1
|
Liu S, Li X, Jiao S, Zheng Y, Xia L, Figueredo YN, Liu K, Jin M. Phenyl salicylate induces neurotoxicity and early Alzheimer's disease-like symptoms through ndrg1-regulated myelin damage, increasing bace1 in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178664. [PMID: 39893810 DOI: 10.1016/j.scitotenv.2025.178664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/10/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Phenyl salicylate, an important industrial raw material, is widely used in plastics, cosmetics, and pharmaceuticals. However, little is known about its neurotoxicity on wildlife. Here, we exposed zebrafish embryos at 4 hours post-fertilization (hpf) to 0.025, 0.05, 0.1, 0.25, 0.5, and 1.0 mg/L of phenyl salicylate up to 144 hpf and found its developmental- and neuro-toxicity. Specifically, a dose-dependent increase in mortality and malformation in zebrafish were revealed. Phenyl salicylate also adversely affected the development of monoaminergic neurons, cerebral blood vessels, and the blood-brain barrier (BBB), as well as induced cerebral hemorrhages and locomotion change. RNA-sequencing results combined with verification data showed that phenyl salicylate downregulated the expression of the N-myc downstream regulated gene-1 (ndrg1), caused myelin damage in zebrafish, and then increased expression of beta-secretase 1 (bace1), which ultimately led to early Alzheimer's disease (AD)-like symptoms, including BBB leakage, bleeding in the brain, and upregulation of the glial fibrillary acidic protein gene (gfap) and cholinergic system-related gene (chrna7a). In conclusion, phenyl salicylate exposure triggered developmental toxicity and neurotoxicity in zebrafish, which has a potential risk for the development of AD. Given the effects of phenyl salicylate exposure to ecosystem, the safety usage limit should be treated with caution.
Collapse
Affiliation(s)
- Siyu Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Xinjia Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Shouqing Jiao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Yuanteng Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Lijie Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Yanier Nuñez Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, La Habana CP10600, Cuba
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Zeng HX, Qin SJ, Andersson J, Li SP, Zeng QG, Li JH, Wu QZ, Meng WJ, Oudin A, Kanninen KM, Jalava P, Dong GH, Zeng XW. The emerging roles of particulate matter-changed non-coding RNAs in the pathogenesis of Alzheimer's disease: A comprehensive in silico analysis and review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125440. [PMID: 39631655 DOI: 10.1016/j.envpol.2024.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Research on epigenetic‒environmental interactions in the development of Alzheimer's disease (AD) has accelerated rapidly in recent decades. Numerous studies have demonstrated the contribution of ambient particulate matter (PM) to the onset of AD. Emerging evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs, circular RNAs, and microRNAs, play a role in the pathophysiology of AD. In this review, we provide an overview of PM-altered ncRNAs in the brain, with emphasis on their potential roles in the pathogenesis of AD. These results suggest that these PM-altered ncRNAs are involved in the regulation of amyloid-beta pathology, microtubule-associated protein Tau pathology, synaptic dysfunction, damage to the blood‒brain barrier, microglial dysfunction, dysmyelination, and neuronal loss. In addition, we utilized in silico analysis to explore the biological functions of PM-altered ncRNAs in the development of AD. This review summarizes the knowns and unknowns of PM-altered ncRNAs in AD pathogenesis and discusses the current dilemma regarding PM-altered ncRNAs as promising biomarkers of AD. Altogether, this is the first thorough review of the connection between PM exposure and ncRNAs in AD pathogenesis, which may offer novel insights into the prevention, diagnosis, and treatment of AD associated with ambient PM exposure.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Hui Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Mittra N, He S, Bao H, Bhattacharjee A, Dodds SG, Dupree JL, Han X. Sulfatide deficiency-induced astrogliosis and myelin lipid dyshomeostasis are independent of Trem2-mediated microglial activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623651. [PMID: 39605561 PMCID: PMC11601472 DOI: 10.1101/2024.11.14.623651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Disrupted lipid homeostasis and neuroinflammation often co-exist in neurodegenerative disorders including Alzheimer's disease (AD). However, the intrinsic connection and causal relationship between these deficits remain elusive. Our previous studies show that the loss of sulfatide (ST), a class of myelin-enriched lipids, causes AD-like neuroinflammatory responses, cognitive impairment, bladder enlargement, as well as lipid dyshomeostasis. To better understand the relationship between neuroinflammation and lipid disruption induced by ST deficiency, we established a ST-deficient mouse model with constitutive Trem2 knockout and studied the impact of Trem2 in regulating ST deficiency-induced microglia-mediated neuroinflammation, astrocyte activation and lipid disruption. Our study demonstrates that Trem2 regulates ST deficiency-induced microglia-mediated neuroinflammatory pathways and astrogliosis at the transcriptomic level, but not astrocyte activation at the protein level, suggesting that Trem2 is indispensable for ST deficiency-induced microglia-mediated neuroinflammation but not astrogliosis. Meanwhile, ST loss-induced lipidome disruption and free water retention were consistently observed in the absence of Trem2 . Collectively, these results emphasize the essential role of Trem2 in mediating lipid loss-associated microglia-mediated neuroinflammation, but not both astrogliosis and myelin lipid disruption. Moreover, we demonstrated that attenuating neuroinflammation has a limited impact on brain ST loss-induced lipidome alteration or AD-like peripheral disorders. Our findings suggest that preserving lipidome and astrocyte balance may be crucial in decelerating the progression of AD.
