modify the anticonvulsant efficacy of BUM, and the changes in NKCC1 and KCC2 protein expression levels in carbamazepine (CBZ)-resistant animals. In the window-pentylenetetrazole (PTZ) kindling model, male Wistar rats that undergo full kindling develop CBZ-resistance. The combination of BUM + PROB appears to have an anticonvulsant effect on CBZ-resistant convulsions, while alterations in the protein levels of the NKCC1 and KCC2 cotransporters are observed in CBZ-resistant animals. Despite the absence of therapeutic efficacy in managing convulsions through adenosine receptor activation (BUM + NECA), the activation of adenosine receptors exhibits the capacity to modulate the levels of the NKCC1 protein in the hippocampus of CBZ-resistant animals. This effect provides the initial evidence for a new therapeutic role of adenosine receptors in regulating the pathological levels of NKCC1 in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Cecilia Zavala-Tecuapetla
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico
| | - Sandra Orozco-Suárez
- Medical Research Unit on Neurological Diseases, Specialty Hospital "Dr. Bernardo Sepúlveda", National Medical Center "XXI Century", Mexican Social Security Institute, Av. Cuauhtémoc 330, Doctores, Mexico City 06720, Mexico
| | - Angélica Vega-García
- Medical Research Unit on Neurological Diseases, Specialty Hospital "Dr. Bernardo Sepúlveda", National Medical Center "XXI Century", Mexican Social Security Institute, Av. Cuauhtémoc 330, Doctores, Mexico City 06720, Mexico
| | - Joaquín Manjarrez-Marmolejo
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico
| |
Collapse
|
2
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
3
|
Zavala-Tecuapetla C, Manjarrez-Marmolejo J, Ramírez-Jarquín JO, Rivera-Cerecedo CV. Eslicarbazepine, but Not Lamotrigine or Ranolazine, Shows Anticonvulsant Efficacy in Carbamazepine-Resistant Rats Developed by Window-Pentylenetetrazole Kindling. Brain Sci 2022; 12:brainsci12050629. [PMID: 35625015 PMCID: PMC9139658 DOI: 10.3390/brainsci12050629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 30% of epileptic patients develop Drug-Resistant Epilepsy. Based on evidence that shows a loss of efficacy in some sodium channel blocker antiseizure drugs in epilepsy, we focus our study on assessing the anticonvulsant efficacy of different sodium channel blockers on carbamazepine (CBZ)-resistant seizures generated using the window-pentylenetetrazole (PTZ) kindling model to verify whether one of these drugs presents some anticonvulsant effect that could have potential therapeutic use. Wistar rats were treated with a subthreshold dose of PTZ (35 mg/kg) three times/week. Fully kindled rats were then treated with a single dose of CBZ (40 mg/kg i.p.) at 2, 9 and 16 days after their last kindling stimulation to obtain CBZ-resistant rats. Right after, sodium channel blockers were tested for anticonvulsant action (lamotrigine, 30 mg/kg i.p.; eslicarbazepine, 150 or 300 mg/kg i.p.; ranolazine, 10, 20 or 40 mg/kg i.p.). Behavioral parameters included severity, latency or duration of convulsions. Our data showed for the first time directly that eslicarbazepine does have an anticonvulsant effect over CBZ-resistant seizures, while lamotrigine shows drug resistance and ranolazine demonstrates severe seizure worsening. It is of potential therapeutic relevance that eslicarbazepine could be useful to control seizures resistant to common sodium channel blockers such as CBZ.
Collapse
Affiliation(s)
- Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico;
- Correspondence:
| | - Joaquín Manjarrez-Marmolejo
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico;
| | - Josué Orlando Ramírez-Jarquín
- Department of Molecular Neuropathology, Institute of Cellular Physiology, National Autonomous University of Mexico, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Claudia Verónica Rivera-Cerecedo
- Bioterium Academic Unit, Institute of Cellular Physiology, National Autonomous University of Mexico, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
4
|
Polak D, Talar M, Wolska N, Wojkowska DW, Karolczak K, Kramkowski K, Bonda TA, Watala C, Przygodzki T. Adenosine Receptor Agonist HE-NECA Enhances Antithrombotic Activities of Cangrelor and Prasugrel in vivo by Decreasing of Fibrinogen Density in Thrombus. Int J Mol Sci 2021; 22:3074. [PMID: 33802928 PMCID: PMC8002731 DOI: 10.3390/ijms22063074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Blood platelets' adenosine receptors (AR) are considered to be a new target for the anti-platelet therapy. This idea is based on in vitro studies which show that signaling mediated by these receptors leads to a decreased platelet response to activating stimuli. In vivo evidence for the antithrombotic activity of AR agonists published to date were limited, however, to the usage of relatively high doses given in bolus. The present study was aimed at verifying if these substances used in lower doses in combination with inhibitors of P2Y12 could serve as components of dual anti-platelet therapy. We have found that a selective A2A agonist 2-hexynyl-5'-N-ethylcarboxamidoadenosine (HE-NECA) improved the anti-thrombotic properties of either cangrelor or prasugrel in the model of ferric chloride-induced experimental thrombosis in mice. Importantly, HE-NECA was effective not only when applied in bolus as other AR agonists in the up-to-date published studies, but also when given chronically. In vitro thrombus formation under flow conditions revealed that HE-NECA enhanced the ability of P2Y12 inhibitors to decrease fibrinogen content in thrombi, possibly resulting in their lower stability. Adenosine receptor agonists possess a certain hypotensive effect and an ability to increase the blood-brain barrier permeability. Therefore, the effects of anti-thrombotic doses of HE-NECA on blood pressure and the blood-brain barrier permeability in mice were tested. HE-NECA applied in bolus caused a significant hypotension in mice, but the effect was much lower when the substance was given in doses corresponding to that obtained by chronic administration. At the same time, no significant effect of HE-NECA was observed on the blood-brain barrier. We conclude that chronic administration of the A2A agonist can be considered a potential component of a dual antithrombotic therapy. However, due to the hypotensive effect of the substances, dosage and administration must be elaborated to minimize the side-effects. The total number of animals used in the experiments was 146.
Collapse
Affiliation(s)
- Dawid Polak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Marcin Talar
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Nina Wolska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Dagmara W. Wojkowska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Kamil Karolczak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-089 Bialystok, Poland;
| | - Tomasz A. Bonda
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| |
Collapse
|