1
|
Wu L, Liu X, Jiang Q, Li M, Liang M, Wang S, Wang R, Su L, Ni T, Dong N, Zhu L, Guan F, Zhu J, Zhang W, Wu M, Chen Y, Chen T, Wang B. Methamphetamine-induced impairment of memory and fleeting neuroinflammation: Profiling mRNA changes in mouse hippocampus following short-term and long-term exposure. Neuropharmacology 2024; 261:110175. [PMID: 39357738 DOI: 10.1016/j.neuropharm.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Methamphetamine (METH) has been implicated in inducing memory impairment, but the precise mechanisms underlying this effect remain unclear. Current research often limits itself to singular models or focuses on individual gene or protein functions, which hampers a comprehensive understanding of the underlying mechanisms. In this study, we established three METH mouse exposure models, extracted hippocampal nuclei, and utilized RNA sequencing to analyze changes in mRNA expression profiles. Our results indicate that METH significantly impairs the learning and memory capabilities of mice. Additionally, we observed that METH-induced inflammatory responses occur in the early phase and do not further exacerbate with repeated injections. However, RNA sequencing revealed the persistent enrichment of inflammatory pathway molecules, which correlated with worsened behaviors. This suggests that although METH-induced neuroinflammation plays a critical role in learning and memory impairment, the continued enrichment of inflammatory pathway molecules is associated with behavioral outcomes. These findings provide crucial evidence for the potential application of immune intervention in METH-related disorders.
Collapse
Affiliation(s)
- Laiqiang Wu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaorui Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Qingchen Jiang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Li
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Min Liang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Linlan Su
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Tong Ni
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Nan Dong
- School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Fanglin Guan
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- Department of Pathology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Teng Chen
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China.
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
2
|
Imaging Technologies for Cerebral Pharmacokinetic Studies: Progress and Perspectives. Biomedicines 2022; 10:biomedicines10102447. [PMID: 36289709 PMCID: PMC9598571 DOI: 10.3390/biomedicines10102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacokinetic assessment of drug disposition processes in vivo is critical in predicting pharmacodynamics and toxicology to reduce the risk of inappropriate drug development. The blood–brain barrier (BBB), a special physiological structure in brain tissue, hinders the entry of targeted drugs into the central nervous system (CNS), making the drug concentrations in target tissue correlate poorly with the blood drug concentrations. Additionally, once non-CNS drugs act directly on the fragile and important brain tissue, they may produce extra-therapeutic effects that may impair CNS function. Thus, an intracerebral pharmacokinetic study was developed to reflect the disposition and course of action of drugs following intracerebral absorption. Through an increasing understanding of the fine structure in the brain and the rapid development of analytical techniques, cerebral pharmacokinetic techniques have developed into non-invasive imaging techniques. Through non-invasive imaging techniques, molecules can be tracked and visualized in the entire BBB, visualizing how they enter the BBB, allowing quantitative tools to be combined with the imaging system to derive reliable pharmacokinetic profiles. The advent of imaging-based pharmacokinetic techniques in the brain has made the field of intracerebral pharmacokinetics more complete and reliable, paving the way for elucidating the dynamics of drug action in the brain and predicting its course. The paper reviews the development and application of imaging technologies for cerebral pharmacokinetic study, represented by optical imaging, radiographic autoradiography, radionuclide imaging and mass spectrometry imaging, and objectively evaluates the advantages and limitations of these methods for predicting the pharmacodynamic and toxic effects of drugs in brain tissues.