Collapse
|
4
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 PMCID: PMC11951035 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
6
|
Li Q, Huo A, Li M, Wang J, Yin Q, Chen L, Chu X, Qin Y, Qi Y, Li Y, Cui H, Cong Q. Structure, ligands, and roles of GPR126/ADGRG6 in the development and diseases. Genes Dis 2024; 11:294-305. [PMID: 37588228 PMCID: PMC10425801 DOI: 10.1016/j.gendis.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are the second largest diverse group within the GPCR superfamily, which play critical roles in many physiological and pathological processes through cell-cell and cell-extracellular matrix interactions. The adhesion GPCR Adgrg6, also known as GPR126, is one of the better-characterized aGPCRs. GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals. Current studies have extended our understanding of GPR126-mediated roles during development and in human diseases. In this review, we highlighted these recent advances in GPR126 in expression profile, molecular structure, ligand-receptor interactions, and associated physiological and pathological functions in development and diseases.
Collapse
Affiliation(s)
- Qi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anran Huo
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiali Wang
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lumiao Chen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xin Chu
- Department of Emergency Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan Qin
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuwan Qi
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Li
- Department of Neurology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Hengxiang Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
7
|
Song T, Chen Y, Li C, Yao Y, Ma S, Shang Y, Cheng J. Identification of Molecular Correlations of GSDMD with Pyroptosis inAlzheimer's Disease. Comb Chem High Throughput Screen 2024; 27:2125-2139. [PMID: 39099451 DOI: 10.2174/0113862073285497240226061936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 08/06/2024]
Abstract
AIM An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD). METHODS The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The association between GSDMD and AD was assessed and confirmed in the training set GSE33000, as well as in the validation sets GSE5281 and GSE48350. Immunofluorescence (IF) was employed to detect the myelin basic protein (MBP), a distinctive protein found in the rat oligodendrocytes (OLN-93 cells). A range of concentrations (1-15 μmol/L) of β-amyloid 1-42 (Aβ1-42) were exposed to the cells, and the subsequent observations were made regarding cell morphology. Additionally, the assessments were conducted to evaluate the cell viability, the lactate dehydrogenase (LDH) release, the cell membrane permeability, and the GSDMD protein expression. RESULTS A total of 7,492 DEGs were screened using GSE33000. Subsequently, WGCNA analysis identified 19 genes that exhibited the strongest correlation with clinical traits in AD. Additionally, LASSO regression analysis identified 13 key genes, including GSDMD, AFF1, and ATOH8. Furthermore, the investigation revealed that the key genes were associated with cellular inflammation based on GO and KEGG analyses. Moreover, the area under the curve (AUC) values for the key genes in the training and validation sets were determined to be 0.95 and 0.70, respectively. Significantly, GSDMD demonstrated elevated levels of expression in AD across both datasets. The positivity of MBP expression in cells exceeded 95%. As the concentration of Aβ1-42 action gradually escalated, the detrimental effects on cells progressively intensified, resulting in a gradual decline in cell survival rate, accompanied by an increase in lactate dehydrogenase release, cell membrane permeability, and GSDMD protein expression. CONCLUSION The association between GSDMD and AD has been observed, and it has been found that Aβ1-42 can induce a significant upregulation of GSDMD in OLN-93 cells. This suggests that Aβ1-42 has the potential to induce cellular pyroptosis and can serve as a valuable cellular pyroptosis model for the study of AD.
Collapse
Affiliation(s)
- Tangtang Song
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| | - Yan Chen
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| | - Chen Li
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| | - Yinhui Yao
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P.R. China
- Affiliated Hospital of Chengde Medical College, Chengde, 067000, P.R. China
| | - Shuai Ma
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| | - Yazhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P.R. China
| | - Jianjun Cheng
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| |
Collapse
|
8
|
Moallemian S, Salmon E, Bahri MA, Beliy N, Delhaye E, Balteau E, Degueldre C, Phillips C, Bastin C. Multimodal imaging of microstructural cerebral alterations and loss of synaptic density in Alzheimer's disease. Neurobiol Aging 2023; 132:24-35. [PMID: 37717552 DOI: 10.1016/j.neurobiolaging.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 09/19/2023]
Abstract
Multiple neuropathological events are involved in Alzheimer's disease (AD). The current study investigated the concurrence of neurodegeneration, increased iron content, atrophy, and demyelination in AD. Quantitative multiparameter magnetic resonance imaging (MRI) maps providing neuroimaging biomarkers for myelination and iron content along with synaptic density measurements using [18F] UCB-H PET were acquired in 24 AD and 19 Healthy controls (19 males). The whole brain voxel-wise group comparison revealed demyelination in the right hippocampus, while no significant iron content difference was detected. Bilateral atrophy and synaptic density loss were observed in the hippocampus and amygdala. The multivariate GLM (mGLM) analysis shows a bilateral difference in the hippocampus and amygdala, right pallidum, left fusiform and temporal lobe suggesting that these regions are the most affected despite the diverse differences in brain tissue properties in AD. Demyelination was identified as the most affecting factor in the observed differences. Here, the mGLM is introduced as an alternative for multiple comparisons between different modalities, reducing the risk of false positives while informing about the co-occurrence of neuropathological processes in AD.
