1
|
van de Ven M. How hidden is hidden hearing loss? Self-reported listening problems in charcot Marie tooth disease. JOURNAL OF COMMUNICATION DISORDERS 2025; 113:106487. [PMID: 39637675 DOI: 10.1016/j.jcomdis.2024.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Laboratory studies have revealed hidden hearing loss in patients with Charcot-Marie-Tooth (CMT) disease, the most prevalent inherited neuropathy, which may impact their quality of life. The current study distinguished between CMT type 1, which involves demyelination of the peripheral nerves, and type 2, which concerns dysfunction of peripheral nerves due to axonopathy. The self-reported effects were investigated of CMT1 and CMT2 on listening problems and related social and attentional problems in everyday communicative situations. METHODS Data were collected from 42 CMT1 patients, 30 CMT2 patients, and 72 matched controls (selected from 135 control-group participants), who completed questionnaires concerning listening in everyday and noisy situations, social problems due to hearing difficulties, and problems regarding auditory sustained attention. RESULTS CMT2 patients seemed to suggest only minor listening difficulties. No effects were found for social and attentional problems. In addition, CMT1 patients were found to be associated with more overall listening difficulties in everyday situations, compared to controls. CMT1 patients reported substantial listening difficulties, particularly in noisy and reverberant environments. These problems might be caused by underlying binaural hearing problems combined with reduced processing of temporal and acoustic information, as suggested in the literature. These listening difficulties were associated with social problems, such as social insecurity or even social avoidance, and problems regarding auditory sustained attention. CONCLUSIONS These findings strongly suggest that CMT1 impacts quality of life concerning social communication. The findings presented in this study will benefit diagnosis and treatment of hearing difficulties and related problems in CMT1 patients.
Collapse
Affiliation(s)
- Marco van de Ven
- Radboud University, Behavioural Science Institute, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Tadenev ALD, Hatton CL, Burgess RW. Lack of effect from genetic deletion of Hdac6 in a humanized mouse model of CMT2D. J Peripher Nerv Syst 2024; 29:213-220. [PMID: 38551018 PMCID: PMC11209801 DOI: 10.1111/jns.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Inhibition of HDAC6 has been proposed as a broadly applicable therapeutic strategy for Charcot-Marie-Tooth disease (CMT). Inhibition of HDAC6 increases the acetylation of proteins important in axonal trafficking, such as α-tubulin and Miro, and has been shown to be efficacious in several preclinical studies using mouse models of CMT. AIMS Here, we sought to expand on previous preclinical studies by testing the effect of genetic deletion of Hdac6 on mice carrying a humanized knockin allele of Gars1, a model of CMT-type 2D. METHODS Gars1ΔETAQ mice were bred to an Hdac6 knockout strain, and the resulting offspring were evaluated for clinically relevant outcomes. RESULTS The genetic deletion of Hdac6 increased α-tubulin acetylation in the sciatic nerves of both wild-type and Gars1ΔETAQ mice. However, when tested at 5 weeks of age, the Gars1ΔETAQ mice lacking Hdac6 showed no changes in body weight, muscle atrophy, grip strength or endurance, sciatic motor nerve conduction velocity, compound muscle action potential amplitude, or peripheral nerve histopathology compared to Gars1ΔETAQ mice with intact Hdac6. INTERPRETATION Our results differ from those of two previous studies that demonstrated the benefit of the HDAC6 inhibitor tubastatin A in mouse models of CMT2D. While we cannot fully explain the different outcomes, our results offer a counterexample to the benefit of inhibiting HDAC6 in CMT2D, suggesting additional research is necessary.
