1
|
Puech C, Badran M, Runion AR, Barrow MB, Qiao Z, Khalyfa A, Gozal D. Explicit memory, anxiety and depressive like behavior in mice exposed to chronic intermittent hypoxia, sleep fragmentation, or both during the daylight period. Neurobiol Sleep Circadian Rhythms 2022; 13:100084. [PMID: 36254342 PMCID: PMC9568859 DOI: 10.1016/j.nbscr.2022.100084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/01/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition characterized by chronic intermittent hypoxia (IH) and sleep fragmentation (SF), and can lead to a vast array of end-organ morbidities, particularly affecting cardiovascular, metabolic and neurobehavioral functioning. OSA can induce cognitive and behavioral and mood deficits. Male C57Bl/6J 8-week-old mice were housed in custom-designed cages with a silent motorized mechanical sweeper traversing the cage floor at 2-min intervals (SF) during daylight for four weeks. Sleep control (SC) consisted of keeping sweeper immobile. IH consisted of cycling FiO2 21% 90 seconds-6.3% 90s or room air (RA; FiO2 21%) for sixteen weeks and combined SF-IH was conducted for nine weeks. Open field novel object recognition (NOR) testing, elevated-plus maze test (EPMT), and forced swimming test (FST) were performed. SF induced cognitive NOR performance impairments in mice along with reduced anxiety behaviors while IH induced deficits in NOR performance, but increased anxiety behaviors. SF-IH induced impaired performance in NOR test of similar magnitude to IH or SF alone. Combined SF-IH exposures did not affect anxiety behaviors. Thus, both SF an IH altered cognitive function while imposing opposite effects on anxiety behaviors. SF-IH did not magnify the detrimental effects of isolated SF or IH and canceled out the effects on anxiety. Based on these findings, the underlying pathophysiologic processes underlying IH and SF adverse effects on cognitive function appear to differ, while those affecting anxiety counteract each other.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Zhuanhong Qiao
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Abdelnaby Khalyfa
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Sleep Modulates Alcohol Toxicity in Drosophila. Int J Mol Sci 2022; 23:ijms232012091. [PMID: 36292943 PMCID: PMC9603330 DOI: 10.3390/ijms232012091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol abuse is a significant public health problem. While considerable research has shown that alcohol use affects sleep, little is known about the role of sleep deprivation in alcohol toxicity. We investigated sleep as a factor modulating alcohol toxicity using Drosophila melanogaster, a model for studies of sleep, alcohol, and aging. Following 24 h of sleep deprivation using a paradigm that similarly affects males and females and induces rebound sleep, flies were given binge-like alcohol exposures. Sleep deprivation increased mortality, with no sex-dependent differences. Sleep deprivation also abolished functional tolerance measured at 24 h after the initial alcohol exposure, although there was no effect on alcohol absorbance or clearance. We investigated the effect of chronic sleep deprivation using mutants with decreased sleep, insomniac and insulin-like peptide 2, finding increased alcohol mortality. Furthermore, we investigated whether pharmacologically inducing sleep prior to alcohol exposure using the GABAA-receptor agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) mitigated the effects of alcohol toxicity on middle-aged flies, flies with environmentally disrupted circadian clocks, and flies with short sleep. Pharmacologically increasing sleep prior to alcohol exposure decreased alcohol-induced mortality. Thus, sleep prior to binge-like alcohol exposure affects alcohol-induced mortality, even in vulnerable groups such as aging flies and those with circadian dysfunction.
Collapse
|
3
|
López-Muciño LA, García-García F, Cueto-Escobedo J, Acosta-Hernández M, Venebra-Muñoz A, Rodríguez-Alba JC. Sleep loss and addiction. Neurosci Biobehav Rev 2022; 141:104832. [PMID: 35988803 DOI: 10.1016/j.neubiorev.2022.104832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Reducing sleep hours is a risk factor for developing cardiovascular, metabolic, and psychiatric disorders. Furthermore, previous studies have shown that reduction in sleep time is a factor that favors relapse in addicted patients. Additionally, animal models have demonstrated that both sleep restriction and sleep deprivation increase the preference for alcohol, methylphenidate, and the self-administration of cocaine. Therefore, the present review discusses current knowledge about the influence of sleep hours reduction on addictivebehaviors; likewise, we discuss the neuronal basis underlying the sleep reduction-addiction relationship, like the role of the orexin and dopaminergic system and neuronal plasticity (i.e., delta FosB expression). Potentially, chronic sleep restriction could increase brain vulnerability and promote addictive behavior.