Collapse
Affiliation(s)
- Soodeh Moallemian
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Nikita Beliy
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Emma Delhaye
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christian Degueldre
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| |
Collapse
|
9
|
Saksena J, Hamilton AE, Gilbert RJ, Zuidema JM. Nanomaterial payload delivery to central nervous system glia for neural protection and repair. Front Cell Neurosci 2023; 17:1266019. [PMID: 37941607 PMCID: PMC10628439 DOI: 10.3389/fncel.2023.1266019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Central nervous system (CNS) glia, including astrocytes, microglia, and oligodendrocytes, play prominent roles in traumatic injury and degenerative disorders. Due to their importance, active pharmaceutical ingredients (APIs) are being developed to modulate CNS glia in order to improve outcomes in traumatic injury and disease. While many of these APIs show promise in vitro, the majority of APIs that are systemically delivered show little penetration through the blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB) and into the CNS, rendering them ineffective. Novel nanomaterials are being developed to deliver APIs into the CNS to modulate glial responses and improve outcomes in injury and disease. Nanomaterials are attractive options as therapies for central nervous system protection and repair in degenerative disorders and traumatic injury due to their intrinsic capabilities in API delivery. Nanomaterials can improve API accumulation in the CNS by increasing permeation through the BBB of systemically delivered APIs, extending the timeline of API release, and interacting biophysically with CNS cell populations due to their mechanical properties and nanoscale architectures. In this review, we present the recent advances in the fields of both locally implanted nanomaterials and systemically administered nanoparticles developed for the delivery of APIs to the CNS that modulate glial activity as a strategy to improve outcomes in traumatic injury and disease. We identify current research gaps and discuss potential developments in the field that will continue to translate the use of glia-targeting nanomaterials to the clinic.
Collapse
Affiliation(s)
- Jayant Saksena
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Adelle E. Hamilton
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Albany Stratton Veterans Affairs Medical Center, Albany, NY, United States
| | - Jonathan M. Zuidema
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
10
|
Angioni D, Raffin J, Ousset PJ, Delrieu J, de Souto Barreto P. Fatigue in Alzheimer's disease: biological basis and clinical management-a narrative review. Aging Clin Exp Res 2023; 35:1981-1989. [PMID: 37395951 DOI: 10.1007/s40520-023-02482-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Fatigue is a common symptom in neurodegenerative diseases and is associated with decreased cognitive performances. A full knowledge of the causes and physiopathological pathways leading to fatigue in Alzheimer's disease could help treating this symptom and obtain positive effects on cognitive functions. OBJECTIVES To provide an overview of the clinical conditions and the biological mechanisms leading to fatigue in Alzheimer's disease patients. To review the recent advances on fatigue management and describe the landscape of future possibilities. METHODS We performed a narrative review including all type of studies (e.g. cross-sectional and longitudinal analysis, reviews, clinical trials). RESULTS We found very few studies considering the symptom fatigue in Alzheimer's disease patients. Populations, designs, and objectives varied across studies rendering comparability across studies difficult to perform. Results from cross-sectional and longitudinal analysis suggest that the amyloid cascade may be involved in the pathogenesis of fatigue and that fatigue may be a prodromal manifestation of Alzheimer's disease. Fatigue and neurodegeneration of Alzheimer's disease could share common brain signatures (i.e. hippocampal atrophy and periventricular leukoaraiosis). Some mechanisms of aging (i.e. inflammation, mitochondrial dysfunction, telomere shortening) may be proposed to play a common underlying role in Alzheimer's disease neurodegeneration and muscle fatigability. Considering treatments, donepezil has been found to reduce cognitive fatigue in a 6-week randomized controlled study. Fatigue is frequently reported as an adverse event in patients treated by anti-amyloid agents in clinical trials. CONCLUSION The literature is actually inconclusive about the main causes of fatigue in Alzheimer's disease individuals and its potential treatments. Further research is needed to disentangle the role of several components such as comorbidities, depressive symptoms, iatrogenic factors, physical decline and neurodegeneration itself. Given the clinical relevance of this symptom, it seems to be important to systematically assess fatigue by validated tools in Alzheimer's disease clinical trials.
Collapse
Affiliation(s)
- Davide Angioni
- Gérontopôle of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France.
| | - Jeremy Raffin
- Gérontopôle of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | - Pierre-Jean Ousset
- Gérontopôle of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | - Julien Delrieu
- Gérontopôle of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | | |
Collapse
|
11
|
Maitre M, Jeltsch-David H, Okechukwu NG, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Myelin in Alzheimer's disease: culprit or bystander? Acta Neuropathol Commun 2023; 11:56. [PMID: 37004127 PMCID: PMC10067200 DOI: 10.1186/s40478-023-01554-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France.
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant CS 10413, Illkirch cedex, 67412, France
| | - Nwife Getrude Okechukwu
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| |
Collapse
|
12
|
Walker KA, Duggan MR, Gong Z, Dark HE, Laporte JP, Faulkner ME, An Y, Lewis A, Moghekar AR, Resnick SM, Bouhrara M. MRI and fluid biomarkers reveal determinants of myelin and axonal loss with aging. Ann Clin Transl Neurol 2023; 10:397-407. [PMID: 36762407 PMCID: PMC10014005 DOI: 10.1002/acn3.51730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE White matter damage is a feature of Alzheimer's disease, yet little is known about how facets of the Alzheimer's disease process relate to key features of white matter structure. We examined the association of Alzheimer's disease (Aß42/40 ratio; pTau181), neuronal injury (NfL), and reactive astrogliosis (GFAP) biomarkers with MRI measures of myelin content and axonal density. METHODS Among cognitively normal participants in the BLSA and GESTALT studies who received MRI measures of myelin content (defined by myelin water fraction [MWF]) and axonal density (defined by neurite density index [NDI]), we quantified plasma levels of Aβ42 , Aβ40 , pTau181, NfL, and GFAP. Linear regression models adjusted for demographic variables were used to relate these plasma biomarker levels to the MRI measures. RESULTS In total, 119 participants received MWF imaging (age: 56 [SD 21]), of which 43 received NDI imaging (age: 50 [SD 18]). We found no relationship between plasma biomarkers and total brain myelin content. However, secondary analysis found higher GFAP was associated with lower MWF in the temporal lobes (ß = -0.13; P = 0.049). Further, higher levels of NfL (ß = -0.22; P = 0.009) and GFAP (ß = -0.29; P = 0.002) were associated with lower total brain axonal density. Secondary analyses found lower Aβ42/40 ratio and higher pTau181 were also associated with lower axonal density, but only in select brain regions. These results remained similar after additionally adjusting for cardiovascular risk factors. INTERPRETATION Plasma biomarkers of neuronal injury and astrogliosis are associated with reduced axonal density and region-specific myelin content. Axonal loss and demyelination may co-occur with neurodegeneration and astrogliosis ahead of clinically meaningful cognitive decline.
