1
|
Jiang L, Liu N, Zhao F, Huang B, Kang D, Zhan P, Liu X. Discovery of GluN2A subtype-selective N-methyl-d-aspartate (NMDA) receptor ligands. Acta Pharm Sin B 2024; 14:1987-2005. [PMID: 38799621 PMCID: PMC11119548 DOI: 10.1016/j.apsb.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptors, which belong to the ionotropic Glutamate receptors, constitute a family of ligand-gated ion channels. Within the various subtypes of NMDA receptors, the GluN1/2A subtype plays a significant role in central nervous system (CNS) disorders. The present article aims to provide a comprehensive review of ligands targeting GluN2A-containing NMDA receptors, encompassing negative allosteric modulators (NAMs), positive allosteric modulators (PAMs) and competitive antagonists. Moreover, the ligands' structure-activity relationships (SARs) and the binding models of representative ligands are also discussed, providing valuable insights for the clinical rational design of effective drugs targeting CNS diseases.
Collapse
Affiliation(s)
| | | | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
2
|
Gawande DY, S Narasimhan KK, Shelkar GP, Pavuluri R, Stessman HAF, Dravid SM. GluN2D Subunit in Parvalbumin Interneurons Regulates Prefrontal Cortex Feedforward Inhibitory Circuit and Molecular Networks Relevant to Schizophrenia. Biol Psychiatry 2023; 94:297-309. [PMID: 37004850 PMCID: PMC10524289 DOI: 10.1016/j.biopsych.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Parvalbumin interneuron (PVI) activity synchronizes the medial prefrontal cortex circuit for normal cognitive function, and its impairment may contribute to schizophrenia (SZ). NMDA receptors in PVIs participate in these activities and form the basis for the NMDA receptor hypofunction hypothesis of SZ. However, the role of the GluN2D subunit, which is enriched in PVIs, in regulating molecular networks relevant to SZ is unknown. METHODS Using electrophysiology and a mouse model with conditional deletion of GluN2D from PVIs (PV-GluN2D knockout [KO]), we examined the cell excitability and neurotransmission in the medial prefrontal cortex. Histochemical, RNA sequencing analysis and immunoblotting were conducted to understand molecular mechanisms. Behavioral analysis was conducted to test cognitive function. RESULTS PVIs in the medial prefrontal cortex were found to express putative GluN1/2B/2D receptors. In a PV-GluN2D KO model, PVIs were hypoexcitable, whereas pyramidal neurons were hyperexcitable. Excitatory neurotransmission was higher in both cell types in PV-GluN2D KO, whereas inhibitory neurotransmission showed contrasting changes, which could be explained by reduced somatostatin interneuron projections and increased PVI projections. Genes associated with GABA (gamma-aminobutyric acid) synthesis, vesicular release, and uptake as well as those involved in formation of inhibitory synapses, specifically GluD1-Cbln4 and Nlgn2, and regulation of dopamine terminals were downregulated in PV-GluN2D KO. SZ susceptibility genes including Disc1, Nrg1, and ErbB4 and their downstream targets were also downregulated. Behaviorally, PV-GluN2D KO mice showed hyperactivity and anxiety behavior and deficits in short-term memory and cognitive flexibility. CONCLUSIONS These findings demonstrate that GluN2D in PVIs serves as a point of convergence of pathways involved in the regulation of GABAergic synapses relevant to SZ.
Collapse
Affiliation(s)
- Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | | | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Holly A F Stessman
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska.
| |
Collapse
|
3
|
Vinnakota C, Hudson MR, Jones NC, Sundram S, Hill RA. Potential Roles for the GluN2D NMDA Receptor Subunit in Schizophrenia. Int J Mol Sci 2023; 24:11835. [PMID: 37511595 PMCID: PMC10380280 DOI: 10.3390/ijms241411835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, Zhu S. Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Nat Struct Mol Biol 2023; 30:629-639. [PMID: 36959261 DOI: 10.1038/s41594-023-00959-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors are heterotetramers comprising two GluN1 and two alternate GluN2 (N2A-N2D) subunits. Here we report full-length cryo-EM structures of the human N1-N2D di-heterotetramer (di-receptor), rat N1-N2C di-receptor and N1-N2A-N2C tri-heterotetramer (tri-receptor) at a best resolution of 3.0 Å. The bilobate N-terminal domain (NTD) in N2D intrinsically adopts a closed conformation, leading to a compact NTD tetramer in the N1-N2D receptor. Additionally, crosslinking the ligand-binding domain (LBD) of two N1 protomers significantly elevated the channel open probability (Po) in N1-N2D di-receptors. Surprisingly, the N1-N2C di-receptor adopted both symmetric (minor) and asymmetric (major) conformations, the latter further locked by an allosteric potentiator, PYD-106, binding to a pocket between the NTD and LBD in only one N2C protomer. Finally, the N2A and N2C subunits in the N1-N2A-N2C tri-receptor display a conformation close to one protomer in the N1-N2A and N1-N2C di-receptors, respectively. These findings provide a comprehensive structural understanding of diverse function in major NMDA receptor subtypes.