Collapse
Affiliation(s)
- Luis Angel López-Muciño
- Health Sciences Ph.D. Program, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Fabio García-García
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Jonathan Cueto-Escobedo
- Department of Clinical and Translational Research, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Mario Acosta-Hernández
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Arturo Venebra-Muñoz
- Laboratory of Neurobiology of Addiction and Brain Plasticity, Faculty of Science, Autonomous University of Mexico State, Edomex 50295, Mexico.
| | - Juan Carlos Rodríguez-Alba
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| |
Collapse
|
4
|
Roodsari SK, Cheng Y, Reed KM, Wellman LL, Sanford LD, Kim WK, Guo ML. Sleep Disturbance Alters Cocaine-Induced Locomotor Activity: Involvement of Striatal Neuroimmune and Dopamine Signaling. Biomedicines 2022; 10:biomedicines10051161. [PMID: 35625897 PMCID: PMC9138453 DOI: 10.3390/biomedicines10051161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Sleep disorders have high comorbidity with drug addiction and function as major risk factors for developing drug addiction. Recent studies have indicated that both sleep disturbance (SD) and abused drugs could activate microglia, and that increased neuroinflammation plays a critical role in the pathogenesis of both diseases. Whether microglia are involved in the contribution of chronic SDs to drug addiction has never been explored. In this study, we employed a mouse model of sleep fragmentation (SF) with cocaine treatment and examined their locomotor activities, as well as neuroinflammation levels and dopamine signaling in the striatum, to assess their interaction. We also included mice with, or without, SF that underwent cocaine withdrawal and challenge. Our results showed that SF significantly blunted cocaine-induced locomotor stimulation while having marginal effects on locomotor activity of mice with saline injections. Meanwhile, SF modulated the effects of cocaine on neuroimmune signaling in the striatum and in ex vivo isolated microglia. We did not observe differences in dopamine signaling in the striatum among treatment groups. In mice exposed to cocaine and later withdrawal, SF reduced locomotor sensitivity and also modulated neuroimmune and dopamine signaling in the striatum. Taken together, our results suggested that SF was capable of blunting cocaine-induced psychoactive effects through modulating neuroimmune and dopamine signaling. We hypothesize that SF could affect neuroimmune and dopamine signaling in the brain reward circuitry, which might mediate the linkage between sleep disorders and drug addiction.
Collapse
Affiliation(s)
- Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
| | - Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
| | - Kirstin M. Reed
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
| | - Laurie L. Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Larry D. Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Woong-Ki Kim
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (S.K.R.); (Y.C.); (K.M.R.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.L.W.); (L.D.S.); (W.-K.K.)
- Correspondence: ; Tel.: +1-757-446-5891
| |
Collapse
|
5
|
Torres-Berrio A, Cuesta S, Lopez-Guzman S, Nava-Mesa MO. Interaction Between Stress and Addiction: Contributions From Latin-American Neuroscience. Front Psychol 2018; 9:2639. [PMID: 30622500 PMCID: PMC6308142 DOI: 10.3389/fpsyg.2018.02639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Drug addiction is a chronic neuropsychiatric disorder that escalates from an initial exposure to drugs of abuse, such as cocaine, cannabis, or heroin, to compulsive drug-seeking and intake, reduced ability to inhibit craving-induced behaviors, and repeated cycles of abstinence and relapse. It is well-known that chronic changes in the brain’s reward system play an important role in the neurobiology of addiction. Notably, environmental factors such as acute or chronic stress affect this system, and increase the risk for drug consumption and relapse. Indeed, the HPA axis, the autonomic nervous system, and the extended amygdala, among other brain stress systems, interact with the brain’s reward circuit involved in addictive behaviors. There has been a growing interest in studying the molecular, cellular, and behavioral mechanisms of stress and addiction in Latin-America over the last decade. Nonetheless, these contributions may not be as strongly acknowledged by the broad scientific audience as studies coming from developed countries. In this review, we compile for the first time a series of studies conducted by Latin American-based neuroscientists, who have devoted their careers to studying the interaction between stress and addiction, from a neurobiological and clinical perspective. Specific contributions about this interaction include the study of CRF receptors in the lateral septum, investigations on the neural mechanisms of cross-sensitization for psychostimulants and ethanol, the identification of the Wnt/β-catenin pathway as a critical neural substrate for stress and addiction, and the emergence of the cannabinoid system as a promising therapeutic target. We highlight animal and human studies, including for instance, reports coming from Latin American laboratories on single nucleotide polymorphisms in stress-related genes and potential biomarkers of vulnerability to addiction, that aim to bridge the knowledge from basic science to clinical research.