Collapse
|
3
|
He T, Han C, Liu C, Chen J, Yang H, Zheng L, Waddington JL, Zhen X. Dopamine D1 receptors mediate methamphetamine-induced dopaminergic damage: involvement of autophagy regulation via the AMPK/FOXO3A pathway. Psychopharmacology (Berl) 2022; 239:951-964. [PMID: 35190859 DOI: 10.1007/s00213-022-06097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
RATIONALE Clinical studies have revealed that methamphetamine abuse increases risk for developing Parkinson's diseases. It is thus important to elucidate the mechanisms by which methamphetamine damages dopaminergic neurons. OBJECTIVES The present study was designed to elucidate the role of the dopamine D1 receptor in methamphetamine-mediated dopaminergic neuronal damage and its underlying mechanisms. METHODS Mice were treated for 4 days with vehicle, methamphetamine, or the D1 agonist SKF38393 and then assessed for locomotion and performance in the pole and rotarod tests. Cellular indices of autophagy, LC3, P62, and Beclin-1, tyrosine hydroxylase, and the AMPK/FOXO3A pathway were analyzed in striatal tissue from treated mice, in PC12 cells, and in D1 receptor mutant mice. RESULTS Repeated treatment with a relatively high dose of methamphetamine for 4 days induced both loss of dopaminergic neurons and activation of autophagy in the striatum as evidenced by increased expression of LC3 and P62. However, such treatment did not induce either loss of dopaminergic neurons or activation of autophagy in D1 receptor knockout mice. D1 receptor-mediated activation of autophagy was also confirmed in vitro using dopaminergic neuronal PC12 cells. Further studies demonstrated that the AMPK/FOXO3A signaling pathway is responsible for D1 receptor-mediated activation of autophagy. CONCLUSIONS The present data indicate a novel mechanism for methamphetamine-induced dopaminergic neuronal damage and reveal an important role for D1 receptors in the neurotoxicity of this drug.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chaojun Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Chun Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jiaojiao Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Longtai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
4
|
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci Biobehav Rev 2021; 131:541-559. [PMID: 34606820 DOI: 10.1016/j.neubiorev.2021.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Diverse intellectual functions including memory are some important aspects of cognition. Dopamine is a neurotransmitter of the catecholamine family, which contributes to the experience of pleasure and/or emotional states but also plays crucial roles in learning and memory. Methamphetamine is an illegal drug, the abuse of which leads to long lasting pathological manifestations in the brain. Chronic methamphetamine-induced neurotoxicity results in an alteration of various parts of the memory systems by affecting learning processes, an effect attributed to the structural similarities of this drug with dopamine. An evolving field of research established how cognitive deficits in abusers arise and how they could possibly trigger neurodegenerative disorders. Thus, the drugs-induced tenacious neurophysiological changes of the dopamine system trigger cognitive deficits, thereby affirming the influence of this addictive drug on learning, memory and executive function in human abusers. Here we present an overview of the effects of methamphetamine abuse on cognitive functions, dopaminergic transmission and hippocampal integrity as they have been validated in animals and in humans during the past 20 years.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 Rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
5
|
Rorabaugh BR. Does Prenatal Exposure to CNS Stimulants Increase the Risk of Cardiovascular Disease in Adult Offspring? Front Cardiovasc Med 2021; 8:652634. [PMID: 33748200 PMCID: PMC7969998 DOI: 10.3389/fcvm.2021.652634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Prenatal exposure to an adverse uterine environment can have long lasting effects on adult offspring through DNA methylation, histone acetylation, and other epigenetic effects that alter gene expression and physiology. It is well-known that consumption of CNS stimulants such as caffeine, nicotine, amphetamines, and cocaine during pregnancy can adversely impact the offspring. However, most work in this area has focused on neurological and behavioral outcomes and has been limited to assessments in young offspring. The impact of prenatal exposure to these agents on the adult cardiovascular system has received relatively little attention. Evidence from both animal and human studies indicate that exposure to CNS stimulants during the gestational period can negatively impact the adult heart and vasculature, potentially leading to cardiovascular diseases later in life. This review discusses our current understanding of the impact of prenatal exposure to cocaine, methamphetamine, nicotine, and caffeine on the adult cardiovascular system.
Collapse
Affiliation(s)
- Boyd R Rorabaugh
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Huntington, WV, United States
| |
Collapse
|