Collapse
|
3
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
4
|
Pisciotta C, Shy ME. Hereditary neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:609-617. [PMID: 37562889 DOI: 10.1016/b978-0-323-98818-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
5
|
Chen X, Liu F, Chen K, Wang Y, Yin A, Kang X, Yang S, Zhao H, Dong S, Li Y, Chen J, Wu Y. TFG mutation induces haploinsufficiency and drives axonal Charcot-Marie-Tooth disease by causing neurite degeneration. CNS Neurosci Ther 2022; 28:2076-2089. [PMID: 35986567 PMCID: PMC9627391 DOI: 10.1111/cns.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS TFG-related axonal Charcot-Marie-Tooth (CMT) disease is a late-onset, autosomal dominant, hereditary motor, and sensory neuropathy characterized by slowly progressive weakness and atrophy of the distal muscles. The objective of this study was to determine the common pathogenic mechanism of TFG-related CMT type 2 (CMT2) caused by different mutations and establish a direct association between TFG haploinsufficiency and neurodegeneration. METHODS Three individuals carrying the TFG p.G269V mutation but with varying disease durations were studied. The effect of the p.G269V mutation was confirmed by analyzing protein samples extracted from the blood of two individuals. The functional consequences of both CMT2 mutant gene products were evaluated in vitro. The effect of TFG deficiency in the nervous system was examined using zebrafish models and cultured mouse neurons. RESULTS Overexpression of p.G269V TFG failed to enhance soluble TFG levels by generating insoluble TFG aggregates. TFG deficiency disrupted neurite outgrowth and induced neuronal apoptosis both in vivo and in vitro and further impaired locomotor capacity in zebrafish, which was consistent with the phenotype in patients. Wnt signaling was activated as a protective factor in response to TFG deficiency. CONCLUSION CMT2-related TFG mutation induces TFG haploinsufficiency within cells and drives disease by causing progressive neurite degeneration.
Collapse
Affiliation(s)
- Xihui Chen
- Department of Biochemistry and Molecular Biology, School of Basic MedicineAir Force Medical UniversityXi'anChina,Shaanxi Provincial Key Laboratory of Clinic GeneticsAir Force Medical UniversityXi'anChina
| | - Fangfang Liu
- Department of Neurobiology, School of Basic MedicineAir Force Medical UniversityXi'anChina
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic MedicineAir Force Medical UniversityXi'anChina
| | - Yufeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic MedicineAir Force Medical UniversityXi'anChina,Shaanxi Provincial Key Laboratory of Clinic GeneticsAir Force Medical UniversityXi'anChina,Medical GeneticsYan'an UniversityYan'anChina
| | - Anan Yin
- Department of Neurosurgery, Department of Plastic surgery, Xijing Institute of Clinical Neuroscience, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Xiaowei Kang
- Department of radiologyXi'an people's hospital (Xi'an fourth hospital)Xi'anChina
| | - Shanming Yang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic MedicineAir Force Medical UniversityXi'anChina
| | - Hanwen Zhao
- Student BrigadeAir Force Medical UniversityXi'anChina
| | - Songqi Dong
- Student BrigadeAir Force Medical UniversityXi'anChina
| | - Yunqing Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic MedicineAir Force Medical UniversityXi'anChina
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic MedicineAir Force Medical UniversityXi'anChina
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, School of Basic MedicineAir Force Medical UniversityXi'anChina,Shaanxi Provincial Key Laboratory of Clinic GeneticsAir Force Medical UniversityXi'anChina
| |
Collapse
|
6
|
Ostertag C, Klein D, Martini R. Presymptomatic macrophage targeting has a long-lasting therapeutic effect on treatment termination. Exp Neurol 2022; 357:114195. [PMID: 35931123 DOI: 10.1016/j.expneurol.2022.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022]
Abstract
Macrophage-mediated inflammation is a potent driver of disease progression in mouse models of Charcot-Marie-Tooth (CMT) 1 diseases. This leads to the possibility to consider these cells as therapeutic targets to dampen disease outcome in the so far non-treatable neuropathies. As a pharmacological proof-of-principle study, long-term targeting of nerve macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 showed a substantial alleviation of the neuropathy in distinct CMT1 mouse models. However, regarding translational options, clinically relevant questions emerged regarding treatment onset, duration and termination. Corroborating previous data, we here show that in a model for CMT1B, peripheral neuropathy was substantially alleviated after early continuous PLX5622 treatment in CMT1B mice, leading to preserved motor function. However, late-onset treatment failed to mitigate histopathological and clinical features, despite a similar reduction in the number of macrophages. Surprisingly, in CMT1B mice, terminating early PLX5622 treatment at six months was still sufficient to preserve motor function at 12 months of age, suggesting a long-lasting, therapeutic effect of early macrophage depletion. This novel and unexpected finding may have important translational implications, since we here show that continuous macrophage targeting appears not to be necessary for disease alleviation, provided that the treatment starts within an early, critical time window.
