1
|
Wang J, Zhu F, Huang W, Chen Z, Zhao P, Lei Y, Liu Y, Liu X, Sun B, Li H. Therapeutic Effect and Mechanism of Acupuncture in Autoimmune Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:639-652. [PMID: 35282807 DOI: 10.1142/s0192415x22500252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autoimmune diseases (AIDs) are conditions arising from abnormal immune reactions to autoantigens, which can be defined as the loss of immune tolerance to autoantigens, causing the production of autoantibodies and subsequent inflammation and tissue injury. The etiology of AIDs remains elusive, which may involve both genetic and environmental factors, such as diet, drugs, and infections. Despite rapid progress in the treatment of autoimmune diseases over the past few decades, there is still no approach that can cure AIDs. As an alternative approach, traditional Chinese medicine (TCM) such as acupuncture has been used in an attempt to treat AIDs including multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), and the results have proven to be quite promising, despite the fact that its mechanism is still not fully understood. In this review, the present knowledge regarding mechanisms of acupuncture in the treatment of AIDs has been summarized, and deeper insights will be provided in order to better understand how acupuncture may regulate immune responses during AIDs.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Fangyi Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Ping Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Yanting Lei
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University Harbin, Heilongjiang 150081, P. R. China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
2
|
Wang Y, Han J, Zhu J, Zhang M, Ju M, Du Y, Tian Z. GluN2A/ERK/CREB Signaling Pathway Involved in Electroacupuncture Regulating Hypothalamic-Pituitary-Adrenal Axis Hyperactivity. Front Neurosci 2021; 15:703044. [PMID: 34658758 PMCID: PMC8514998 DOI: 10.3389/fnins.2021.703044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022] Open
Abstract
The hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis caused by stress will inevitably disrupt the homeostasis of the neuroendocrine system and damage physiological functions. It has been demonstrated that electroacupuncture (EA) can modulate HPA axis hyperactivity during the perioperative period. As the initiating factor of the HPA axis, hypothalamic corticotrophin-releasing hormone (CRH) is the critical molecule affected by EA. However, the mechanism by which EA reduces CRH synthesis and secretion remains unclear. Activated N-methyl-D-aspartate receptor (NMDAR) has been linked to over-secretion of hypothalamic CRH induced by stress. To determine whether NMDAR is involved in EA regulating the over-expression of CRH, a surgical model of partial hepatectomy (HT) was established in our experiment. The effect of EA on hypothalamic NMDAR expression in HT mice was examined. Then, we investigated whether the extracellular regulated protein kinases (ERK)/cyclic adenosine monophosphate response element-binding protein (CREB) signaling pathway mediated by NMDAR was involved in EA regulating HPA axis hyperactivity. It was found that surgery enhanced the expression of hypothalamic CRH and caused HPA axis hyperactivity. Intriguingly, EA effectively suppressed the expression of CRH and decreased the activation of GluN2A (NMDAR subunit), ERK, and CREB in HT mice. GluN2A, ERK, and CREB antagonists had similar effects on normalizing the expression of CRH and HPA axis function compared with EA. Our findings suggested that surgery enhanced the activation of the hypothalamic GluN2A/ERK/CREB signaling pathway, thus promoting the synthesis and secretion of CRH. EA suppressed the phosphorylation of GluN2A, ERK, and CREB in mice that had undergone surgery, indicating that the GluN2A/ERK/CREB signaling pathway was involved in EA alleviating HPA axis hyperactivity.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mizhen Zhang
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Minda Ju
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yueshan Du
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhanzhuang Tian
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|