1
|
Vatsa P, Srivastava A, Srivastava AK, Pandeya A, Singh A, Pant AB. Mesenchymal stem cell secretome restores monocrotophos induced toxicity in human neural progenitor cells. Biochem Biophys Res Commun 2025; 769:151987. [PMID: 40367904 DOI: 10.1016/j.bbrc.2025.151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
The attempts are being made to investigate the new approaches to identify and treat the chemical-induced neurotoxicity. The human mesenchymal stem cell (hMSC) secretome has been recognized as one of the promising approaches, as it is rich in bioactive factors that promote regeneration and neuroprotection. We examined the neuroprotective effects of stimulated and unstimulated hMSC-secretomes on human iPSC-derived neural progenitor cells (hNPCs) exposed to pesticide-monocrotophos (MCP). In-vitro assays were employed to assess the neuroprotective potential of MSC secretomes on hNPCs exposed to subtoxic concentrations of MCP. Comprehensive multi-omics analyses (proteomics and transcriptomics), bioenergetics assessments, and computational bioinformatics analyses were performed to elucidate the underlying molecular mechanisms and therapeutic effects. As anticipated, MCP exposure decreased viability, caused morphological changes, increased oxidative stress, and disrupted mitochondrial function in hNPCs. The treatment with MSC secretomes at 50 % concentration restored cell viability, morphology, and oxidative stress markers to near-normal levels. Bioenergetics analyses revealed significant improvements in mitochondrial oxygen consumption rates, ATP production, and spare respiratory capacity following secretome treatment, which was corroborated by proteomic analyses indicating restoration of mitochondrial protein expression and function. Transcriptomic profiling identified critical MCP-dysregulated miRNAs (including hsa-miR-138-5p and hsa-miR-219a-5p) and their inverse relationship with altered protein expression levels, highlighting the regulatory capacity of hMSC secretomes. The study demonstrates the therapeutic potential of MSC secretomes in mitigating chemical-induced developmental neurotoxicity by modulating oxidative stress, mitochondrial recovery, and miRNA-mediated signaling. Stimulated hMSC secretomes, which are enriched with bioactive molecules, showed enhanced efficacy, making them promising candidates for targeted therapies in chemical neurotoxicity interventions.
Collapse
Affiliation(s)
- P Vatsa
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - A Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - A K Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - A Pandeya
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - A Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - A B Pant
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Yan QQ, Liu TL, Liu LL, Wei YS, Zhao YD, Yu C, Zhong ZG, Huang JL, Wu DP. Mitochondrial Treatment Improves Cognitive Impairment Induced by Lipopolysaccharide in Mice. Mol Neurobiol 2025; 62:6703-6714. [PMID: 39037529 DOI: 10.1007/s12035-024-04368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Neuroinflammation has been proven to drive cognitive impairment associated with neurodegenerative diseases. It has been demonstrated that mitochondrial dysfunction is associated with cognitive impairment caused by neuroinflammation. We hypothesized that the transfer of exogenous mitochondria may be beneficial to the therapy of cognitive impairment induced by neuroinflammation. In the study, the effect of exogenous mitochondria on cognitive impairment induced by neuroinflammation was investigated. The results showed that mitochondrial treatment ameliorated the cognitive performance of lipopolysaccharide (LPS)-treated mice. Additionally, mitochondrial therapy attenuated neuronal injury and down-regulated the expression of proinflammatory cytokines, including TNF-α and pro- and cleaved IL-1β, and the expression of Iba-1 and GFAP in the hippocampus and cortex of LPS-treated mice. Additionally, mitochondrial treatment increased mitochondrial ΔΨm, ATP level, and SOD activity and attenuated MDA level and ROS production in the brains of LPS-treated mice. The study reports the beneficial effect of mitochondrial treatment against cognitive impairment of LPS-treated mice, thereby providing a potential strategy for the treatment of cognitive impairment caused by neuroinflammation.
Collapse
Affiliation(s)
- Qiu-Qing Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tian-Long Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ling-Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan-Su Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuan-Dan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chao Yu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhen-Guo Zhong
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China.
| | - Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
3
|
Liu J, Qing T, He M, Xu L, Wu Z, Huang M, Liu Z, Zhang Y, Li Z, Yang W, Liu J, Li J. Transcriptomics, single-cell sequencing and spatial sequencing-based studies of cerebral ischemia. Eur J Med Res 2025; 30:326. [PMID: 40275374 PMCID: PMC12020253 DOI: 10.1186/s40001-025-02596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
With high disability and mortality rate as well as highly complex pathogenesis, cerebral ischemia is highly morbid, prone to recurrence. To comprehensively understand the pathophysiological process of cerebral ischemia and to find new therapeutic strategies, a new approach to cerebral ischemia transcriptomics has emerged in recent years. By integrating data from multiple levels of transcriptomics, such as transcriptomics, single-cell transcriptomics, and spatial transcriptomics, this new approach can provide powerful help in revealing the molecular mechanisms of cerebral ischemia occurrence and development. Key findings highlight the critical roles of inflammation, blood-brain barrier dysfunction, and mitochondrial dysregulation in cerebral ischemia, offering potential biomarkers and therapeutic targets for early diagnosis and personalized treatment. A review of the research progress of cerebral ischemic injury mechanism under the analysis of the comprehensive transcriptomics research method was presented in this article, aiming to study the potential mechanism to provide new, innovative therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Jiaming Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Tao Qing
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Changsha, Hunan, China
| | - Liu Xu
- International Education School, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhuxiang Wu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Meiting Huang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Zheyu Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Ye Zhang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Zisheng Li
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Wenhui Yang
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Junbo Liu
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China
| | - Jie Li
- Basic Medical College of Hunan University of Medicine, Huaihua, Hunan, China.
- Huaihua Key Laboratory of Ion Channels and Complex Diseases, Huaihua, Hunan, China.
| |
Collapse
|
4
|
Shin EH, Le Q, Barboza R, Morin A, Singh SM, Castellani CA. Mitochondrial transplantation: Triumphs, challenges, and impacts on nuclear genome remodelling. Mitochondrion 2025; 84:102042. [PMID: 40254118 DOI: 10.1016/j.mito.2025.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Mitochondria are membrane-bound organelles of eukaryotic cells that play crucial roles in cell functioning and homeostasis, including ATP generation for cellular energy. Mitochondrial function is associated with several complex diseases and disorders, including cardiovascular, cardiometabolic, neurodegenerative diseases and some cancers. The risk for these diseases and disorders is often associated with mitochondrial dysfunction, particularly the quantitative and qualitative features of the mitochondrial genome. Emerging results implicate mito-nuclear crosstalk as the mechanism by which mtDNA variation affects complex disease outcomes. Experimental approaches are emerging for the targeting of mitochondria as a potential therapeutic for several of these diseases, particularly in the form of mitochondrial transplantation. Current approaches to mitochondrial transplantation generally involve isolating healthy mitochondria from donor cells and introducing them to diseased recipients towards amelioration of mitochondrial dysfunction. Using such a protocol, several reports have shown recovery of mitochondrial function and improved disease outcomes post-mitochondrial transplantation, highlighting its potential as a therapeutic method for several complex, severe and debilitating diseases. Additionally, the mitochondrial genome can be modified prior to transplantation to target disease-associated site-specific mutations and to reduce the ratio of mutant-to-WT alleles. These promising results may underlie the potential impact of mitochondrial transplantation on mito-nuclear genome interactions in the setting of the disease. Further, we recommend that mitochondrial transplantation experimentation include an assessment of potential impacts on remodelling of the nuclear genome, particularly the nuclear epigenome and transcriptome. Herein, we review these and other triumphs and challenges of mitochondrial transplantation as a potential novel therapeutic for mitochondria-associated diseases.
Collapse
Affiliation(s)
- Elly H Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Rachel Barboza
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Amanda Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada; McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Mozafari S, Peruzzotti-Jametti L, Pluchino S. Mitochondria transfer for myelin repair. J Cereb Blood Flow Metab 2025:271678X251325805. [PMID: 40079508 PMCID: PMC11907575 DOI: 10.1177/0271678x251325805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Demyelination is a common feature of neuroinflammatory and degenerative diseases of the central nervous system (CNS), such as multiple sclerosis (MS). It is often linked to disruptions in intercellular communication, bioenergetics and metabolic balance accompanied by mitochondrial dysfunction in cells such as oligodendrocytes, neurons, astrocytes, and microglia. Although current MS treatments focus on immunomodulation, they fail to stop or reverse demyelination's progression. Recent advancements highlight intercellular mitochondrial exchange as a promising therapeutic target, with potential to restore metabolic homeostasis, enhance immunomodulation, and promote myelin repair. With this review we will provide insights into the CNS intercellular metabolic decoupling, focusing on the role of mitochondrial dysfunction in neuroinflammatory demyelinating conditions. We will then discuss emerging cell-free biotherapies exploring the therapeutic potential of transferring mitochondria via biogenic carriers like extracellular vesicles (EVs) or synthetic liposomes, aimed at enhancing mitochondrial function and metabolic support for CNS and myelin repair. Lastly, we address the key challenges for the clinical application of these strategies and discuss future directions to optimize mitochondrial biotherapies. The advancements in this field hold promise for restoring metabolic homeostasis, and enhancing myelin repair, potentially transforming the therapeutic landscape for neuroinflammatory and demyelinating diseases.
