1
|
Keever KM, Li Y, Womble PD, Sullens DG, Otazu GH, Lugo JN, Ramos RL. Neocortical and cerebellar malformations affect flurothyl-induced seizures in female C57BL/6J mice. Front Neurosci 2023; 17:1271744. [PMID: 38027492 PMCID: PMC10651747 DOI: 10.3389/fnins.2023.1271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Brain malformations cause cognitive disability and seizures in both human and animal models. Highly laminated structures such as the neocortex and cerebellum are vulnerable to malformation, affecting lamination and neuronal connectivity as well as causing heterotopia. The objective of the present study was to determine if sporadic neocortical and/or cerebellar malformations in C57BL/6J mice are correlated with reduced seizure threshold. The inhaled chemi-convulsant flurothyl was used to induce generalized, tonic-clonic seizures in male and female C57BL/6J mice, and the time to seizure onset was recorded as a functional correlate of brain excitability changes. Following seizures, mice were euthanized, and brains were extracted for histology. Cryosections of the neocortex and cerebellar vermis were stained and examined for the presence of molecular layer heterotopia as previously described in C57BL/6J mice. Over 60% of mice had neocortical and/or cerebellar heterotopia. No sex differences were observed in the prevalence of malformations. Significantly reduced seizure onset time was observed dependent on sex and the type of malformation present. These results raise important questions regarding the presence of malformations in C57BL/6J mice used in the study of brain development, epilepsy, and many other diseases of the nervous system.
Collapse
Affiliation(s)
- Katherine M. Keever
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Gonzalo H. Otazu
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Raddy L. Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
2
|
Otazu GH, Li Y, Lodato Z, Elnasher A, Keever KM, Li Y, Ramos RL. Neurodevelopmental malformations of the cerebellum and neocortex in the Shank3 and Cntnap2 mouse models of autism. Neurosci Lett 2021; 765:136257. [PMID: 34555490 DOI: 10.1016/j.neulet.2021.136257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022]
Abstract
There are many mouse models of autism with broad use in neuroscience research. Genetic background can be a major contributor to the phenotype observed in any mouse model of disease, including genetic models of autism. C57BL/6 mice display spontaneous glio-neuronal heterotopia in the cerebellar vermis and neocortex which may also exist in mouse models of autism created on this background. In the present report, we document the presence of cerebellar and neocortical heterotopia in heterozygous and KO Shank3 and Cntnap2 mice which are due to the C57BL/6 genotype and discuss the role these malformations may play in research using these genetic models of autism.
Collapse
Affiliation(s)
- Gonzalo H Otazu
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Yan Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Zachary Lodato
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Adel Elnasher
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Katherine M Keever
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States.
| |
Collapse
|
3
|
Insolia V, Priori EC, Gasperini C, Coppa F, Cocchia M, Iervasi E, Ferrari B, Besio R, Maruelli S, Bernocchi G, Forlino A, Bottone MG. Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. J Comp Neurol 2019; 528:61-80. [PMID: 31246278 DOI: 10.1002/cne.24735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
The extracellular matrix is essential for brain development, lamination, and synaptogenesis. In particular, the basement membrane below the pial meninx (pBM) is required for correct cortical development. The last step in the catabolism of the most abundant protein in pBM, collagen Type IV, requires prolidase, an exopeptidase cleaving the imidodipeptides containing pro or hyp at the C-terminal end. Mutations impairing prolidase activity lead in humans to the rare disease prolidase deficiency characterized by severe skin ulcers and mental impairment. Thus, the dark-like (dal) mouse, in which the prolidase is knocked-out, was used to investigate whether the deficiency of prolidase affects the neuronal maturation during development of a brain cortex area. Focusing on the cerebellar cortex, thinner collagen fibers and disorganized pBM were found. Aberrant cortical granule cell proliferation and migration occurred, associated to defects in brain lamination, and in particular in maturation of Purkinje neurons and formation of synaptic contacts. This study deeply elucidates a link between prolidase activity and neuronal maturation shedding new light on the molecular basis of functional aspects in the prolidase deficiency.
