1
|
Alves RL, Gonçalves A, Voytyuk I, Harrison DC. Behaviour profile characterization of PS19 and rTg4510 tauopathy mouse models: A systematic review and a meta-analysis. Exp Neurol 2025; 389:115234. [PMID: 40185359 DOI: 10.1016/j.expneurol.2025.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The rTg4510 and PS19 mouse models are widely used in tauopathy research. Alzheimer's disease (AD) is the most prevalent among tauopathies. Behavioural tests are frequently used to assess emotional, cognitive, and motor behaviours in mouse models of AD. Cognitive deficits begin to manifest in rTg4510 mice around 3 months of age and in PS19 mice around 6 months. However, it's widely recognized that behavioural outcomes can vary due to environmental factors, health status, and husbandry practices, causing phenotypic differences between facilities. This study aims to consolidate current knowledge of the behavioural phenotypes of these two mouse models. We conducted a comprehensive literature review using keyword searches with Boolean operators across databases up to January 2024. Additional studies were included from manual searches. A total of 23 articles were reviewed for rTg4510 mice and 52 for PS19 mice. We extracted methodological details and key findings from each study. Results for rTg4510 mice show consistent findings regarding locomotion, memory and learning, and neurological dysfunction. However, the limited studies on motor and balance behaviour revealed no significant differences, while anxiety-like behaviour showed some inconsistencies. PS19 mice demonstrate more robust results for anxiety-like behaviour, memory and learning, and locomotion, while findings for balance and coordination are more inconsistent. Although there is overall coherence in certain aspects of the behavioural profiles of these tauopathy mouse models, it is crucial to recognize experimental heterogeneity and profile behavioural baselines to optimize the testing of both genetic and pharmacological interventions.
Collapse
Affiliation(s)
- Renata L Alves
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom.
| | | | - Iryna Voytyuk
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - David C Harrison
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| |
Collapse
|
2
|
Micheau J, Catheline G, Barse E, Hiba B, Marcilhac A, Allard M, Platt B, Riedel G. PLB2 Tau mice are impaired in novel and temporal object recognition and show corresponding traits in brain MRI. Brain Res Bull 2025; 220:111161. [PMID: 39645049 DOI: 10.1016/j.brainresbull.2024.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Recent clinical trials targeting tau protein aggregation have heightened interest in tau-based therapies for dementia. Success of such treatments depends crucially on translation from non-clinical animal models. Here, we present the age profile of the PLB2Tau knock-in model of fronto-temporal dementia in terms of cognition, and by utilising a directly translatable magnetic resonance imaging approach. Separate cohorts of mice aged 3, 6 and 12 months were tested in an object recognition protocol interrogating visual, spatial, and temporal discrimination in consecutive tests. Upon completion of their behavioural testing, animals were recorded in a 7 T MRI for brain structural integrity and diffusion tensor imaging (DTI) analysis. We report that PLB2Tau mice presented with an age-dependent deficit in novel object discrimination relative to wild-type controls at 6 and 12 months. Spatial and temporal discrimination, though not significantly different from controls, appeared extremely challenging for PLB2Tau subjects, especially at 12 months, since they explored objects less than controls and were devoid of memory. Controls readily recalled all relevant object-related information. At the same time, the T2 weighted voxel-based image analysis revealed a progressive shrinkage of total brain volumes in 6- and 12-month-old PLB2Tau mice as well as relative striatal, but not hippocampal volumes. A regional DTI analysis yielded only reduced mean diffusivity of the fimbria, but not CA1 or dentate gyrus, amygdala, cingulate cortex, or corpus callosum. These data confirm the PLB2Tau mouse as a translationally useful model for dementia research and suggest the importance of the hippocampal input as a determinant for novel object discrimination.