Collapse
Affiliation(s)
- Charlotte Ostertag
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Balashova NV, Zavileyskiy LG, Artiukhov AV, Shaposhnikov LA, Sidorova OP, Tishkov VI, Tramonti A, Pometun AA, Bunik VI. Efficient Assay and Marker Significance of NAD+ in Human Blood. Front Med (Lausanne) 2022; 9:886485. [PMID: 35665345 PMCID: PMC9162244 DOI: 10.3389/fmed.2022.886485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidized nicotinamide adenine dinucleotide (NAD+) is a biological molecule of systemic importance. Essential role of NAD+ in cellular metabolism relies on the substrate action in various redox reactions and cellular signaling. This work introduces an efficient enzymatic assay of NAD+ content in human blood using recombinant formate dehydrogenase (FDH, EC 1.2.1.2), and demonstrates its diagnostic potential, comparing NAD+ content in the whole blood of control subjects and patients with cardiac or neurological pathologies. In the control group (n = 22, 25–70 years old), our quantification of the blood concentration of NAD+ (18 μM, minimum 15, max 23) corresponds well to NAD+ quantifications reported in literature. In patients with demyelinating neurological diseases (n = 10, 18–55 years old), the NAD+ levels significantly (p < 0.0001) decrease (to 14 μM, min 13, max 16), compared to the control group. In cardiac patients with the heart failure of stage II and III according to the New York Heart Association (NYHA) functional classification (n = 24, 42–83 years old), the blood levels of NAD+ (13 μM, min 9, max 18) are lower than those in the control subjects (p < 0.0001) or neurological patients (p = 0.1). A better discrimination of the cardiac and neurological patients is achieved when the ratios of NAD+ to the blood creatinine levels, mean corpuscular volume or potassium ions are compared. The proposed NAD+ assay provides an easy and robust tool for clinical analyses of an important metabolic indicator in the human blood.
Collapse
Affiliation(s)
- Natalia V. Balashova
- Department of Clinical Laboratory Diagnostics, Faculty of Advanced Medicine, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
- Department of Dietetics and Clinical Nutritionology, Faculty of Continuing Medical Education, RUDN Medical Institute, Moscow, Russia
| | - Lev G. Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Artiukhov
- Department of Biokinetics, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Leonid A. Shaposhnikov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Olga P. Sidorova
- Department of Neurology, Faculty of Advanced Medicine, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Vladimir I. Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Department of Biochemical Sciences “A. Rossi Fanelli,” Sapienza University of Rome, Rome, Italy
| | - Anastasia A. Pometun
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biokinetics, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
- *Correspondence: Victoria I. Bunik,
| |
Collapse
|
8
|
Burgess RW, Saporta MA. Brain research special issue on CMT, editorial. Brain Res 2022; 1785:147891. [PMID: 35339430 DOI: 10.1016/j.brainres.2022.147891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Mario A Saporta
- Departments of Neurology and Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33124, USA
| |
Collapse
|
9
|
Moss KR, Johnson AE, Bopp TS, Yu ATY, Perry K, Chung T, Höke A. SARM1 knockout does not rescue neuromuscular phenotypes in a Charcot-Marie-Tooth disease Type 1A mouse model. J Peripher Nerv Syst 2022; 27:58-66. [PMID: 35137510 PMCID: PMC8940700 DOI: 10.1111/jns.12483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
Abstract
Charcot-Marie-Tooth disease Type 1A (CMT1A) is caused by duplication of the PMP22 gene and is the most common inherited peripheral neuropathy. Although CMT1A is a dysmyelinating peripheral neuropathy, secondary axon degeneration has been suggested to drive functional deficits in patients. Given that SARM1 knockout is a potent inhibitor of the programmed axon degeneration pathway, we asked whether SARM1 knockout rescues neuromuscular phenotypes in CMT1A model (C3-PMP) mice. CMT1A mice were bred with SARM1 knockout mice to generate CMT1A/SARM1-/- mice. A series of behavioral assays were employed to evaluate motor and sensorimotor function. Electrophysiological and histological studies of the tibial branch of the sciatic nerve were