Collapse
Affiliation(s)
- Sabah Mozafari
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Mafikandi V, Seyedaghamiri F, Hosseinzadeh N, Shahabi P, Shafiee-Kandjani AR, Babaie S, Maghsoumi-Norouzabad L, Farajdokht F, Hosseini L. Nasal administration of mitochondria relieves depressive- and anxiety-like behaviors in male mice exposed to restraint stress through the suppression ROS/NLRP3/caspase-1/IL-1β signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3067-3077. [PMID: 39333279 DOI: 10.1007/s00210-024-03487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Neuroinflammation and oxidative stress are known to be implicated in the pathogenesis of depression. Exogenous mitochondrial transplantation has exhibited beneficial effects for treating neurological disorders. Hence, this research aimed to evaluate the impact of nasal administration of mitochondria on neuroinflammation and oxidative stress in mouse models displaying depressive- and anxiety-like behaviors caused by restraint stress (RS). Thirty male BALB/c mice were divided into control, RS, and RS + 340 µg of mitochondrial. Mice were subjected to RS using an immobilization falcon tube (2 h/day) for 2 weeks except for the control group. We conducted two behavioral tests to evaluate anxiety-like behaviors: elevated plus maze (EPM) and open field test (OFT). Tail suspension test (TST) was implemented to assess depressive-like behavior. ATP and reactive oxygen species (ROS) levels were measured in the hippocampus. Besides, serum corticosterone (CORT) levels were evaluated using the ELISA method. The expression of NLRP3 inflammasome, caspase-1 (Cas-1), and IL-1β was tested by western blot. We found that mitotherapy increased the time spent in the center of OFT and open arms of the EPM, while it diminished immobility time in TST. Mitochondrial administration considerably attenuated ROS generation and CORT levels and restored ATP levels. Additionally, mitotherapy prevented RS-induced upregulation of IL-1β, cleaved Cas1/Pro Cas1 ratio, and NLRP3/1 in the hippocampus of mice. These findings suggested that the beneficial effects of intranasal mitochondria on depression and anxiety may be attributed to suppression of the ROS/NLRP3/IL-1β/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Vida Mafikandi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Hosseinzadeh
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Riou A, Broeglin A, Grimm A. Mitochondrial transplantation in brain disorders: Achievements, methods, and challenges. Neurosci Biobehav Rev 2025; 169:105971. [PMID: 39638101 DOI: 10.1016/j.neubiorev.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Mitochondrial transplantation is a new treatment strategy aimed at repairing cellular damage by introducing healthy mitochondria into injured cells. The approach shows promise in protecting brain function in various neurological disorders such as traumatic brain injury/ischemia, neurodegenerative diseases, cognitive disorders, and cancer. These conditions are often characterized by mitochondrial dysfunction, leading to impaired energy production and neuronal death. The review highlights promising preclinical studies where mitochondrial transplantation has been shown to restore mitochondrial function, reduce inflammation, and improve cognitive and motor functions in several animal models. It also addresses significant challenges that must be overcome before this therapy can be clinically applied. Current efforts to overcome these challenges, including advancements in isolation techniques, cryopreservation methods, finding an appropriate mitochondria source, and potential delivery routes, are discussed. Considering the rising incidence of neurological disorders and the limited effectiveness of current treatments, this review offers a comprehensive overview of the current state of mitochondrial transplantation research and critically assesses the remaining obstacles. It provides valuable insights that could steer future studies and potentially lead to more effective treatments for various brain disorders.
Collapse
Affiliation(s)
- Aurélien Riou
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Aline Broeglin
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland; Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, Basel 4002, Switzerland.
| |
Collapse
|
9
|
Nakano T, Irie K, Matsuo K, Mishima K, Nakamura Y. Molecular and cellular mechanisms of mitochondria transfer in models of central nervous system disease. J Cereb Blood Flow Metab 2024:271678X241300223. [PMID: 39539186 PMCID: PMC11565516 DOI: 10.1177/0271678x241300223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In the central nervous system (CNS), neuronal function and dysfunction are critically dependent on mitochondrial integrity and activity. In damaged or diseased brains, mitochondrial dysfunction reduces adenosine triphosphate (ATP) levels and impairs ATP-dependent neural firing and neurotransmitter dynamics. Restoring mitochondrial capacity to generate ATP may be fundamental in restoring neuronal function. Recent studies in animals and humans have demonstrated that endogenous mitochondria may be released into the extracellular environment and transported or exchanged between cells in the CNS. Under pathological conditions in the CNS, intercellular mitochondria transfer contributes to new classes of signaling and multifunctional cellular activities, thereby triggering deleterious effects or promoting beneficial responses. Therefore, to take full advantage of the beneficial effects of mitochondria, it may be useful to transplant healthy and viable mitochondria into damaged tissues. In this review, we describe recent findings on the mechanisms of mitochondria transfer and provide an overview of experimental methodologies, including tissue sourcing, mitochondrial isolation, storage, and modification, aimed at optimizing mitochondria transplantation therapy for CNS disorders. Additionally, we examine the clinical relevance and potential strategies for the therapeutic application of mitochondria transplantation.
