1
|
Qian KW, Li YY, Wu XH, Gong X, Liu AL, Chen WH, Yang Z, Cui LJ, Liu YF, Ma YY, Yu CX, Huang F, Wang Q, Zhou X, Qu J, Zhong YM, Yang XL, Weng SJ. Altered Retinal Dopamine Levels in a Melatonin-proficient Mouse Model of Form-deprivation Myopia. Neurosci Bull 2022; 38:992-1006. [PMID: 35349094 PMCID: PMC9468212 DOI: 10.1007/s12264-022-00842-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
Abstract
Reduced levels of retinal dopamine, a key regulator of eye development, are associated with experimental myopia in various species, but are not seen in the myopic eyes of C57BL/6 mice, which are deficient in melatonin, a neurohormone having extensive interactions with dopamine. Here, we examined the relationship between form-deprivation myopia (FDM) and retinal dopamine levels in melatonin-proficient CBA/CaJ mice. We found that these mice exhibited a myopic refractive shift in form-deprived eyes, which was accompanied by altered retinal dopamine levels. When melatonin receptors were pharmacologically blocked, FDM could still be induced, but its magnitude was reduced, and retinal dopamine levels were no longer altered in FDM animals, indicating that melatonin-related changes in retinal dopamine levels contribute to FDM. Thus, FDM is mediated by both dopamine level-independent and melatonin-related dopamine level-dependent mechanisms in CBA/CaJ mice. The previously reported unaltered retinal dopamine levels in myopic C57BL/6 mice may be attributed to melatonin deficiency.
Collapse
Affiliation(s)
- Kang-Wei Qian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun-Yun Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Hua Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Discipline of Neuroscience and Department of Anatomy and Physiology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Hao Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ling-Jie Cui
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuan-Yuan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Furong Huang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiongsi Wang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Jong M, Jonas JB, Wolffsohn JS, Berntsen DA, Cho P, Clarkson-Townsend D, Flitcroft DI, Gifford KL, Haarman AEG, Pardue MT, Richdale K, Sankaridurg P, Tedja MS, Wildsoet CF, Bailey-Wilson JE, Guggenheim JA, Hammond CJ, Kaprio J, MacGregor S, Mackey DA, Musolf AM, Klaver CCW, Verhoeven VJM, Vitart V, Smith EL. IMI 2021 Yearly Digest. Invest Ophthalmol Vis Sci 2021; 62:7. [PMID: 33909031 PMCID: PMC8088231 DOI: 10.1167/iovs.62.5.7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose The International Myopia Institute (IMI) Yearly Digest highlights new research considered to be of importance since the publication of the first series of IMI white papers. Methods A literature search was conducted for articles on myopia between 2019 and mid-2020 to inform definitions and classifications, experimental models, genetics, interventions, clinical trials, and clinical management. Conference abstracts from key meetings in the same period were also considered. Results One thousand articles on myopia have been published between 2019 and mid-2020. Key advances include the use of the definition of premyopia in studies currently under way to test interventions in myopia, new definitions in the field of pathologic myopia, the role of new pharmacologic treatments in experimental models such as intraocular pressure-lowering latanoprost, a large meta-analysis of refractive error identifying 336 new genetic loci, new clinical interventions such as the defocus incorporated multisegment spectacles and combination therapy with low-dose atropine and orthokeratology (OK), normative standards in refractive error, the ethical dilemma of a placebo control group when myopia control treatments are established, reporting the physical metric of myopia reduction versus a percentage reduction, comparison of the risk of pediatric OK wear with risk of vision impairment in myopia, the justification of preventing myopic and axial length increase versus quality of life, and future vision loss. Conclusions Large amounts of research in myopia have been published since the IMI 2019 white papers were released. The yearly digest serves to highlight the latest research and advances in myopia.