performed. Additionally, gastrocnemius and soleus muscle morphology were evaluated histologically. Although clear behavioral and electrophysiological deficits were observed in CMT1A model mice, genetic deletion of SARM1 conferred no significant improvement. Nerve morphometry revealed predominantly myelin deficits in CMT1A model mice and SARM1 knockout yielded no improvement in all nerve morphometry measures. Similarly, muscle morphometry deficits in CMT1A model mice were not improved by SARM1 knockout. Our findings demonstrate that programmed axon degeneration pathway inhibition does not provide therapeutic benefit in C3-PMP CMT1A model mice. Our results indicate that the clinical phenotypes observed in CMT1A mice are likely caused primarily by prolonged dysmyelination, motivate further investigation into mechanisms of dysmyelination in these mice and necessitate the development of improved CMT1A rodent models that recapitulate the secondary axon degeneration observed in patients.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anna E. Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Taylor S. Bopp
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD
| | - Andrew T-Y. Yu
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ken Perry
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD,Corresponding Author: Ahmet Höke MD, PhD, Johns Hopkins School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205, Tel: 410-955-2227, Fax: 410-502-5459,
| |
Collapse
|
10
|
Hines TJ, Lutz C, Murray SA, Burgess RW. An Integrated Approach to Studying Rare Neuromuscular Diseases Using Animal and Human Cell-Based Models. Front Cell Dev Biol 2022; 9:801819. [PMID: 35047510 PMCID: PMC8762301 DOI: 10.3389/fcell.2021.801819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.
Collapse
|
11
|
Mitochondrial dysfunction as a trigger of programmed axon death. Trends Neurosci 2021; 45:53-63. [PMID: 34852932 DOI: 10.1016/j.tins.2021.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022]
Abstract
Mitochondrial failure has long been associated with programmed axon death (Wallerian degeneration, WD), a widespread and potentially preventable mechanism of axon degeneration. While early findings in axotomised axons indicated that mitochondria are involved during the execution steps of this pathway, recent studies suggest that in addition, mitochondrial dysfunction can initiate programmed axon death without physical injury. As mitochondrial dysfunction is associated with disorders involving early axon loss, including Parkinson's disease, peripheral neuropathies, and multiple sclerosis, the findings that programmed axon death is activated by mitochondrial impairment could indicate the involvement of druggable mechanisms whose disruption may protect axons in such diseases. Here, we review the latest developments linking mitochondrial dysfunction to programmed axon death and discuss their implications for injury and disease.
Collapse
|
12
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Mendonsa S, von Kuegelgen N, Bujanic L, Chekulaeva M. Charcot-Marie-Tooth mutation in glycyl-tRNA synthetase stalls ribosomes in a pre-accommodation state and activates integrated stress response. Nucleic Acids Res 2021; 49:10007-10017. [PMID: 34403468 PMCID: PMC8464049 DOI: 10.1093/nar/gkab730] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022] Open
Abstract
Toxic gain-of-function mutations in aminoacyl-tRNA synthetases cause a degeneration of peripheral motor and sensory axons, known as Charcot-Marie-Tooth (CMT) disease. While these mutations do not disrupt overall aminoacylation activity, they interfere with translation via an unknown mechanism. Here, we dissect the mechanism of function of CMT mutant glycyl-tRNA synthetase (CMT-GARS), using high-resolution ribosome profiling and reporter assays. We find that CMT-GARS mutants deplete the pool of glycyl-tRNAGly available for translation and inhibit the first stage of elongation, the accommodation of glycyl-tRNA into the ribosomal A-site, which causes ribosomes to pause at glycine codons. Moreover, ribosome pausing activates a secondary repression mechanism at the level of translation initiation, by inducing the phosphorylation of the alpha subunit of eIF2 and the integrated stress response. Thus, CMT-GARS mutant triggers translational repression via two interconnected mechanisms, affecting both elongation and initiation of translation.