Collapse
Affiliation(s)
- Jacques Micheau
- University of Bordeaux, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France; Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France; Present address: Neurocentre Magendie, University of Bordeaux, INSERM U862, 146, rue Léo Saignat, Bordeaux cedex 33076, France
| | - Gwenaelle Catheline
- University of Bordeaux, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France; Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France
| | - Elodie Barse
- Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France
| | - Bassem Hiba
- Institute of Cognitive Sciences Marc Jeannerod, University of Lyon 1, UMR CNRS 5229, Bron 69500, France
| | - Anne Marcilhac
- MMDN, University of Montpellier 2, INSERM U1198 - EPHE-PSL University, Montpellier 34095, France
| | - Michèle Allard
- Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR CNRS 5287, EPHE-PSL, 176 rue Léo Saignat, Bordeaux Cedex 33076, France
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
3
|
Yu J, Zhao Y, Gong XK, Liang Z, Zhao YN, Li X, Chen YJ, Yang YH, Wu MJ, Wang XC, Shu XJ, Bao J. P25/CDK5-mediated Tau Hyperphosphorylation in Both Ipsilateral and Contralateral Cerebra Contributes to Cognitive Deficits in Post-stroke Mice. Curr Med Sci 2023; 43:1084-1095. [PMID: 37924385 DOI: 10.1007/s11596-023-2792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE Post-stroke cognitive impairment (PSCI) develops in approximately one-third of stroke survivors and is associated with ingravescence. Nonetheless, the biochemical mechanisms underlying PSCI remain unclear. The study aimed to establish an ischemic mouse model by means of transient unilateral middle cerebral artery occlusions (MCAOs) and to explore the biochemical mechanisms of p25/cyclin-dependent kinase 5 (CDK5)-mediated tau hyperphosphorylation on the PSCI behavior. METHODS Cognitive behavior was investigated, followed by the detection of tau hyperphosphorylation, mobilization, activation of kinases and/or inhibition of phosphatases in the lateral and contralateral cerebrum of mice following ischemia in MACO mice. Finally, we treated HEK293/tau cells with oxygen-glucose deprivation (OGD) and a CDK5 inhibitor (Roscovitine) or a GSK3β inhibitor (LiCl) to the roles of CDK5 and GSK3β in mediating ischemia-reperfusion-induced tau phosphorylation. RESULTS Ischemia induced cognitive impairments within 2 months, as well as causing tau hyperphosphorylation and its localization to neuronal somata in both ipsilateral and contralateral cerebra. Furthermore, p25 that promotes CDK5 hyperactivation had significantly higher expression in the mice with MCAO than in the shamoperation (control) group, while the expression levels of protein phosphatase 2 (PP2A) and the phosphorylation level at Tyr307 were comparable between the two groups. In addition, the CDK5 inhibitor rescued tau from hyperphosphorylation induced by OGD. CONCLUSION These findings demonstrate that upregulation of CDK5 mediates tau hyperphosphorylation and localization in both ipsilateral and contralateral cerebra, contributing to the pathogenesis of PSCI.
Collapse
Affiliation(s)
- Jing Yu
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yang Zhao
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiao-Kang Gong
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zheng Liang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yan-Na Zhao
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xin Li
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yu-Ju Chen
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - You-Hua Yang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Meng-Juan Wu
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiao-Chuan Wang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Ji Shu
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Jian Bao
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
4
|
Somogyi A, Wolf E. Increased Signal Delays and Unaltered Synaptic Input Pattern Recognition in Layer III Neocortical Pyramidal Neurons of the rTg4510 Mouse Model of Tauopathy: A Computer Simulation Study With Passive Membrane. Front Neurosci 2021; 15:721773. [PMID: 34733131 PMCID: PMC8558261 DOI: 10.3389/fnins.2021.721773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormal tau proteins are involved in pathology of many neurodegenerative disorders. Transgenic rTg4510 mice express high levels of human tau protein with P301L mutation linked to chromosome 17 that has been associated with frontotemporal dementia with parkinsonism. By 9 months of age, these mice recapitulate key features of human tauopathies, including presence of hyperphosphorylated tau and neurofibrillary tangles (NFTs) in brain tissue, atrophy and loss of neurons and synapses, and hyperexcitability of neurons, as well as cognitive deficiencies. We investigated effects of such human mutant tau protein on neuronal membrane, subthreshold dendritic signaling, and synaptic input pattern recognition/discrimination in layer III frontal transgenic (TG) pyramidal neurons of 9-month-old rTg4510 mice and compared these characteristics to those of wild-type (WT) pyramidal neurons from age-matched control mice. Passive segmental cable models of WT and TG neurons were set up in the NEURON simulator by using three-dimensionally reconstructed morphology and electrophysiological data of these cells. Our computer simulations predict leakage resistance and capacitance of neuronal membrane to be unaffected by the mutant tau protein. Computer models of TG neurons showed only modest alterations in distance dependence of somatopetal voltage and current transfers along dendrites and in rise times and half-widths of somatic Excitatory Postsynaptic Potential (EPSPs) relative to WT control. In contrast, a consistent and statistically significant slowdown was detected in the speed of simulated subthreshold dendritic signal propagation in all regions of the dendritic surface of mutant neurons. Predictors of synaptic input pattern recognition/discrimination remained unaltered in model TG neurons. This suggests that tau pathology is primarily associated with failures/loss in synaptic connections rather than with altered intraneuronal synaptic integration in neurons of affected networks.
Collapse
Affiliation(s)
- Attila Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, University of Debrecen, Debrecen, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|