Collapse
Affiliation(s)
- Monica Jong
- Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australian Capital Territory, Australia
- Brien Holden Vision Institute, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Jost B. Jonas
- Department of Ophthalmology Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - James S. Wolffsohn
- Optometry and Vision Science Research Group, Aston University, Birmingham, United Kingdom
| | - David A. Berntsen
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| | - Pauline Cho
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, United States
| | - Daniel I. Flitcroft
- Department of Ophthalmology, Children's University Hospital, Dublin, Ireland
| | - Kate L. Gifford
- Myopia Profile Pty Ltd, Brisbane, Queensland, Australia
- Queensland University of Technology (QUT) School of Optometry and Vision Science, Kelvin Grove, Queensland, Australia
| | - Annechien E. G. Haarman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Machelle T. Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Kathryn Richdale
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Milly S. Tedja
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony M. Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States
| | - Caroline C. W. Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Virginie J. M. Verhoeven
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
3
|
Dai X, Tang Z, Ju Y, Ni N, Gao H, Wang J, Yin L, Liu A, Weng S, Zhang J, Zhang J, Gu P. Effects of blue light-exposed retinal pigment epithelial cells on the process of ametropia. Biochem Biophys Res Commun 2021; 549:14-20. [PMID: 33652205 DOI: 10.1016/j.bbrc.2021.02.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Ametropia is one of the most common ocular disorders worldwide, to which almost half of visual impairments are attributed. Growing evidence has linked the development of ametropia with ambient light, including blue light, which is ubiquitous in our surroundings and has the highest photonic energy among the visible spectrum. However, the underlying mechanism of blue light-mediated ametropia remains controversial and unclear. In the present study, our data demonstrated that exposure of the retinal pigment epithelium (RPE) to blue light elevated the levels of the vital ametropia-related factor type Ⅰ collagen (COL1) via β-catenin inhibition in scleral fibroblasts, leading to axial ametropia (hyperopic shift). Herein, our study provides evidence for the vital role of blue light-induced RPE dysfunction in the process of blue light-mediated ametropia, providing intriguing insights into ametropic aetiology and pathology by proposing a link among blue light, RPE dysfunction and ametropia.
Collapse
Affiliation(s)
- Xiaochan Dai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jiajing Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Luqiao Yin
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Ailin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, China.
| | - Jing Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
4
|
McFadden SA, Wildsoet C. The effect of optic nerve section on form deprivation myopia in the guinea pig. J Comp Neurol 2020; 528:2874-2887. [PMID: 32484917 DOI: 10.1002/cne.24961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/07/2022]
Abstract
Myopia is induced when a growing eye wears a diffuser that deprives it of detailed spatial vision (form deprivation, FD). In chickens with optic nerve section (ONS), FD myopia still occurs, suggesting that the signals underlying myopia reside within the eye. As avian eyes differ from mammals, we asked whether local mechanisms also underlie FD myopia in a mammalian model. Young guinea pigs underwent either sham surgery followed by FD (SHAM + FD, n = 7); or ONS followed by FD (ONS + FD, n = 7); or ONS without FD (ONS, n = 9). FD was initiated 3 days after surgery with a diffuser that was worn on the surgically treated eye for 14 days. Animals with ONS + FD developed -8.9 D of relative myopia and elongated by 135 μm more than in their untreated eyes after 2 weeks of FD. These changes were significantly greater than those in SHAM + FD animals (-5.5 D and 40 μm of elongation after 14 days of FD), and reflected exaggerated elongation of the posterior vitreous chamber. The myopia reversed when FD was discontinued, despite ONS, but eyes did not recover back to normal (30 days after surgery, ONS + FD eyes still retained -3 D of relative myopia when SHAM+FD animals had returned to normal). No long-term residual myopia was present after ONS alone, ruling out a surgical artifact. Although the gross mechanism signaling myopic ocular growth and its recovery in the young mammalian eye does not require an intact optic nerve, its fine-tuning is disrupted by ONS.
Collapse
Affiliation(s)
- Sally A McFadden
- School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Christine Wildsoet
- School of Optometry, University of California, Berkeley, California, USA
| |
Collapse
|