Liu Y, Shao J, Zhang J, Sang M, Xu Q, Mao L. Development and Experimental Validation of Machine Learning-Based Disulfidptosis-Related Ferroptosis Biomarkers in Inflammatory Bowel Disease.
Genes (Basel) 2025;
16:496. [PMID:
40428318 PMCID:
PMC12110833 DOI:
10.3390/genes16050496]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, defined by intestinal epithelial cell death. While ferroptosis and disulfidptosis have been linked to IBD pathogenesis, the functional significance of disulfidptosis-related ferroptosis genes (DRFGs) in this disease remains poorly characterized. This investigation sought to pinpoint DRFGs as diagnostic indicators and clarify their mechanistic contributions to IBD progression. Methods: Four IBD datasets (GSE65114, GSE87473, GSE102133, and GSE186582) from the GEO database were integrated to identify differentially expressed genes (DEGs) (|log2FC| > 0.585, adj. p < 0.05). A Pearson correlation analysis was used to link disulfidptosis and ferroptosis genes, followed by machine learning (LASSO and RF) to screen core DRFGs. The immune subtypes and single-cell sequencing (GSE217695) results were analyzed. A DSS-induced colitis Mus musculus (C57BL/6) model was used for validation. Results: Transcriptomic profiling identified 521 DEGs, with 16 defined as DRFGs. Nine hub genes showed diagnostic potential (AUC: 0.71-0.91). Functional annotation demonstrated that IBD-associated genes regulate diverse pathways, with a network analysis revealing their functional synergy. The PPI networks prioritized DUOX2, NCF2, ACSL4, GPX2, CBS, and LPCAT3 as central hubs. Two immune subtypes exhibited divergent DRFG expression. Single-cell mapping revealed epithelial/immune compartment specificity. The DSS-induced murine colitis model confirmed differential expression patterns of DRFGs, with concordant results between qRT-PCR and RNA-seq, emphasizing their pivotal regulatory roles in disease progression and potential for translational application. Conclusions: DRFGs mediate IBD progression via multi-signal pathway regulation across intestinal cell types, demonstrating diagnostic and prognostic potential.
Collapse