Collapse
Affiliation(s)
- Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21224
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21224
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| |
Collapse
|
13
|
Chen Q, Chen X, Xu L, Zhang R, Li Z, Yue X, Qiao D. Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies. Forensic Sci Med Pathol 2022; 18:530-544. [PMID: 36117238 DOI: 10.1007/s12024-022-00522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) has high morbidity and poor prognosis and imposes a serious socioeconomic burden. Traumatic axonal injury (TAI), which is one of the common pathological changes in the primary injury of TBI, is often caused by the external force to the head that causes the white matter bundles to generate shear stress and tension; resulting in tissue damage and leading to the cytoskeletal disorder. At present, the forensic pathological diagnosis of TAI-caused death is still a difficult problem. Most of the TAI biomarkers studied are used for the prediction, evaluation, and prognosis of TAI in the living state. The research subjects are mainly humans in the living state or model animals, which are not suitable for the postmortem diagnosis of TAI. In addition, there is still a lack of recognized indicators for the autopsy pathological diagnosis of TAI. Different diagnostic methods and markers have their limitations, and there is a lack of systematic research and summary of autopsy diagnostic markers of TAI. Therefore, this study mainly summarizes the pathological mechanism, common methods, techniques of postmortem diagnosis, and corresponding biomarkers of TAI, and puts forward the strategies for postmortem diagnosis of TAI for forensic cases with different survival times, which is of great significance to forensic pathological diagnosis.
Collapse
Affiliation(s)
- Qianling Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Xuebing Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Rui Zhang
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Zhigang Li
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, 510442, China.
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
14
|
Brain Microstructural Changes in Patients with Amnestic mild Cognitive Impairment. Clin Neuroradiol 2022; 33:445-453. [DOI: 10.1007/s00062-022-01226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
|
15
|
Leng L, Yuan Z, Pan R, Su X, Wang H, Xue J, Zhuang K, Gao J, Chen Z, Lin H, Xie W, Li H, Chen Z, Ren K, Zhang X, Wang W, Jin ZB, Wu S, Wang X, Yuan Z, Xu H, Chow HM, Zhang J. Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance. Nat Metab 2022; 4:1287-1305. [PMID: 36203054 DOI: 10.1038/s42255-022-00643-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/18/2022] [Indexed: 01/20/2023]
Abstract
Microglial cells consume adenosine triphosphate (ATP) during phagocytosis to clear neurotoxic β-amyloid in Alzheimer's disease (AD). However, the contribution of energy metabolism to microglial function in AD remains unclear. Here, we demonstrate that hexokinase 2 (HK2) is elevated in microglia from an AD mouse model (5xFAD) and AD patients. Genetic deletion or pharmacological inhibition of HK2 significantly promotes microglial phagocytosis, lowers the amyloid plaque burden and attenuates cognitive impairment in male AD mice. Notably, the ATP level is dramatically increased in HK2-deficient or inactive microglia, which can be attributed to a marked upregulation in lipoprotein lipase (LPL) expression and subsequent increase in lipid metabolism. We further show that two downstream metabolites of HK2, glucose-6-phosphate and fructose-6-phosphate, can reverse HK2-deficiency-induced upregulation of LPL, thus supporting ATP production and microglial phagocytosis. Our findings uncover a crucial role for HK2 in phagocytosis through regulation of microglial energy metabolism, suggesting a potential therapeutic strategy for AD by targeting HK2.
Collapse
Affiliation(s)
- Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Ruiyuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiao Su
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Han Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Jin Xue
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Kai Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hui Lin
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Wenting Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Zhenyi Chen
- Department of Anesthesiology, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medcial University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medcial University, Xi'an, Shaanxi, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medcial University, Xi'an, Shaanxi, China
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
- Department of Anesthesiology, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
- Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
16
|
Valenza M, Facchinetti R, Steardo L, Scuderi C. Palmitoylethanolamide and White Matter Lesions: Evidence for Therapeutic Implications. Biomolecules 2022; 12:biom12091191. [PMID: 36139030 PMCID: PMC9496237 DOI: 10.3390/biom12091191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Palmitoylethanolamide (PEA), the naturally occurring amide of ethanolamine and palmitic acid, is an endogenous lipid compound endowed with a plethora of pharmacological functions, including analgesic, neuroprotective, immune-modulating, and anti-inflammatory effects. Although the properties of PEA were first characterized nearly 65 years ago, the identity of the receptor mediating these actions has long remained elusive, causing a period of research stasis. In the last two decades, a renewal of interest in PEA occurred, and a series of interesting studies have demonstrated the pharmacological properties of PEA and clarified its mechanisms of action. Recent findings showed the ability of formulations containing PEA in promoting oligodendrocyte differentiation, which represents the first step for the proper formation of myelin. This evidence opens new and promising research opportunities. White matter defects have been detected in a vast and heterogeneous group of diseases, including age-related neurodegenerative disorders. Here, we summarize the history and pharmacology of PEA and discuss its therapeutic potential in restoring white matter defects.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Università Giustino Fortunato, 82100 Benevento, Italy
- Correspondence: (L.S.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Correspondence: (L.S.); (C.S.)
