1
|
Braden K, Castro DC. The role of dorsal raphe nucleus neuropeptides in reward and aversion. Front Behav Neurosci 2025; 19:1553470. [PMID: 40270681 PMCID: PMC12014661 DOI: 10.3389/fnbeh.2025.1553470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
The dorsal raphe nucleus is a critical node for affective and motivated circuits in the brain. Though typically known as a serotonergic hub, the dorsal raphe nucleus is also highly enriched in a variety of neuropeptides. Recent advances in biotechnology and behavioral modeling have led to a resurgence in neuropeptide research, allowing investigators to target unique peptide systems with unprecedented clarity. Here, we review and discuss multiple neuropeptide systems in dorsal raphe and consider how their activity may contribute to reward and aversion. While this is not an exhaustive review, this short overview will highlight the many opportunities available to refine our understanding of multiple dorsal raphe neuropeptides. By more thoroughly studying dorsal raphe neuropeptides, we will reveal novel pathways to design more effective therapeutics and tailor treatments for millions of patients.
Collapse
Affiliation(s)
- Kathryn Braden
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
| | | |
Collapse
|
2
|
Özbaşak H, Paliokha R, Dekhtiarenko R, Grinchii D, Dremencov E. Agmatine Enhances Dorsal Raphe Serotonergic Neuronal Activity via Dual Regulation of 5-HT 1B and 5-HT 2A Receptors. Int J Mol Sci 2025; 26:3087. [PMID: 40243752 PMCID: PMC11988524 DOI: 10.3390/ijms26073087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Agmatine is a naturally occurring biogenic amine that acts primarily as an inhibitor of neuronal nitric oxide synthase (nNOS). Previous studies have shown that both acute and chronic agmatine administration induced anxiolytic and antidepressant-like effects in rodents. In the dorsal raphe nucleus (DRN), nitric oxide (NO) donors inhibit serotonergic (5-HT) neuronal activity, with the nNOS-expressing 5-HT neurons showing lower baseline firing rates than the non-nNOS expressing neurons. Our study aimed to test the hypothesis that the psychoactive effects of agmatine are mediated, at least in part, via a mechanism involving the stimulation of the DRN 5-HT neurons, as well as to assess the molecular pathway allowing agmatine to modulate the excitability of 5-HT neurons. Using extracellular in vivo electrophysiology, we demonstrated that both acute (1-3 mg/kg, i.v.) and chronic (40 mg/kg/day, i.p., 14 days) agmatine administration significantly increased the firing rate of DRN 5-HT neurons. Quantitative PCR (qPCR) analysis revealed that chronic agmatine treatment selectively upregulated the expression of serotonin-1B (5-HT1B) and serotonin-2A (5-HT2A) receptor mRNA in the DRN. Previous studies have shown that DRN 5-HT2A receptor activation stimulates 5-HT neurons and produces antidepressant-like effects; our findings suggest that agmatine's excitatory effect on DRN 5-HT neurons may be partially 5-HT2A receptor-dependent. Given that modulation of the 5-HT neuronal firing activity is critical for the proper antidepressant efficacy, nNOS inhibitors can be potential antidepressants by their own and/or effective adjuncts to other antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | - Eliyahu Dremencov
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (H.Ö.); (R.P.); (R.D.); (D.G.)