Collapse
Affiliation(s)
- Angélica Torres-Berrio
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Santiago Cuesta
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Silvia Lopez-Guzman
- Neuroscience Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
6
|
Sakaguchi T, Iwasaki S, Okada M, Okamoto K, Ikegaya Y. Ethanol facilitates socially evoked memory recall in mice by recruiting pain-sensitive anterior cingulate cortical neurons. Nat Commun 2018; 9:3526. [PMID: 30166546 PMCID: PMC6117351 DOI: 10.1038/s41467-018-05894-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/09/2018] [Indexed: 11/09/2022] Open
Abstract
Alcohol is a traditional social-bonding reinforcer; however, the neural mechanism underlying ethanol-driven social behaviors remains elusive. Here, we report that ethanol facilitates observational fear response. Observer mice exhibited stronger defensive immobility while observing cagemates that received repetitive foot shocks if the observer mice had experienced a brief priming foot shock. This enhancement was associated with an observation-induced recruitment of subsets of anterior cingulate cortex (ACC) neurons in the observer mouse that were responsive to its own pain. The vicariously activated ACC neurons projected their axons preferentially to the basolateral amygdala. Ethanol shifted the ACC neuronal balance toward inhibition, facilitated the preferential ACC neuronal recruitment during observation, and enhanced observational fear response, independent of an oxytocin signaling pathway. Furthermore, ethanol enhanced socially evoked fear response in autism model mice.
Collapse
Affiliation(s)
- Tetsuya Sakaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Satoshi Iwasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Mami Okada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuki Okamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Pires GN, Bezerra AG, Tufik S, Andersen ML. Effects of experimental sleep deprivation on anxiety-like behavior in animal research: Systematic review and meta-analysis. Neurosci Biobehav Rev 2016; 68:575-589. [DOI: 10.1016/j.neubiorev.2016.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023]
|
8
|
Saito LP, Fukushiro DF, Hollais AW, Mári-Kawamoto E, Costa JM, Berro LF, Aramini TCF, Wuo-Silva R, Andersen ML, Tufik S, Frussa-Filho R. Acute total sleep deprivation potentiates amphetamine-induced locomotor-stimulant effects and behavioral sensitization in mice. Pharmacol Biochem Behav 2013; 117:7-16. [PMID: 24316348 DOI: 10.1016/j.pbb.2013.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 11/13/2013] [Accepted: 11/23/2013] [Indexed: 01/05/2023]
Abstract
It has been demonstrated that a prolonged period (48 h) of paradoxical sleep deprivation (PSD) potentiates amphetamine (AMP)-induced behavioral sensitization, an animal model of addiction-related neuroadaptations. In the present study, we examined the effects of an acute short-term deprivation of total sleep (TSD) (6h) on AMP-induced behavioral sensitization in mice and compared them to the effects of short-term PSD (6 h). Three-month-old male C57BL/6J mice underwent TSD (experiment 1-gentle handling method) or PSD (experiment 2-multiple platforms method) for 6 h. Immediately after the sleep deprivation period, mice were tested in the open field for 10 min under the effects of saline or 2.0 mg/kg AMP. Seven days later, to assess behavioral sensitization, all of the mice received a challenge injection of 2.0 mg/kg AMP and were tested in the open field for 10 min. Total, peripheral, and central locomotion, and grooming duration were measured. TSD, but not PSD, potentiated the hyperlocomotion induced by an acute injection of AMP and this effect was due to an increased locomotion in the central squares of the apparatus. Similarly, TSD facilitated the development of AMP-induced sensitization, but only in the central locomotion parameter. The data indicate that an acute period of TSD may exacerbate the behavioral effects of AMP in mice. Because sleep architecture is composed of paradoxical and slow wave sleep, and 6-h PSD had no effects on AMP-induced hyperlocomotion or sensitization, our data suggest that the deprivation of slow wave sleep plays a critical role in the mechanisms that underlie the potentiating effects of TSD on both the acute and sensitized addiction-related responses to AMP.