| |
Collapse
|
17
|
Strain JF, Barthelemy N, Horie K, Gordon BA, Kilgore C, Aschenbrenner A, Cruchaga C, Xiong C, Joseph-Mathurin N, Hassenstab J, Fagan AM, Li Y, Karch CM, Perrin RJ, Berman SB, Chhatwal JP, Graff-Radford NR, Mori H, Levin J, Noble JM, Allegri R, Schofield PR, Marcus DS, Holtzman DM, Morris JC, Benzinger TLS, McDade EM, Bateman RJ, Ances BM. CSF Tau phosphorylation at Thr205 is associated with loss of white matter integrity in autosomal dominant Alzheimer disease. Neurobiol Dis 2022; 168:105714. [PMID: 35358703 PMCID: PMC9701560 DOI: 10.1016/j.nbd.2022.105714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hyperphosphorylation of tau leads to conformational changes that destabilize microtubules and hinder axonal transport in Alzheimer's disease (AD). However, it remains unknown whether white matter (WM) decline due to AD is associated with specific Tau phosphorylation site(s). METHODS In autosomal dominant AD (ADAD) mutation carriers (MC) and non-carriers (NC) we compared cerebrospinal fluid (CSF) phosphorylation at tau sites (pT217, pT181, pS202, and pT205) and total tau with WM measures, as derived from diffusion tensor imaging (DTI), and cognition. A WM composite metric, derived from a principal component analysis, was used to identify spatial decline seen in ADAD. RESULTS The WM composite explained over 70% of the variance in MC. WM regions that strongly contributed to the spatial topography were located in callosal and cingulate regions. Loss of integrity within the WM composite was strongly associated with AD progression in MC as defined by the estimated years to onset (EYO) and cognitive decline. A linear regression demonstrated that amyloid, gray matter atrophy and phosphorylation at CSF tau site pT205 each uniquely explained a reduction in the WM composite within MC that was independent of vascular changes (white matter hyperintensities), and age. Hyperphosphorylation of CSF tau at other sites and total tau did not significantly predict WM composite loss. CONCLUSIONS We identified a site-specific relationship between CSF phosphorylated tau and WM decline within MC. The presence of both amyloid deposition and Tau phosphorylation at pT205 were associated with WM composite loss. These findings highlight a primary AD-specific mechanism for WM dysfunction that is tightly coupled to symptom manifestation and cognitive decline.
Collapse
Affiliation(s)
- Jeremy F Strain
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Nicolas Barthelemy
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Kanta Horie
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA; Department of Psychological & Brain Sciences, Washington University, St. Louis, MO 63110, USA
| | - Collin Kilgore
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | | | - Carlos Cruchaga
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA; Osaka City University School of Medicine Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Nelly Joseph-Mathurin
- Department of Radiology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA; Osaka City University School of Medicine Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Anne M Fagan
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Yan Li
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Celeste M Karch
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Richard J Perrin
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Hiroshi Mori
- Osaka City University School of Medicine Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Johannes Levin
- German Center for Neurodegenerative Disease (DZNE) Munich, Munich, Germany
| | - James M Noble
- Department of Neurology, Columbia University, New York, NY 100310, USA
| | - Ricardo Allegri
- School of Medicine, Universidad de Buenos Aires, Viamonte 430, C1053 CABA, Argentina
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia; Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63100, USA
| | - Daniel S Marcus
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Eric M McDade
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Department of Radiology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022; 10:1236. [PMID: 35740258 PMCID: PMC9219769 DOI: 10.3390/biomedicines10061236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer's disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1-42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1-42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1-42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1-42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.
Collapse
Affiliation(s)
- Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | | | - Giulia Federica Mancini
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Università Telematica Giustino Fortunato, 82100 Benevento, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| |
Collapse
|
19
|
Chen JF, Wang F, Huang NX, Xiao L, Mei F. Oligodendrocytes and Myelin: Active players in Neurodegenerative brains? Dev Neurobiol 2022; 82:160-174. [PMID: 35081276 DOI: 10.1002/dneu.22867] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022]
Abstract
Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing OL and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Nan-Xing Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
20
|
Yu H, Shi J, Lin Y, Zhang Y, Luo Q, Huang S, Wang S, Wei J, Huang J, Li C, Ji L. Icariin Ameliorates Alzheimer's Disease Pathology by Alleviating Myelin Injury in 3 × Tg-AD Mice. Neurochem Res 2022; 47:1049-1059. [PMID: 35037164 DOI: 10.1007/s11064-021-03507-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by excessive deposition of β amyloid (Aβ), hyperphosphorylation of tau protein, and neuronal cell death. Recent studies have shown that myelin cell damage, which leads to cognitive dysfunction, occurs before AD-related pathological changes. Here, we examine the effect of icariin (ICA), a prenylated flavonol glycoside, in improving cognitive function in AD model mice. ICA has been reported to exhibit cardiovascular protective functions and antiaging effects. In this study, we used 3 × Tg-AD mice as an AD model. The Morris water maze and Y maze tests were performed to assess the learning and memory of the mice. Immunofluorescence analysis of Aβ1-42 deposition and myelin basic protein (MBP) expression in the mouse hippocampus was performed. Tau protein phosphorylation and MBP protein expression in the hippocampus were further analyzed by Western blotting. Myelin damage in the mouse optic nerve was evaluated by electron microscopy, and LFB staining was performed to assess myelin morphology in the mouse corpus callosum. MBP, Mpp5, and Egr2 transcript levels were quantified by qPCR. We observed that ICA treatment improved the learning and memory of 3 × Tg-AD mice and reduced Aβ deposition and tau protein phosphorylation in the hippocampus. Moreover, this treatment protocol increased myelin-related gene expression and reduced myelin damage.
