1
|
Montazeri-Khosh Z, Ebrahimpour A, Keshavarz M, Sheybani-Arani M, Samiei A. Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury. Immunopharmacol Immunotoxicol 2025; 47:159-175. [PMID: 39762721 DOI: 10.1080/08923973.2024.2444956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI. METHODS A comprehensive analysis of literature detailing NLRP3 inflammasome activation pathways and therapeutic interventions was conducted. Empirical evidence supporting the concurrent administration of MCC950 and Rapamycin was reviewed to assess the efficacy of dual-action strategies compared to single-agent treatments. RESULTS Findings highlight potassium efflux and calcium signaling as novel targets for intervention, with cathepsin B inhibitors showing promise in mitigating neuroinflammation. Dual therapies, particularly MCC950 and Rapamycin, demonstrate enhanced efficacy in reducing neuroinflammation. Autophagy promotion, alongside NLRP3 inhibition, emerges as a complementary therapeutic avenue to reverse neuroinflammatory damage. CONCLUSION Combination therapies targeting the NLRP3 inflammasome and related pathways offer significant potential to enhance recovery in TBI patients. This review presents compelling evidence for the development of such strategies, marking a new frontier in neuroinflammatory research and therapeutic innovation.
Collapse
Affiliation(s)
- Zana Montazeri-Khosh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Ebrahimpour
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mina Keshavarz
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Afshin Samiei
- Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
Khadour FA, Khadour YA, Xu T. Electroacupuncture delays the progression of juvenile collagen-induced arthritis via regulation NLRP3/ NF-κB signaling pathway -mediated pyroptosis and its influence on autophagy. Clin Rheumatol 2025; 44:1713-1728. [PMID: 40067573 DOI: 10.1007/s10067-025-07354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) can lead to synovial inflammation. JIA is a chronic autoimmune inflammatory condition that primarily affects children. It is recognized as the most prevalent form of arthritis in the pediatric population and is associated with significant impairment and disability. Electroacupuncture (EA) effectively treats various synovium-related conditions, including symptoms of synovial inflammation, in both human and animal models. However, the specific mechanism by which EA protects against JIA remains unclear. Therefore, we conducted a comprehensive study to investigate the protective mechanisms of EA in a rat model. We aimed to examine the impact of EA on pathological changes in synovial tissue of juvenile collagen-induced arthritis (CIA) rats. METHODS The CIA model was established using Sprague‒Dawley (SD) rats aged 2-3 weeks. In this study, we investigated the potential role of EA on JIA by regulating the NLRP3-NF-κB axis in juvenile CIA rats and its influence on autophagy. To verify the effect of EA on juvenile CIA, the expression of NLRP3 was overexpressed by an adeno-associated virus injected into the knee joint of the CIA rats. RESULTS In this study, we observed that NLRP3 plays an important role in developing juvenile CIA and that NLRP3 overexpression exacerbates inflammation and increases synovium inflammation. We also demonstrated that the expression of NLRP3 was increased in synovial tissue, and NLRP3 could upregulate the NF-κB signal pathway and influence inflammation. Moreover, we also found increases in the expression of NLRP3 by impairing autophagy capacity and activation of the pyroptosis pathway in the synovium of the juvenile CIA rats. CONCLUSION Moreover, we also discovered that EA decreased the expression of NLRP3 by restoring the impaired autophagy capacity and inhibiting the NLRP3-NF-κB axis, thereby delaying the progression of juvenile CIA. These results showed that EA is effective in inhibiting inflammation and synovial degeneration and alleviating the progression of juvenile CIA. As a result, our results provide new insight into the mechanism by which EA delays the development of juvenile CIA, offering a novel therapeutic regimen for JIA. This trial was registered with ClinicalTrials.gov, number NCT10203935. Registered October 07, 2023. Key Points • NLRP3 plays a critical role in juvenile collagen-induced arthritis (CIA), with its overexpression linked to increased inflammation in synovial tissue. • Electroacupuncture (EA) reduces NLRP3 expression and inhibits the NLRP3-NF-κB axis, mitigating inflammatory responses and delaying juvenile CIA progression. • EA restores impaired autophagy in juvenile CIA rats, promoting cellular health and inflammation management. • EA alleviates synovial degeneration, improving joint health and function in juvenile CIA models.