Collapse
Affiliation(s)
- Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Han Wen
- DP Technology, Beijing, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | - Fenyong Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nan Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zengwei Kou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fei Guo
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Eapen AV, Fernández-Fernández D, Georgiou J, Bortolotto ZA, Lightman S, Jane DE, Volianskis A, Collingridge GL. Multiple roles of GluN2D-containing NMDA receptors in short-term potentiation and long-term potentiation in mouse hippocampal slices. Neuropharmacology 2021; 201:108833. [PMID: 34637787 PMCID: PMC8607330 DOI: 10.1016/j.neuropharm.2021.108833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023]
Abstract
The GluN2 subunits of N-methyl-d-aspartate receptors (NMDARs) are key drivers of synaptic plasticity in the brain, where the particular GluN2 composition endows the NMDAR complex with distinct pharmacological and physiological properties. Compared to GluN2A and GluN2B subunits, far less is known about the role of the GluN2D subunit in synaptic plasticity. In this study, we have used a GluN2C/2D selective competitive antagonist, UBP145, in combination with a GluN2D global knockout (GluN2D KO) mouse line to study the contribution of GluN2D-containing NMDARs to short-term potentiation (STP) and long-term potentiation (LTP) in the CA1 region of mouse hippocampal slices. We made several distinct observations: First, GluN2D KO mice have higher levels of LTP compared to wild-type (WT) mice, an effect that was occluded by blockade of GABA receptor-mediated inhibition or by using a strong LTP induction protocol. Second, UBP145 partially inhibited LTP in WT but not GluN2D KO mice. Third, UBP145 inhibited a component of STP, termed STP2, in WT but not GluN2D KO mice. Taken together, these findings suggest an involvement for GluN2D-containing NMDARs in both STP and LTP in mouse hippocampus.
Collapse
Affiliation(s)
- Alen V Eapen
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.
| | - Diego Fernández-Fernández
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Arturas Volianskis
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Bristol Medical School, University of Bristol, Bristol, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Chipman PH, Fung CCA, Pazo Fernandez A, Sawant A, Tedoldi A, Kawai A, Ghimire Gautam S, Kurosawa M, Abe M, Sakimura K, Fukai T, Goda Y. Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum. eLife 2021; 10:70818. [PMID: 34693906 PMCID: PMC8594917 DOI: 10.7554/elife.70818] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs, although their exact function has remained controversial. Here, we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons. Interfering with astrocyte NMDAR or GluN2C NMDAR activity reduces the range of presynaptic strength distribution specifically in the stratum radiatum inputs without an appreciable change in the mean presynaptic strength. Mathematical modeling shows that narrowing of the width of presynaptic release probability distribution compromises the expression of long-term synaptic plasticity. Our findings suggest a novel feedback signaling system that uses astrocyte GluN2C NMDARs to adjust basal synaptic weight distribution of Schaffer collateral inputs, which in turn impacts computations performed by the CA1 pyramidal neuron.
Collapse
Affiliation(s)
| | - Chi Chung Alan Fung
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | | | | | - Angelo Tedoldi
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Atsushi Kawai
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | | | | | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Yukiko Goda
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| |
Collapse
|
8
|
Peyvandi Karizbodagh M, Sadr-Nabavi A, Hami J, Mohammadipour A, Khoshdel-Sarkarizi H, Kheradmand H, Fallahnezhad S, Mahmoudi M, Haghir H. Developmental regulation and lateralization of N-methyl-d-aspartate (NMDA) receptors in the rat hippocampus. Neuropeptides 2021; 89:102183. [PMID: 34333368 DOI: 10.1016/j.npep.2021.102183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/01/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are expressed abundantly in the brain and play a crucial role in the regulation of central nervous system (CNS) development, learning, and memory. During early neuronal development, NMDARs modulate neurogenesis, neuronal differentiation and migration, and synaptogenesis. The present study aimed to examine the developmental expression of NMDARs subunits, NR1 and NR2B, in the developing hippocampus of neonatal rats during the first two postnatal weeks. Fifty-four male offspring were randomly divided into three age groups, postnatal days (P) 0, 7, and 14. Real-time-PCR, western blotting, and immunohistochemistry (IHC) analyses were employed to examine and compare the hippocampal expression of the NMDA receptor subunits. The highest mRNA expression of NR1 and NR2B subunits was observed at P7, regardless of its laterality. The mRNA expression of both subunits in the right hippocampus was significantly higher than that of the left one at P0 and P7. Similarly, the highest protein level expression of NR1 and NR2B subunits was also observed at P7 in both sides hippocampi. Although the protein expression of NR1 was significantly higher on the right side in all studied days, the NR2B was significantly higher in the right hippocampus only at P7. The analysis of optical density (OD) has shown a marked increase in the distribution pattern of the NR1 and NR2B subunits at P7 in all hippocampal subregions. In conclusion, there is a marked right-left asymmetry in the expression of NR1 and NR2B subunits in the developing rat hippocampus, which might be considered as a probable mechanism for the lateral differences in the structure and function of the hippocampus in rats.