Collapse
Affiliation(s)
- Hongxia Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianhong Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yiyou Lin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yehui Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qihang Luo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Suo Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sichen Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiale Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junhao Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liting Ji
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
21
|
Activation of 5-HT 1A receptor reduces abnormal emotionality in stress-maladaptive mice by alleviating decreased myelin protein in the ventral hippocampus. Neurochem Int 2021; 151:105213. [PMID: 34673172 DOI: 10.1016/j.neuint.2021.105213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that abnormal emotionality in stress-maladaptive mice was ameliorated by chronic treatment with flesinoxan, a 5-HT1A receptor agonist. Furthermore, the maintenance of hippocampal myelination appeared to contribute to the development of stress adaptation in mice. However, the effects of 5-HT1A receptor activation on myelination under the stress-maladaptive situations and the underlying mechanisms remain unknown. In the present study, we examined using flesinoxan whether activation of 5-HT1A receptor can reduce an abnormal emotional response by acting on oligodendrocytes to preserve myelin proteins in stress-maladaptive mice. Mice were exposed to repeated restraint stress for 4 h/day for 14 days as a stress-maladaptive model. Flesinoxan was given intraperitoneally immediately after the daily exposure to restraint stress. After the final exposure to restraint stress, the emotionality of mice was evaluated by the hole-board test. The expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-cAMP response element-binding protein (p-CREB), myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (olig2) in the hippocampus was assessed by western blotting. Hippocampal oligodendrogenesis were examined by immunohistochemistry. Chronic treatment with flesinoxan suppressed the decrease in head-dipping behaviors in stress-maladaptive mice in the hole-board test. Under this condition, the decreases in MAG and MBP in the hippocampus recovered with increase in BDNF, p-ERK, p-CREB, and olig2. Furthermore, hippocampal oligodendrogenesis in stress-maladaptive mice was promoted by chronic treatment with flesinoxan. These findings suggest that 5-HT1A receptor activation may promote oligodendrogenesis and myelination via an ERK/CREB/BDNF signaling pathway in the hippocampus and reduces abnormal emotionality due to maladaptation to excessive stress.
Collapse
|
22
|
Shenzhiling oral solution promotes myelin repair through PI3K/Akt-mTOR pathway in STZ-induced SAD mice. 3 Biotech 2021; 11:361. [PMID: 34295606 DOI: 10.1007/s13205-021-02900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Most forms of Alzheimer's disease are sporadic. A model of sporadic Alzheimer's disease induced with bilateral intraventricular injection of streptozotocin leads to insulin resistance in the brain accompanied by memory decline, synaptic dysfunction, amyloid plaque deposition, oxidative stress, and neuronal apoptosis, all of which mimic the pathologies associated with sporadic Alzheimer's disease. Myelin injury is an essential component of Alzheimer's disease, playing a key role in early cognitive impairment. Our previously research found that sporadic Alzheimer's disease model showed myelin injury and that Shenzheling oral solution improved mild-to-moderate Alzheimer's disease; therefore, the protective effect of Shenzheling oral solution on myelin injury in early cognitive impairment is worth attention. In this study, the Morris water maze test results showed impairments in the learning and memory functions of mice in the model group, whereas the learning and memory function significantly improved after drug intervention. Immunohistochemistry showed increased β-amyloid plaques in the model group and decreased amounts in the drug group. Moreover, results of electron microscopy, western blot, and polymerase chain reaction showed that Shenzhiling oral solution improved early cognitive impairment and repaired myelin sheath damage; the potential mechanism of these effects may relate to the PI3K/Akt-mTOR signaling pathway. These findings support the application and promotion of Shenzhiling oral solution to treat sporadic Alzheimer's disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02900-x.