Collapse
Affiliation(s)
- Luis P Saito
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | - Daniela F Fukushiro
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil; Department of Psychology, Florida State University, 1107 W. Call St, 32304 Tallahassee, FL, USA.
| | - André W Hollais
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Elisa Mári-Kawamoto
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Jacqueline M Costa
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Laís F Berro
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | - Tatiana C F Aramini
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil
| | - Roberto Frussa-Filho
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1º andar, 04023062 São Paulo, SP, Brazil
| |
Collapse
|
9
|
Abstract
Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine before training and/or before testing both in the plus-maze discriminative avoidance task (an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity) and in the inhibitory avoidance task, a classic paradigm for evaluating memory in rodents. Pre-training caffeine administration did not modify learning, but produced an anxiogenic effect and impaired memory retention. While pre-test administration of caffeine did not modify retrieval on its own, the pre-test administration counteracted the memory deficit induced by the pre-training caffeine injection in both the plus-maze discriminative and inhibitory avoidance tasks. Our data demonstrate that caffeine-induced memory deficits are critically related to state-dependent learning, reinforcing the importance of considering the participation of state-dependency on the interpretation of the cognitive effects of caffeine. The possible participation of caffeine-induced anxiety alterations in state-dependent memory deficits is discussed.
Collapse
|
10
|
Amphetamine-induced memory impairment in a discriminative avoidance task is state-dependent in mice. Int J Neuropsychopharmacol 2013; 16:583-92. [PMID: 22717254 DOI: 10.1017/s1461145712000296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In both humans and laboratory animals, the reports of cognitive effects following acute amphetamine (Amph) administration are mixed and depend, for example, on the timing of administration (e.g. before or after task acquisition) and/or on the memory model used. Besides its cognitive effects, Amph produces other important behavioural effects, including alterations in anxiety and general activity, which could modify the subject's internal state, thereby facilitating state-dependent learning. Importantly, state-dependency has been linked to drug dependence in humans. This study evaluates the role of state-dependent learning in Amph-induced memory deficits in mice submitted to a discriminative avoidance task. Mice were given Amph (3 mg/kg) before training and/or before testing in the plus-maze discriminative avoidance task, an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity. Pre-training Amph administration did not affect the ability to learn the discriminative task, but rather induced anxiogenic-like effects and a marked retention deficit in the test session. This memory impairment was completely absent when animals received Amph before both the training and the test sessions. Amph-induced memory impairment of a discriminative avoidance task is state-dependent, such that a response acquired in the 'Amph state' cannot be recalled in the normal state. The involvement of anxiety alterations in this 'Amph state' is discussed.
Collapse
|
11
|
Maragno-Correa JMR, Patti CL, Zanin KA, Wuo-Silva R, Ruiz FS, Zager A, Sá-Nunes A, Tufik S, Andersen ML, Frussa-Filho R. Sleep deprivation increases mortality in female mice bearing Ehrlich ascitic tumor. Neuroimmunomodulation 2013; 20:134-40. [PMID: 23428661 DOI: 10.1159/000346201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Sleep deprivation is a growing public health hazard, yet it is still under-recognized. Sleep disorders and disruption of sleep patterns may compromise the immune function and adversely affect host resistance to infectious diseases. This is a particular risk in cancer patients, who report a high frequency of sleep disturbances. The present study investigated the effects of sleep deprivation on the development of Ehrlich ascitic tumors (EAT) in female BALB/c mice. Our study also evaluated whether EAT would induce alterations in sleep pattern. Spleen lymphocyte cell populations and mortality were also quantified. METHODS Female BALB/c mice were intraperitoneally inoculated with EAT cells. Immediately after the inoculation procedure, animals were sleep deprived for 72 h. Ten or 15 days after inoculation, the number of tumoral cells was quantified and the lymphocytic cell population in the spleen was characterized by flow cytometry. In addition, the effect of sleep deprivation on EAT-induced mortality was quantified and the influence of EAT on sleep patterns was determined. RESULTS Sleep deprivation did not potentiate EAT growth, but it significantly increased mortality. Additionally, both EAT and sleep deprivation decreased frequencies of splenic CD4+, CD8+ and CD19+ cells. With respect to sleep patterns, EAT significantly enhanced paradoxical sleep time. CONCLUSIONS Although sleep deprivation did not potentiate EAT growth, it decreased the survival of female tumor-bearing mice.