Collapse
Affiliation(s)
- Violetta Insolia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Erica C Priori
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Caterina Gasperini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federica Coppa
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Cocchia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Erika Iervasi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Beatrice Ferrari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Silvia Maruelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Maria G Bottone
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Cuoco JA, Esposito AW, Moriarty S, Tang Y, Seth S, Toia AR, Kampton EB, Mayr Y, Khan M, Khan MB, Mullen BR, Ackman JB, Siddiqi F, Wolfe JH, Savinova OV, Ramos RL. Malformation of the Posterior Cerebellar Vermis Is a Common Neuroanatomical Phenotype of Genetically Engineered Mice on the C57BL/6 Background. THE CEREBELLUM 2019; 17:173-190. [PMID: 29043563 DOI: 10.1007/s12311-017-0892-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
C57BL/6 mice exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the posterior vermis, indicative of neuronal migration defect during cerebellar development. Recognizing that many genetically engineered (GE) mouse lines are produced from C57BL/6 ES cells or backcrossed to this strain, we performed histological analyses and found that cerebellar heterotopia were a common feature present in the majority of GE lines on this background. Furthermore, we identify GE mouse lines that will be valuable in the study of cerebellar malformations including diverse driver, reporter, and optogenetic lines. Finally, we discuss the implications that these data have on the use of C57BL/6 mice and GE mice on this background in studies of cerebellar development or as models of disease.
Collapse
Affiliation(s)
- Joshua A Cuoco
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Anthony W Esposito
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Shannon Moriarty
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Ying Tang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Sonika Seth
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Alyssa R Toia
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Elias B Kampton
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Yevgeniy Mayr
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Mussarah Khan
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Mohammad B Khan
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Brian R Mullen
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - James B Ackman
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Faez Siddiqi
- Division of Neurology and Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - John H Wolfe
- Division of Neurology and Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine and W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga V Savinova
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA
| | - Raddy L Ramos
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568-8000, USA.
| |
Collapse
|
5
|
Gilbert ME, Goodman JH, Gomez J, Johnstone AFM, Ramos RL. Adult hippocampal neurogenesis is impaired by transient and moderate developmental thyroid hormone disruption. Neurotoxicology 2017; 59:9-21. [PMID: 28048979 PMCID: PMC11242631 DOI: 10.1016/j.neuro.2016.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022]
Abstract
The hippocampus maintains a capacity for neurogenesis throughout life, a capacity that is reduced in models of adult onset hypothyroidism. The effects of developmental thyroid hormone (TH) insufficiency on neurogenesis in the adult hippocampus, however, has not been examined. Graded degrees of TH insufficiency were induced in pregnant rat dams by administration of 0, 3 or 10ppm of 6-propylthiouracil (PTU) in drinking water from gestational day (GD) 6 until weaning. Body, brain, and hippocampal weight were reduced on postnatal day (PN) 14, 21, 78 and hippocampal volume was smaller at the 10 but not 3ppm dose level. A second experiment examined adult hippocampal neurogenesis following developmental or adult onset hypothyroidism. Two male offspring from 0 and 3ppm exposed dams were either maintained on control water or exposed to 3ppm PTU to create 4 distinct treatment conditions (Control-Control; Control-PTU, PTU-Control, PTU-PTU) based on developmental and adult exposures. Beginning on the 28th day of adult exposure to 0 or 3ppm PTU, bromodeoxyuridine (BrdU, 50mg/kg, ip) was administered twice daily for 5days, and one male from each treatment was sacrificed 24h and 28days after the last BrdU dose and brains processed for immunohistochemistry. Although no volume changes were seen in the hippocampus of the neonate at 3ppm, thinning of the granule cell layer emerged in adulthood. Developmental TH insufficiency produced a reduction in newly born cells, reducing BrdU+ve cells at 1 with no further reduction at 28-days post-BrdU. Similar findings were obtained using the proliferative cell marker Ki67. Neuronal differentiations was also altered with fewer doublecortin (Dcx) expressing cells and a higher proportion of immature Dcx phenotypes seen after developmental but not adult TH insufficiency. An impaired capacity for neurogenesis may contribute to impairments in synaptic plasticity and cognitive deficits previously reported by our laboratory and others following moderate degrees of developmental TH insufficiency induced by this PTU model.
Collapse
Affiliation(s)
- M E Gilbert
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - J H Goodman
- Department of Developmental Neurobiology, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; Departments of Physiology and Pharmacology and Neurology, SUNY Downstate Medical Center Brooklyn, NY 11203, USA
| | - J Gomez
- Department of Developmental Neurobiology, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - A F M Johnstone
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - R L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
6
|
Toia AR, Cuoco JA, Esposito AW, Ahsan J, Joshi A, Herron BJ, Torres G, Bolivar VJ, Ramos RL. Divergence and inheritance of neocortical heterotopia in inbred and genetically-engineered mice. Neurosci Lett 2016; 638:175-180. [PMID: 27993709 DOI: 10.1016/j.neulet.2016.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
Abstract
Cortical function emerges from the intrinsic properties of neocortical neurons and their synaptic connections within and across lamina. Neurodevelopmental disorders affecting migration and lamination of the neocortex result in cognitive delay/disability and epilepsy. Molecular layer heterotopia (MLH), a dysplasia characterized by over-migration of neurons into layer I, are associated with cognitive deficits and neuronal hyperexcitability in humans and mice. The breadth of different inbred mouse strains that exhibit MLH and inheritance patterns of heterotopia remain unknown. A neuroanatomical survey of numerous different inbred mouse strains, 2 first filial generation (F1) hybrids, and one consomic strain (C57BL/6J-Chr 1A/J/NaJ) revealed MLH only in C57BL/6 mice and the consomic strain. Heterotopia were observed in numerous genetically-engineered mouse lines on a congenic C57BL/6 background. These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1. These data are relevant toward understanding neocortical development and disorders affecting neocortical lamination.