Collapse
|
23
|
Madrid L, Moreno-Grau S, Ahmad S, González-Pérez A, de Rojas I, Xia R, Martino Adami PV, García-González P, Kleineidam L, Yang Q, Damotte V, Bis JC, Noguera-Perea F, Bellenguez C, Jian X, Marín-Muñoz J, Grenier-Boley B, Orellana A, Ikram MA, Amouyel P, Satizabal CL, Real LM, Antúnez-Almagro C, DeStefano A, Cabrera-Socorro A, Sims R, Van Duijn CM, Boerwinkle E, Ramírez A, Fornage M, Lambert JC, Williams J, Seshadri S, Ried JS, Ruiz A, Saez ME. Multiomics integrative analysis identifies APOE allele-specific blood biomarkers associated to Alzheimer's disease etiopathogenesis. Aging (Albany NY) 2021; 13:9277-9329. [PMID: 33846280 PMCID: PMC8064208 DOI: 10.18632/aging.202950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, currently affecting 35 million people worldwide. Apolipoprotein E (APOE) ε4 allele is the major risk factor for sporadic, late-onset AD (LOAD), which comprises over 95% of AD cases, increasing the risk of AD 4-12 fold. Despite this, the role of APOE in AD pathogenesis is still a mystery. Aiming for a better understanding of APOE-specific effects, the ADAPTED consortium analysed and integrated publicly available data of multiple OMICS technologies from both plasma and brain stratified by APOE haplotype (APOE2, APOE3 and APOE4). Combining genome-wide association studies (GWAS) with differential mRNA and protein expression analyses and single-nuclei transcriptomics, we identified genes and pathways contributing to AD in both APOE dependent and independent fashion. Interestingly, we characterised a set of biomarkers showing plasma and brain consistent protein profiles and opposite trends in APOE2 and APOE4 AD cases that could constitute screening tools for a disease that lacks specific blood biomarkers. Beside the identification of APOE-specific signatures, our findings advocate that this novel approach, based on the concordance across OMIC layers and tissues, is an effective strategy for overcoming the limitations of often underpowered single-OMICS studies.
Collapse
Affiliation(s)
- Laura Madrid
- Andalusion Bioiformatics Research Centre (CAEBi), Sevilla, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Itziar de Rojas
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Rui Xia
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pamela V. Martino Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Pablo García-González
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Luca Kleineidam
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Vincent Damotte
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque Et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Fuensanta Noguera-Perea
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, 30120 El Palmar, Murcia, España
| | - Céline Bellenguez
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque Et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Xueqiu Jian
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Juan Marín-Muñoz
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, 30120 El Palmar, Murcia, España
| | - Benjamin Grenier-Boley
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque Et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Adela Orellana
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Philippe Amouyel
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque Et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alzheimer’s Disease Neuroimaging Initiative (ADNI)*
- Andalusion Bioiformatics Research Centre (CAEBi), Sevilla, Spain
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque Et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, 30120 El Palmar, Murcia, España
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Sevilla, Spain
- Department of Surgery, Biochemistry and Immunology, University of Malaga, Spain
- Janssen Research and Development, a Division of Janssen Pharmaceutica N.V., Beerse, Belgium
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- UKDRI@Cardiff, School of Medicine, Cardiff University, Cardiff, UK
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Knollstrasse, Ludwigshafen, Germany
| | - EADI consortium, CHARGE consortium, GERAD consortium, GR@ACE/DEGESCO consortium
- Andalusion Bioiformatics Research Centre (CAEBi), Sevilla, Spain
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque Et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, 30120 El Palmar, Murcia, España
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Sevilla, Spain
- Department of Surgery, Biochemistry and Immunology, University of Malaga, Spain
- Janssen Research and Development, a Division of Janssen Pharmaceutica N.V., Beerse, Belgium
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- UKDRI@Cardiff, School of Medicine, Cardiff University, Cardiff, UK
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Knollstrasse, Ludwigshafen, Germany
| | - Luis Miguel Real
- Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Sevilla, Spain
- Department of Surgery, Biochemistry and Immunology, University of Malaga, Spain
| | - Carmen Antúnez-Almagro
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, 30120 El Palmar, Murcia, España
| | - Anita DeStefano
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alfredo Ramírez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jean-Charles Lambert
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque Et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- UKDRI@Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - ADAPTED consortium
- Andalusion Bioiformatics Research Centre (CAEBi), Sevilla, Spain
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque Et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Carretera de Madrid-Cartagena s/n, 30120 El Palmar, Murcia, España
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Sevilla, Spain
- Department of Surgery, Biochemistry and Immunology, University of Malaga, Spain
- Janssen Research and Development, a Division of Janssen Pharmaceutica N.V., Beerse, Belgium
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- UKDRI@Cardiff, School of Medicine, Cardiff University, Cardiff, UK
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Knollstrasse, Ludwigshafen, Germany
| | - Janina S. Ried
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Knollstrasse, Ludwigshafen, Germany
| | - Agustín Ruiz
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | |
Collapse
|
24
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
25
|
Wang SS, Bi HZ, Chu SF, Dong YX, He WB, Tian YJ, Zang YD, Zhang DM, Zhang Z, Chen NH. CZ-7, a new derivative of Claulansine F, promotes remyelination induced by cuprizone by enhancing myelin debris clearance. Brain Res Bull 2020; 159:67-78. [PMID: 32289743 DOI: 10.1016/j.brainresbull.2020.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
The mechanism of demyelinating diseases is controversial, while demyelination and remyeliantion disorder is the acknowledged etiology and therapeutic target. Untill now, there is no efficient therapy for these diseases. CZ-7, a new derivative of Claulansine F, which has been reported before, were investigated its pro-remyelination effect and its associated mechanism in cuprizone (CPZ)-induced demyelination model. In this study, male C57BL/6 mice were subjected to CPZ (300 mg/kg) through intragastric gavage and were orally administered CZ-7 (20 mg/kg) meanwhile. The results of weight monitoring and behavioral testing showed that CZ-7 can significantly improve behavior dysfunction in the demyelinating mice. Luxol-fast blue (LFB) staining, myelin basic protein (MBP) immunostaining, transmission electron microscopy (TEM) and QPCR results indicated the therapeutic effect of CZ-7 on CPZ mice model. Furthermore, degraded myelin basic protein (dMBP) immunofluorescent staining and oil red O staining showed that CZ-7 contributed to the clearance of degraded myelin debris. More microglia displayed phagocytic shape assembled in corpus callosum (CC) and there was an active process of phagocytosis in microglia after CZ-7 treatment. Immunofluorescent staining and QPCR analysis revealed the M2-polarized phenotype switch of microglia in the process of myelin debris removel, which demostrated the microenvironment improvement of CZ-7. Moreover, immunofluorescent staining of NG2 and O4 demonstated that more oligodendrocyte precursor cells (OPCs) existed in CC after CZ-7 treatment. In conclusion, our results demonstrated CZ-7 has a potential therapeutic effect for MS and other demyelinating diseases through enhancing myelin debris clearance to improve the microenvironment.