Collapse
|
12
|
Acute and chronic ethanol differentially modify the emotional significance of a novel environment: implications for addiction. Int J Neuropsychopharmacol 2012; 15:1109-20. [PMID: 21854680 DOI: 10.1017/s1461145711001283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Using open-field behaviour as an experimental paradigm, we demonstrated a complex interaction between the rewarding/stimulating effects and the anxiogenic/stressful effects of both novelty and acute or chronic amphetamine in mice. As a consequence of this interaction, acute amphetamine-induced hyperlocomotion was inhibited, whereas the expression of its sensitization was facilitated in a novel environment. In the present study, we aimed to investigate the interactions between exposure to a novel environment and the acute and chronic effects of ethanol (Eth), a drug of abuse known to produce anxiolytic-like behaviour in mice. Previously habituated and non-habituated male Swiss mice (3 months old) were tested in an open field after receiving an acute injection of Eth or following repeated treatment with Eth. Acute Eth administration increased locomotion with a greater magnitude in mice exposed to the apparatus for the first time, and this was thought to be related to the attenuation of the stressful effects of novelty produced by the anxiolytic-like effect of acute Eth, leading to a subsequent prevalence of its stimulant effects. However, locomotor sensitization produced by repeated Eth administration was expressed only in the previously explored environment. This result might be related to the well-known tolerance of Eth-induced anxiolytic-like behaviour following repeated treatment, which would restore the anxiogenic effect of novelty. Our data suggest that a complex and plastic interaction between the emotional and motivational properties of novelty and drugs of abuse can critically modify the behavioural expression of addiction-related mechanisms.
Collapse
|
13
|
Chirumbolo S. Plant-derived extracts in the neuroscience of anxiety on animal models: biases and comments. Int J Neurosci 2011; 122:177-88. [PMID: 22050267 DOI: 10.3109/00207454.2011.635829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Generalized anxiety disorders probably represent one of the world's biggest mental health problems. A large number of studies have also shown that anxiety disorders and depression are often associated with quality of life impairments. As anxiety represents a big concern in public health, a substantial literature supports clinically important associations between psychiatric illness and chronic medical conditions. Actually, most research focuses on depression, finding that depression can adversely affect self-care and increase the risk of incident medical illness, complications, and mortality. Anxiety disorders are less well studied, but robust epidemiological and clinical evidences show that they play an equally important role. Recent reported articles have raised a debate about the effectiveness of some plant-derived extracts in anxiety-like models in mice. Biases about several aspects related with experimental setting, animal selection, environments, operators and investigators, selection and performance of behavioral tests, controls, results managing, and statistics are here discussed.
Collapse
|
14
|
Effects of group exposure on single injection-induced behavioral sensitization to drugs of abuse in mice. Drug Alcohol Depend 2011; 118:349-59. [PMID: 21596493 DOI: 10.1016/j.drugalcdep.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/08/2011] [Accepted: 04/19/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Behavioral sensitization in rodents is hypothesized to reflect neuronal adaptations that are related to drug addiction in humans. We evaluated the effects of group exposure on the acute hyperlocomotion and behavioral sensitization induced by four drugs of abuse in C57BL/6 mice: methylenedioxymethamphetamine (MDMA), d-amphetamine, morphine and ethanol. METHODS In the priming session, animals received an ip injection of one of the drugs of abuse and were exposed to an open field either individually or in groups of four. Seven days later, we assessed behavioral sensitization in the challenge session. All animals received an ip injection of the same drug and were exposed to the open field in the same social conditions described for the priming session. Locomotion and social interaction were quantified during each session. RESULTS Acute MDMA, morphine and ethanol, but not d-amphetamine, increased social interaction. However, group exposure only potentiated MDMA-induced hyperlocomotion. After a challenge injection of each drug, there was no sensitization to the facilitating effect of MDMA, morphine or ethanol on social interaction, but locomotion sensitization developed to all drugs of abuse except ethanol. This sensitization was potentiated by group exposure in MDMA-treated animals, attenuated in morphine-treated animals and not modified in d-amphetamine-treated animals. Acute MDMA enhanced body contact and peaceful following, while acute morphine and ethanol increased social sniffing. CONCLUSIONS These results provide preclinical evidence showing that while different drugs of abuse affect different components of social interaction, the neuronal adaptations related to drug dependence can be critically and specifically influenced by group exposure.