Collapse
Affiliation(s)
- Alyssa R Toia
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Joshua A Cuoco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Anthony W Esposito
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Jawad Ahsan
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Alok Joshi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Bruce J Herron
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, United States
| | - German Torres
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States
| | - Valerie J Bolivar
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, United States
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, United States.
| |
Collapse
|
7
|
Ramos RL, Toia AR, Pasternack DM, Dotzler TP, Cuoco JA, Esposito AW, Le MM, Parker AK, Goodman JH, Sarkisian MR. Neuroanatomical characterization of the cellular and axonal architecture of subcortical band heterotopia in the BXD29-Tlr4 lps-2J/J mouse cortex. Neuroscience 2016; 337:48-65. [PMID: 27595889 DOI: 10.1016/j.neuroscience.2016.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 08/24/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Subcortical band heterotopia (SBH) are malformations of the human cerebral cortex typically associated with epilepsy and cognitive delay/disability. Rodent models of SBH have demonstrated strong face validity as they are accompanied by both cognitive deficits and spontaneous seizures or reduced seizure threshold. BXD29-Tlr4lps-2J/J recombinant inbred mice display striking bilateral SBH, partial callosal agenesis, morphological changes in subcortical structures of the auditory pathway, and display sensory deficits in behavioral tests (Rosen et al., 2013; Truong et al., 2013, 2015). Surprisingly, these mice show no cognitive deficits and have a higher seizure threshold to chemi-convulsive treatment (Gabel et al., 2013) making them different than other rodent SBH models described previously. In the present report, we perform a detailed characterization of the cellular and axonal constituents of SBH in BXD29-Tlr4lps-2J/J mice and demonstrate that various types of interneurons and glia as well as cortical and subcortical projections are found in SBH. In addition, the length of neuronal cilia was reduced in SBH compared to neurons in the overlying and adjacent normotopic cortex. Finally, we describe additional and novel malformations of the hippocampus and neocortex present in BXD29-Tlr4lps-2J/J mice. Together, our findings in BXD29-Tlr4lps-2J/J mice are discussed in the context of the known neuroanatomy and phenotype of other SBH rodent models.
Collapse
Affiliation(s)
- Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
| | - Alyssa R Toia
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Daniel M Pasternack
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Timothy P Dotzler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Joshua A Cuoco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Anthony W Esposito
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Megan M Le
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | - Alexander K Parker
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | - Jeffrey H Goodman
- Department of Developmental Neurobiology, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Department of Physiology & Pharmacology and Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew R Sarkisian
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA.
| |
Collapse
|
8
|
Spontaneous malformations of the cerebellar vermis: Prevalence, inheritance, and relationship to lobule/fissure organization in the C57BL/6 lineage. Neuroscience 2015; 310:242-51. [PMID: 26383253 DOI: 10.1016/j.neuroscience.2015.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022]
Abstract
The complex neuronal circuitry of the cerebellum is embedded within its lamina, folia, and lobules, which together play an important role in sensory and motor function. Studies in mouse models have demonstrated that both cerebellar lamination and lobule/fissure development are under genetic control. The cerebellar vermis of C57BL/6 mice exhibits spontaneous malformations of neuronal migration of posterior lobules (VIII-IX; molecular layer heterotopia); however, the extent to which other inbred mice also exhibit these malformations is unknown. Using seven different inbred mouse strains and two first filial generation (F1) hybrids, we show that only the C57BL/6 strain exhibits heterotopia. Furthermore, we observed heterotopia in consomic and recombinant inbred strains. These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1 and the sex chromosomes. Additional morphological analyses showed no relationship between heterotopia formation and other features of lobule/fissure organization. These data are relevant toward understanding normal cerebellar development and disorders affecting cerebellar foliation and lamination.
Collapse
|
9
|
Ramos RL, Siu NY, Brunken WJ, Yee KT, Gabel LA, Van Dine SE, Hoplight BJ. Cellular and Axonal Constituents of Neocortical Molecular Layer Heterotopia. Dev Neurosci 2014; 36:477-89. [DOI: 10.1159/000365100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
|