Collapse
Affiliation(s)
- Sha-Sha Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hao-Zhi Bi
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Xiao Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wen-Bin He
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Ya-Juan Tian
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Ying-Da Zang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
26
|
Mayaki AM, Abdul Razak IS, Noraniza MA, Mazlina M, Rasedee A. Biofluid Markers of Equine Neurological Disorders Reviewed From Human Perspectives. J Equine Vet Sci 2019; 86:102907. [PMID: 32067661 DOI: 10.1016/j.jevs.2019.102907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
Neurological disorders (NDs) are often fatal to horses. Thus, symptoms of equine NDs commonly indicate euthanasia. Current diagnostic approaches for equine NDs is based on clinical signs, differential diagnoses, analysis of cerebrospinal fluid (CSF), assessment of histopathological lesions, and imaging. However, advances in biofluid biomarkers in the diagnosis of human neurological diseases can potentially be applied to equine NDs. In this review, we described the established human blood and CSF neurobiomarkers that could potentially be used to diagnose equine NDs.
Collapse
Affiliation(s)
- Abubakar Musa Mayaki
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Shameha Abdul Razak
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Mohd Adzahan Noraniza
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mazlan Mazlina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
27
|
Andica C, Kamagata K, Hatano T, Saito Y, Ogaki K, Hattori N, Aoki S. MR Biomarkers of Degenerative Brain Disorders Derived From Diffusion Imaging. J Magn Reson Imaging 2019; 52:1620-1636. [PMID: 31837086 PMCID: PMC7754336 DOI: 10.1002/jmri.27019] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
The incidence of neurodegenerative diseases has shown an increasing trend. These conditions typically cause progressive functional disability. Identification of robust biomarkers of neurodegenerative diseases is a key imperative to facilitate early identification of the pathological features and to foster a better understanding of the pathogenetic mechanisms of individual diseases. Diffusion tensor imaging (DTI) is the most widely used diffusion MRI technique for assessment of neurodegenerative diseases. The DTI parameters are promising biomarkers for evaluation of microstructural changes; however, some limitations of DTI restrict its wider clinical use. New diffusion MRI techniques, such as diffusion kurtosis imaging (DKI), bi-tensor DTI, and neurite orientation density and dispersion imaging (NODDI) have been demonstrated to provide value addition to DTI for evaluation of neurodegenerative diseases. In this review article, we summarize the key technical aspects and provide an overview of the current state of knowledge regarding the role of DKI, bi-tensor DTI, and NODDI as biomarkers of microstructural changes in representative neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2 J. MAGN. RESON. IMAGING 2020;52:1620-1636.
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiological Sciences, Tokyo Metropolitan University, Graduate School of Human Health Sciences, Tokyo, Japan
| | - Kotaro Ogaki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Dickstein DL, Talty R, Bresnahan E, Varghese M, Perry B, Janssen WGM, Sowa A, Giedzinski E, Apodaca L, Baulch J, Acharya M, Parihar V, Limoli CL. Alterations in synaptic density and myelination in response to exposure to high-energy charged particles. J Comp Neurol 2018; 526:2845-2855. [PMID: 30198564 DOI: 10.1002/cne.24530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
High-energy charged particles are considered particularly hazardous components of the space radiation environment. Such particles include fully ionized energetic nuclei of helium, silicon, and oxygen, among others. Exposure to charged particles causes reactive oxygen species production, which has been shown to result in neuronal dysfunction and myelin degeneration. Here we demonstrate that mice exposed to high-energy charged particles exhibited alterations in dendritic spine density in the hippocampus, with a significant decrease of thin spines in mice exposed to helium, oxygen, and silicon, compared to sham-irradiated controls. Electron microscopy confirmed these findings and revealed a significant decrease in overall synapse density and in nonperforated synapse density, with helium and silicon exhibiting more detrimental effects than oxygen. Degeneration of myelin was also evident in exposed mice with significant changes in the percentage of myelinated axons and g-ratios. Our data demonstrate that exposure to all types of high-energy charged particles have a detrimental effect, with helium and silicon having more synaptotoxic effects than oxygen. These results have important implications for the integrity of the central nervous system and the cognitive health of astronauts after prolonged periods of space exploration.
Collapse
Affiliation(s)
- Dara L Dickstein
- Uniformed Services University of Health Sciences, Bethesda, Maryland.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronan Talty
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bayley Perry
- Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - William G M Janssen
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Allison Sowa
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, California
| | - Lauren Apodaca
- Department of Radiation Oncology, University of California, Irvine, California
| | - Janet Baulch
- Department of Radiation Oncology, University of California, Irvine, California
| | - Munjal Acharya
- Department of Radiation Oncology, University of California, Irvine, California
| | - Vipan Parihar
- Department of Radiation Oncology, University of California, Irvine, California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|