Collapse
|
15
|
Dubiela FP, Messias MF, Moreira KDM, Zanlorenci LHF, Grassl C, Filho RF, Nobrega JN, Tufik S, Hipólide DC. Reciprocal interactions between MK-801, sleep deprivation and recovery in modulating rat behaviour. Behav Brain Res 2011; 216:180-5. [DOI: 10.1016/j.bbr.2010.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 07/19/2010] [Accepted: 07/25/2010] [Indexed: 01/03/2023]
|
16
|
Morganstern I, Chang GQ, Chen YW, Barson JR, Zhiyu Y, Hoebel BG, Leibowitz SF. Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol Behav 2010; 101:428-37. [PMID: 20670637 PMCID: PMC2949500 DOI: 10.1016/j.physbeh.2010.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/27/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
Abstract
The peptide melanin-concentrating hormone (MCH), produced mainly by cells in the lateral hypothalamus (LH), perifornical area (PF) and zona incerta (ZI), is suggested to have a role in the consumption of rewarding substances, such as ethanol, sucrose and palatable food. However, there is limited information on the specific brain sites where MCH acts to stimulate intake of these rewarding substances and on the feedback effects that their consumption has on the expression of endogenous MCH. The current study investigated MCH in relation to ethanol consumption, in Sprague-Dawley rats. In Experiment 1, chronic consumption of ethanol (from 0.70 to 2.7 g/kg/day) dose-dependently reduced MCH gene expression in the LH. In Experiments 2-4, the opposite effect was observed with acute oral ethanol, which stimulated MCH expression specifically in the LH but not the ZI. In Experiment 5, the effect of MCH injection in brain-cannulated rats on ethanol consumption was examined. Compared to saline, MCH injected in the paraventricular nucleus (PVN) and nucleus accumbens (NAc) selectively stimulated ethanol consumption without affecting food or water intake. In contrast, it reduced ethanol intake when administered into the LH, while having no effect in the ZI. These results demonstrate that voluntary, chronic consumption of ethanol leads to local negative feedback control of MCH expression in the LH. However, with a brief exposure, ethanol stimulates MCH-expressing neurons in this region, which through projections to the feeding-related PVN and reward-related NAc can promote further drinking behavior.
Collapse
Affiliation(s)
- I Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Fukushiro DF, Benetti LF, Josino FS, Oliveira GP, Fernandes MD, Saito LP, Uehara RA, Wuo-Silva R, Oliveira CS, Frussa-Filho R. Environmental novelty and illumination modify ethanol-induced open-field behavioral effects in mice. Pharmacol Biochem Behav 2009; 95:13-22. [PMID: 19969017 DOI: 10.1016/j.pbb.2009.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/13/2009] [Accepted: 12/01/2009] [Indexed: 12/25/2022]
Abstract
Both spontaneous and drug-induced animal behaviors can be modified by exposure to novel stimuli or different levels of environmental illumination. However, research into how these factors specifically impact ethanol (ETH)-induced behavioral effects is currently lacking. We aimed to investigate the effects of these two factors, considered separately or in conjunction, on ETH-induced acute hyperlocomotor effect and its sensitization in adult male Swiss mice. Mice were placed in a novel or familiar open-field under normal light (200 lx) or low light (9 lx) immediately after receiving an ip injection of either 1.8 g/kg ETH or saline (SAL). After 7 days, all animals received an ip challenge injection of 1.8 g/kg ETH, and were placed in the open-field under the same light conditions described above. Novelty increased central locomotion and decreased grooming, while low light increased grooming. Acute ETH administration increased both total and peripheral locomotion and these effects were potentiated by low light. Both low light and novelty were able to facilitate ETH-induced locomotor sensitization, which was detected by the central locomotion parameter. However, there was no synergism between the effects of these two modulating factors on ETH-induced behavioral sensitization. We conclude that both the acute behavioral effects of ETH and behavioral sensitization induced by previous administration of this drug can be critically modified by environmental factors. In addition, our study stresses the importance of using different behavioral parameters to evaluate the interaction between environmental factors and ETH effects.