Collapse
Affiliation(s)
- Mostafa Peyvandi Karizbodagh
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Institute of Anatomy and Cell Biology, Universitäsmedizin Greifswald, 17487 Greifswald, Germany
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Khoshdel-Sarkarizi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fallahnezhad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, School of Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Liu J, Shelkar GP, Sarode LP, Gawande DY, Zhao F, Clausen RP, Ugale RR, Dravid SM. Facilitation of GluN2C-containing NMDA receptors in the external globus pallidus increases firing of fast spiking neurons and improves motor function in a hemiparkinsonian mouse model. Neurobiol Dis 2021; 150:105254. [PMID: 33421565 PMCID: PMC8063913 DOI: 10.1016/j.nbd.2021.105254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Globus pallidus externa (GPe) is a nucleus in the basal ganglia circuitry involved in the control of movement. Recent studies have demonstrated a critical role of GPe cell types in Parkinsonism. Specifically increasing the function of parvalbumin (PV) neurons in the GPe has been found to facilitate motor function in a mouse model of Parkinson’s disease (PD). The knowledge of contribution of NMDA receptors to GPe function is limited. Here, we demonstrate that fast spiking neurons in the GPe express NMDA receptor currents sensitive to GluN2C/GluN2D-selective inhibitors and glycine site agonist with higher efficacy at GluN2C-containing receptors. Furthermore, using a novel reporter model, we demonstrate the expression of GluN2C subunits in PV neurons in the GPe which project to subthalamic nuclei. GluN2D subunit was also found to localize to PV neurons in GPe. Ablation of GluN2C subunit does not affect spontaneous firing of fast spiking neurons. In contrast, facilitating the function of GluN2C-containing receptors using glycine-site NMDA receptor agonists, D-cycloserine (DCS) or AICP, increased the spontaneous firing frequency of PV neurons in a GluN2C-dependent manner. Finally, we demonstrate that local infusion of DCS or AICP into the GPe improved motor function in a mouse model of PD. Together, these results demonstrate that GluN2C-containing receptors and potentially GluN2D-containing receptors in the GPe may serve as a therapeutic target for alleviating motor dysfunction in PD and related disorders.
Collapse
Affiliation(s)
- Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India
| | - Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Fabao Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rasmus Praetorius Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India
| | - Shashank Manohar Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America.
| |
Collapse
|
10
|
Ahmed H, Haider A, Ametamey SM. N-Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opin Ther Pat 2020; 30:743-767. [PMID: 32926646 DOI: 10.1080/13543776.2020.1811234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION - The NMDA receptor is implicated in various diseases including neurodegenerative, neurodevelopmental and mood disorders. However, only a limited number of clinically approved NMDA receptor modulators are available. Today, apparent NMDA receptor drug development strategies entail 1) exploring the unknown chemical space to identify novel scaffolds; 2) using the clinically available NMDA receptor modulators to expand the therapeutic indication space; 3) and to trace physiological functions of the NMDA receptor. AREAS COVERED - The current review reflects on the functional and pharmacological facets of NMDA receptors and the current clinical status quo of NMDA receptor modulators. Patent literature covering 2015 till April 2020 is discussed with emphasis on new indications. EXPERT OPINION - Supporting evidence shows that subtype-selective NMDA receptor antagonists show an improved safety profile compared to broad-spectrum channel blockers. Although GluN2B-selective antagonists are by far the most extensively investigated subtype-selective modulators, they have shown only modest clinical efficacy so far. To overcome the limitations that have hampered the clinical development of previous subtype-selective NMDA receptor antagonists, future studies with improved animal models that better reflect human NMDA receptor pathophysiology are warranted. The increased availability of subtype-selective probes will allow target engagement studies and proper dose finding in future clinical trials.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich , Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich , Schlieren, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|