Collapse
Affiliation(s)
- Samantha Mendonsa
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Nicolai von Kuegelgen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Lucija Bujanic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
14
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
15
|
Bosanac T, Hughes RO, Engber T, Devraj R, Brearley A, Danker K, Young K, Kopatz J, Hermann M, Berthemy A, Boyce S, Bentley J, Krauss R. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain 2021; 144:3226-3238. [PMID: 33964142 PMCID: PMC8634121 DOI: 10.1093/brain/awab184] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/02/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Axonal degeneration is an early and ongoing event that causes disability and disease progression in many neurodegenerative disorders of the peripheral and central nervous systems. Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of morbidity and the main cause of dose reductions and discontinuations in cancer treatment. Preclinical evidence indicates that activation of the Wallerian-like degeneration pathway driven by sterile alpha and TIR motif containing 1 (SARM1) is responsible for axonopathy in CIPN. SARM1 is the central driver of an evolutionarily conserved programme of axonal degeneration downstream of chemical, inflammatory, mechanical or metabolic insults to the axon. SARM1 contains an intrinsic NADase enzymatic activity essential for its pro-degenerative functions, making it a compelling therapeutic target to treat neurodegeneration characterized by axonopathies of the peripheral and central nervous systems. Small molecule SARM1 inhibitors have the potential to prevent axonal degeneration in peripheral and central axonopathies and to provide a transformational disease-modifying treatment for these disorders. Using a biochemical assay for SARM1 NADase we identified a novel series of potent and selective irreversible isothiazole inhibitors of SARM1 enzymatic activity that protected rodent and human axons in vitro. In sciatic nerve axotomy, we observed that these irreversible SARM1 inhibitors decreased a rise in nerve cADPR and plasma neurofilament light chain released from injured sciatic nerves in vivo. In a mouse paclitaxel model of CIPN we determined that Sarm1 knockout mice prevented loss of axonal function, assessed by sensory nerve action potential amplitudes of the tail nerve, in a gene-dosage-dependent manner. In that CIPN model, the irreversible SARM1 inhibitors prevented loss of intraepidermal nerve fibres induced by paclitaxel and provided partial protection of axonal function assessed by sensory nerve action potential amplitude and mechanical allodynia.
Collapse
Affiliation(s)
- Todd Bosanac
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| | - Robert O Hughes
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| | - Thomas Engber
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| | - Rajesh Devraj
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| | | | | | | | | | | | | | | | | | - Raul Krauss
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| |
Collapse
|
16
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
17
|
Kang BE, Choi JY, Stein S, Ryu D. Implications of NAD + boosters in translational medicine. Eur J Clin Invest 2020; 50:e13334. [PMID: 32594513 DOI: 10.1111/eci.13334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential metabolite in energy metabolism as well as a co-substrate in biochemical reactions such as protein deacylation, protein ADP-ribosylation and cyclic ADP-ribose synthesis mediated by sirtuins, poly (ADP-ribose) polymerases (PARPs) and CD38. In eukaryotic cells, NAD+ is synthesized through three distinct pathways, which offer different strategies to modulate the bioavailability of NAD+ . The therapeutic potential of dietarily available NAD+ boosters preserving the NAD+ pool has been attracting attention after the discovery of declining NAD+ levels in ageing model organisms as well as in several age-related diseases, including cardiometabolic and neurodegenerative diseases. Here, we review the recent advances in the biology of NAD+ , including the salubrious effects of NAD+ boosters and discuss their future translational strategies.
Collapse
Affiliation(s)
- Baeki E Kang
- Molecular and Integrative Biology Lab (MIB), Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jun-Yong Choi
- Department of Internal Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Dongryeol Ryu
- Molecular and Integrative Biology Lab (MIB), Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|