Collapse
Affiliation(s)
- Daniela F Fukushiro
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
de Araujo NP, Fukushiro DF, Grassl C, Hipólide DC, Souza-Formigoni MLO, Tufik S, Frussa-Filho R. Ethanol-induced behavioral sensitization is associated with dopamine receptor changes in the mouse olfactory tubercle. Physiol Behav 2009; 96:12-7. [DOI: 10.1016/j.physbeh.2008.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 01/23/2023]
|
19
|
Fukushiro DF, Calzavara MB, Trombin TF, Lopez GB, Abílio VC, Andersen ML, Tufik S, Frussa-Filho R. Effects of environmental enrichment and paradoxical sleep deprivation on open-field behavior of amphetamine-treated mice. Physiol Behav 2007; 92:773-9. [PMID: 17632187 DOI: 10.1016/j.physbeh.2007.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 05/08/2007] [Accepted: 06/06/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Environmental enrichment or paradoxical sleep deprivation (PSD) has been shown to modify some responses elicited by drugs of abuse. The aims of the present study were to examine the effects of environmental enrichment and PSD, conducted separately or in association, on open-field behavior elicited by amphetamine (AMP) in mice. METHODS Male C57BL/6 mice were randomly assigned to live in either an enriched environmental condition (EC) or a standard environmental condition (SC) for 12 months since weaning. Some of the EC and SC mice were sleep deprived for 48 h, while others were maintained in their home-cages. Immediately after PSD or home-cage stay, the animals received an ip injection of saline, 2.5 mg/kg AMP or 5.0 mg/kg AMP. Fifteen minutes later, their open-field behavior was quantified. RESULTS Whereas PSD enhanced total and peripheral locomotor activity of acutely AMP-treated mice, environmental enrichment presented only a trend toward enhancement. When PSD and environmental enrichment were combined, an increase in the total and peripheral locomotion frequencies of AMP-treated animals, similar to that observed after PSD, was revealed. In addition, PSD, environmental enrichment or their combination did not modify the effects of AMP on the other open-field behavioral parameters that were analyzed. CONCLUSION The present findings demonstrate that some (but not all) of the behavioral effects caused by AMP acute administration can be similarly and specifically enhanced by both environmental enrichment and PSD in C57BL/6 mice.
Collapse
|
20
|
Kameda SR, Frussa-Filho R, Carvalho RC, Takatsu-Coleman AL, Ricardo VP, Patti CL, Calzavara MB, Lopez GB, Araujo NP, Abílio VC, Ribeiro RDA, D'Almeida V, Silva RH. Dissociation of the effects of ethanol on memory, anxiety, and motor behavior in mice tested in the plus-maze discriminative avoidance task. Psychopharmacology (Berl) 2007; 192:39-48. [PMID: 17242924 DOI: 10.1007/s00213-006-0684-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Several studies have shown the amnestic effects of ethanol (ETOH). However, while memory tasks in rodents can be markedly influenced by anxiety-like behavior and motor function, ETOH induces anxiolysis and different effects on locomotion, depending on the dose. OBJECTIVE Verify the effects of ETOH in mice tested in the plus-maze discriminative avoidance task (PMDAT) concomitantly evaluating memory, anxiety-like behavior, and motor behavior. METHODS ETOH acutely or repeatedly treated mice were submitted to the training session in a modified elevated plus-maze with two open and two enclosed arms, aversive stimuli in one of the enclosed arms, and tested 24 h later without aversive stimuli. Learning/memory, locomotion, and anxiety-related behavior were evaluated by aversive arm exploration, number of entries in all the arms and open arms exploration, respectively. RESULTS Acute ETOH: (1) either increased (1.2-1.8 g/kg) or decreased (3.0 g/kg) locomotion; (2) decreased anxiety levels (1.2-3.0 g/kg); and (3) induced learning deficits (1.2-3.0 g/kg) and memory deficits (0.3-3.0 g/kg). After repeated treatment, sensitization and tolerance to hyperlocomotion and anxiolysis induced by 1.8 g/kg ETOH were observed, respectively, and tolerance to the amnestic effect of 0.6 (but not 1.8) g/kg ETOH occurred. CONCLUSION Neither the anxiolytic nor the locomotor effects of ETOH seem to be related to its amnestic effect in the PMDAT. Additionally, data give support to the effectiveness of the PMDAT in simultaneously evaluating learning, memory, anxiety-like behavior, and motor activity by different parameters. Possible relationships between the behavioral alterations found are discussed.
Collapse
Affiliation(s)
- S R Kameda
- Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|