| |
Collapse
|
3
|
Ye M, Rheu KM, Lee BJ, Shim I. GABALAGEN Facilitates Pentobarbital-Induced Sleep by Modulating the Serotonergic System in Rats. Curr Issues Mol Biol 2024; 46:11176-11189. [PMID: 39451543 PMCID: PMC11505973 DOI: 10.3390/cimb46100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is one of the inhibitory neurotransmitters with beneficial effects including sedative properties. However, despite various clinical trials, scientific evidence regarding the impact on sleep of orally ingested GABA, whether natural or synthesized through biological pathways, is not clear. GABALAGEN (GBL) is the product of fermented collagen by Lactobacillus brevis BJ20 (L. brevis BJ20) and Lactobacillus plantarum BJ21 (L. plantarum BJ21), enriched with GABA and characterized by low molecular weight. The aim of this study was to investigate the effect of GBL on sleep improvement via a receptor binding assay in a pentobarbital-induced sleep-related rat model. We utilized a pentobarbital-induced sleep-related rat model to conduct this research. The present study investigated the sedative effects of GBL through electroencephalography (EEG) analysis in the pentobarbital-induced sleep animal model. Exploration of the neural basis of these positive effects involved evaluating orexin in the brain via immunohistochemical methods and 5-HT in the serum using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we conducted a binding assay for 5-HT2C receptors, as these are considered pivotal targets in the mechanism of action for sleep aids. Diazepam (DZP) was used as a positive control to compare the efficacy of GBL. Results: In the binding assay, GBL displayed binding affinity to the 5-HT2C receptor (IC50 value, 5.911 µg/mL). Administration of a low dose of GBL (GBL_L; 100 mg/kg) increased non-rapid eye movement sleep time and decreased wake time based on EEG data in pentobarbital-induced rats. Administration of a high dose of GBL (GBL_H; 250 mg/kg) increased non-rapid eye movement sleep time. Additionally, GBL groups significantly increased concentration of the 5-HT level in the serum. GBL_H decreased orexin expression in the lateral hypothalamus. Conclusion: Overall, the sedative effect of GBL may be linked to the activation of serotonergic systems, as indicated by the heightened affinity of the 5-HT2C receptor binding and elevated levels of 5-HT observed in the serum. This suggests that GBL holds promise as a novel compound for inducing sleep in natural products.
Collapse
Affiliation(s)
- Minsook Ye
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyoung-min Rheu
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea; (K.-m.R.); (B.-j.L.)
| | - Bae-jin Lee
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea; (K.-m.R.); (B.-j.L.)
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
4
|
Uniyal A, Gadepalli A, Akhilesh, Tiwari V. Underpinning the Neurobiological Intricacies Associated with Opioid Tolerance. ACS Chem Neurosci 2020; 11:830-839. [PMID: 32083459 DOI: 10.1021/acschemneuro.0c00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The opioid crisis is a major threat of the 21st century, with a remarkable juxtaposition of use and abuse. Opioids are the most potent and efficacious class of analgesics, but despite their proven therapeutic efficacy, they have recently been degraded to third-line therapy for the management of chronic pain in clinics. The reason behind this is the development of potential side effects and tolerance after repeated dosing. Opioid tolerance is the major limiting factor leading to the withdrawal of treatment, severe side effects due to dose escalation, and sometimes even death of the patients. Every day more than 90 people die due to opioids overdose in America, and a similar trend has been seen across the globe. Over the past two decades, researchers have been trying to dissect the neurobiological mechanism of opioid tolerance. Research on opioid tolerance shifted toward central nervous system-based adaptations because tolerance is much more than just a cellular phenomenon. Thus, neurobiological adaptations associated with opioid tolerance are important to understand in order to find newer pain therapeutics. These adaptations are associated with alterations in ascending and descending pain pathways, reward circuitry modulations, receptor desensitization and down-regulation, receptor internalization, heterodimerization, and altered epigenetic regulation. The present Review is focused on novel circuitries associated with opioid tolerance in different areas of the brain, such as periaqueductal gray, rostral ventromedial medulla, dorsal raphe nucleus, ventral tegmental area, and nucleus accumbens. Understanding the neurobiological modulations associated with chronic opioid exposure and tolerance will pave the way for the development of novel pharmacological tools for safer and better management of chronic pain in patients.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Cholinergic/opioid interaction in anterior cingulate cortex reduces the nociceptive response of vocalization in guinea pigs. Brain Res 2017; 1671:131-137. [DOI: 10.1016/j.brainres.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/11/2017] [Accepted: 07/16/2017] [Indexed: 01/22/2023]
|
6
|
Campion KN, Saville KA, Morgan MM. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat. Eur J Neurosci 2016; 44:2667-2672. [PMID: 27564986 DOI: 10.1111/ejn.13378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
Abstract
The dorsal raphe nucleus (DRN) is embedded in the ventral part of the caudal periaqueductal gray (PAG). Electrical or chemical activation of neurons throughout this region produces antinociception. The objective of this manuscript is to determine whether the ventrolateral PAG and DRN are distinct antinociceptive systems. This hypothesis was tested by determining the antinociceptive potency of microinjecting morphine into each structure (Experiment 1), creating a map of effective microinjection sites that produce antinociception (Experiment 2) and comparing the development of antinociceptive tolerance to repeated microinjections of morphine into the ventrolateral PAG and DRN (Experiment 3). Morphine was more potent following cumulative injections (1.0, 2.2, 4.6 & 10 μg/0.2 μL) into the ventrolateral PAG (D50 = 3.3 μg) compared to the lateral (4.3 μg) or medial DRN (5.8 μg). Antinociception occurred following 94% of the morphine injections into the ventrolateral PAG, whereas only 68.3% and 78.3% of the injections into the lateral and medial aspects of the DRN produced antinociception. Repeated microinjections of morphine into the ventrolateral PAG produced tolerance as indicated by a 528% difference in potency between morphine and saline pretreated rats. In contrast, relatively small changes in potency occurred following repeated microinjections of morphine into the lateral and medial aspects of the DRN (107% and 49%, respectively). These data indicate that the ventrolateral PAG and DRN are distinct antinociceptive structures. Antinociception is greater with injections into the ventrolateral PAG compared to the DRN, but this antinociception disappears rapidly because of the development of tolerance.