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Wu M, Song W, Teng L, Li J, Liu J, Ma H, Zhang G, Zhang J, Chen Q. Exploring the biological basis of acupuncture treatment for traumatic brain injury: a review of evidence from animal models. Front Cell Neurosci 2024; 18:1405782. [PMID: 39171199 PMCID: PMC11335542 DOI: 10.3389/fncel.2024.1405782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Traumatic brain injury (TBI) occurs when external physical forces impact the brain, potentially causing long-term issues such as post-traumatic stress disorders and cognitive and physical dysfunctions. The diverse nature of TBI pathology and treatment has led to a rapid acceleration in research on its biological mechanisms over the past decade. This surge presents challenges in assessing, managing, and predicting outcomes for TBI cases. Despite the development and testing of various therapeutic strategies aimed at mitigating neurological decline after TBI, a definitive cure for these conditions remains elusive. Recently, a growing focus has been on preclinical research investigating acupuncture as a potential treatment method for TBI sequelae. Acupuncture, being a cost-effective non-pharmacological therapy, has demonstrated promise in improving functional outcomes after brain injury. However, the precise mechanisms underlying the anticipated improvements induced by acupuncture remain poorly understood. In this study, we examined current evidence from animal studies regarding acupuncture's efficacy in improving functional outcomes post-TBI. We also proposed potential biological mechanisms, such as glial cells (microglia astrocytes), autophagy, and apoptosis. This information will deepen our understanding of the underlying mechanisms through which acupuncture exerts its most beneficial effects post-TBI, assisting in forming new clinical strategies to maximize benefits for these patients.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenjing Song
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Teng
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinting Li
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiayu Liu
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hanwen Ma
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ge Zhang
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiongliang Zhang
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiuxin Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Chakraborty R, Tabassum H, Parvez S. Dantrolene alleviates mitochondrial dysfunction and neuroinflammation in traumatic brain injury by modulating the NF-ĸβ/Akt pathway. Biochem Pharmacol 2024; 224:116244. [PMID: 38685280 DOI: 10.1016/j.bcp.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Traumatic brain injury (TBI) triggers a bevy of changes including mitochondrial dysfunction, apoptosis, oxidative stress, neurobehavioural impairment, and neuroinflammation, among others. Dantrolene (DNT), a muscle relaxant which inhibits intracellular Ca2+ signaling from the ER, has been repurposed as a potential neuroprotective agent in various neurological diseases. However, there have been limited studies on whether it can mitigate TBI-induced deficits and restore impaired mitochondrial dynamics. This study sought to evaluate whether Dantrolene can potentially provide neuroprotection in an in vivo model of TBI. Male wistar rats subjected to TBI were treated with DNT (10 mg/kg) 1 h and 12 h post surgery. Animals were assessed 24 h post-TBI to evaluate neurobehavioural deficits and cerebral edema. We evaluated the protein expressions of apoptotic, autophagic, and neuroinflammatory markers by immunoblotting, as well as Mitochondrial Membrane Potential (MMP) and Reactive Oxygen Species (ROS) via Flow Cytometry to ascertain the effects of DNT on TBI. We further analysed immunofluorescence staining with Glial Fibrillary Acidic Protein (GFAP) and immunohistochemistry with NF-κβ to investigate neuroinflammation. H&E staining was also performed post-TBI. Our findings revealed DNT administration inhibits mitochondria-mediated apoptotis and reduces heightened oxidative stress. DNT treatment was also found to reverse neurobehavioural impairments and offer neuroprotection by preserving neuronal architechture. We also demonstrated that DNT inhibits neuronal autophagy and alleviates neuroinflammation following TBI by modulating the NF-κβ/Akt signaling pathway. Thus, our results suggest a novel application of DNT in ameliorating the multitude of deficits induced by TBI, thereby conferring neuroprotection.
Collapse
Affiliation(s)
- Rohan Chakraborty
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
5
|
Luo W, Bu W, Chen H, Liu W, Lu X, Zhang G, Liu C, Li X, Ren H. Electroacupuncture reduces oxidative stress response and improves secondary injury of intracerebral hemorrhage in rats by activating the peroxisome proliferator-activated receptor-γ/nuclear factor erythroid2-related factor 2/γ-glutamylcysteine synthetase pathway. Neuroreport 2024; 35:499-508. [PMID: 38597270 PMCID: PMC11045547 DOI: 10.1097/wnr.0000000000002026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype. Secondary injury is a key factor leading to neurological deficits after ICH. Electroacupuncture (EA) can improve the neurological function after ICH, however, its internal mechanism is still unclear. The aim of this study is to investigate whether EA could ameliorate secondary injury after ICH through antioxidative stress and its potential regulatory mechanism. A rat model of ICH was established by injecting autologous blood into striatum. After the intervention of EA and EA combined with peroxisome proliferator-activated receptor-γ (PPARγ) blocker, Zea-longa scores, modified neurological severity scores and open field tests were used to evaluate the neurological function of the rats. Flow cytometry detected tissue reactive oxygen species (ROS) levels. Tissue tumor necrosis factor-α (TNF-α) levels were analyzed by enzyme-linked immunosorbent assays. The protein expressions of PPAR γ, nuclear factor erythroid2-related factor 2 (Nrf2) and γ-glutamylcysteine synthetase (γ-GCS) were detected by Western blot. Immunohistochemistry was used to observe the activation of microglia. The demyelination degree of axon myelin was observed by transmission electron microscope. Compared with the model group, EA intervention improved neurological function, decreased ROS and TNF-α levels, increased the protein expression of PPARγ, Nrf2 and γ-GCS, and reduced the activation of microglia, it also alleviated axonal myelin sheath damage. In addition, the neuroprotective effect of EA was partially attenuated by PPARγ blocker. EA ameliorated the neurological function of secondary injury after ICH in rats, possibly by activating the PPARγ/Nrf2/γ-GCS signaling pathway, reducing microglia activation, and inhibiting oxidative stress, thus alleviating the extent of axonal demyelination plays a role.
Collapse
Affiliation(s)
| | - Wei Bu
- Department of Neurosurgery, The Third Hospital of Hebei Medical University
| | - Hequn Chen
- Department of Neurosurgery, The Third Hospital of Hebei Medical University
| | | | - Xudong Lu
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
6
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|