Collapse
Affiliation(s)
- Kyle N Campion
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA, 98686-9600, USA
| | - Kimber A Saville
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA, 98686-9600, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA, 98686-9600, USA.
| |
Collapse
|
7
|
Wang W, Cui G, Jin B, Wang K, Chen X, Sun Y, Qin L, Bai W. Estradiol Valerate and Remifemin ameliorate ovariectomy-induced decrease in a serotonin dorsal raphe-preoptic hypothalamus pathway in rats. Ann Anat 2016; 208:31-39. [PMID: 27562857 DOI: 10.1016/j.aanat.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/12/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022]
Abstract
Perimenopausal syndromes begin as ovarian function ceases and the most common symptoms are hot flushes. Data indicate that the projections of serotonin to hypothalamus may be involved in the mechanism of hot flushes. Therefore, the aim of this study is to investigate the potential role of the serotonin dorsal raphe-preoptic hypothalamus pathway for hot flushes in an animal model of menopause. We determined the changes in serotonin expression in the dorsal raphe (DR) and preoptic anterior hypothalamus (POAH) in ovariectomized rats. We also explored the therapeutical effects of estradiol valerate and Remifemin in this model. Eighty female Sprague-Dawley rats were randomly assigned to sham-operated (SHAM) group, ovariectomy (OVX) group with vehicle, ovariectomy with estradiol valerate treatment (OVX+E) group and ovariectomy with Remifemin (OVX+ICR) group. Serotonin expression was evaluated in the DR and POAH using immunofluorescence and quantified in the DR using an enzyme-linked immunosorbent assay (ELISA). Apoptosis was analyzed in the DR by TUNEL assay. The number of serotonin immunoreactive neurons and the level of serotonin expression in the DR decreased significantly following OVX compared to the SHAM group. No TUNEL-positive cells were detected in the DR in any group. In addition, following OVX, the number of serotonin-positive fibers decreased significantly in the ventromedial preoptic nucleus (VMPO), especially in the ventrolateral preoptic nucleus (VLPO). Treatment with either estradiol or Remifemin for 4 weeks countered the OVX-induced decreases in serotonin levels in both the DR and the hypothalamus, with levels in the treated rats similar to those in the SHAM group. A fluorescently labeled retrograde tracer was injected into the VLPO at the 4-week time point. A significantly lower percentage of serotonin with CTB double-labeled neurons in CTB-labeled neurons was demonstrated after ovariectomy, and both estradiol and Remifemin countered this OVX-induced decrease. We conclude that serotonin pathway is changed after ovariectomy, including the serotonin synthesis in DR and serotonin fibers in PO/AH, both E and Remifemin have an equivalent therapeutic effect on it.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guangxia Cui
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China; Obstetrics and Gynecology Department, Civil Aviation General Hospital, No. 1 Gaojingjia Street, Chaoyang District, Beijing, China
| | - Biao Jin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ke Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xing Chen
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Wenpei Bai
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
8
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Kiraly K, Caputi FF, Hanuska A, Kató E, Balogh M, Köles L, Palmisano M, Riba P, Hosztafi S, Romualdi P, Candeletti S, Ferdinandy P, Fürst S, Al-Khrasani M. A new potent analgesic agent with reduced liability to produce morphine tolerance. Brain Res Bull 2015; 117:32-8. [DOI: 10.1016/j.brainresbull.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/11/2023]
|