Collapse
Affiliation(s)
- Takafumi Nakano
- Department of Oncology and Infectious Disease Pharmacy, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keiichi Irie
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Koichi Matsuo
- Department of Oncology and Infectious Disease Pharmacy, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kenichi Mishima
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yoshihiko Nakamura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
10
|
Zhu J, Wang Z, Xu M, Ma X, Shen M, Yan J, Zhou X. Mitochondrial transplantation following cardiopulmonary resuscitation improves neurological function in rats by inducing M2-type MG/MΦ polarization. J Transl Med 2024; 22:1014. [PMID: 39529087 PMCID: PMC11552134 DOI: 10.1186/s12967-024-05815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
AIM Explore the effects of mitochondrial transplantation (MT) after cardiopulmonary resuscitation (CPR) on the polarization of microglia/macrophages (MG/MΦ) and neurological function. METHODS Seventy-five Sprague-Dawley rats were randomly divided into five groups: sham, normal saline (NS), vehicle, mitochondria (Mito), and non-functional mitochondria (N-Mito) group. Rats in sham group underwent surgical procedures without cardiac arrest, while the other four groups underwent cardiac arrest and CPR, and then received NS, respiration buffer, mitochondrial suspension or non-functional mitochondria, immediately after the restoration of spontaneous circulation (ROSC). The number of mitochondria in the hippocampus, the morphology and structure of mitochondria in MG/MΦ, the phenotype of MG/MΦ, and hippocampal tissue injury, neuroinflammation, and neuronal apoptosis were detected on days 1 and 3 after ROSC. Neurodeficit score (NDS) was performed on days 1, 3, 7, 15 and 30 after ROSC. RESULTS Compared with other groups, the number of mitochondria in the hippocampus was increased, and the morphology and structure of mitochondria in MG/MΦ were significantly improved in the Mito group. Our results show higher expression of M2-type markers in MG/MΦ and decreased hippocampal tissue damage in the Mito group. Levels of NSE and S100β in serum, and TNF-α, IL-6 in the hippocampus were decreased, while the levels of TGF-β and IL-10 were increased in the Mito group. Apoptosis rate of neurons in the Mito group was decreased and the NDS of the Mito group was higher than the other groups. CONCLUSIONS Exogenous MT can improve neurological function after CPR by promoting the polarization of MG/MΦ to M2-type cells, and this could be a potential method for brain protection after CPR.
Collapse
Affiliation(s)
- Jie Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mengda Xu
- Department of Anesthesiology, General hospital of central theater command of PLA, Wuhan, 430070, China
| | - Xuyuan Ma
- Base of Central Theater Command of People's Liberation Army, Hubei University of Medicine, Wuhan, China
| | - Maozheng Shen
- Base of Central Theater Command of People's Liberation Army, Hubei University of Medicine, Wuhan, China
| | - Jingyu Yan
- Department of Anesthesiology, General hospital of central theater command of PLA, Wuhan, 430070, China
| | - Xiang Zhou
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Anesthesiology, General hospital of central theater command of PLA, Wuhan, 430070, China.
| |
Collapse
|
11
|
Zhao M, Wang J, Zhu S, Wang M, Chen C, Wang L, Liu J. Mitochondrion-based organellar therapies for central nervous system diseases. Cell Commun Signal 2024; 22:487. [PMID: 39390521 PMCID: PMC11468137 DOI: 10.1186/s12964-024-01843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
As most traditional drugs used to treat central nervous system (CNS) diseases have a single therapeutic target, many of them cannot treat complex diseases or diseases whose mechanism is unknown and cannot effectively reverse the root changes underlying CNS diseases. This raises the question of whether multiple functional components are involved in the complex pathological processes of CNS diseases. Organelles are the core functional units of cells, and the replacement of damaged organelles with healthy organelles allows the multitargeted and integrated modulation of cellular functions. The development of therapies that target independent functional units in the cell, specifically, organelle-based therapies, is rapidly progressing. This article comprehensively discusses the pathogenesis of mitochondrial homeostasis disorders, which involve mitochondria, one of the most important organelles in CNS diseases, and the machanisms of mitochondrion-based therapies, as well as current preclinical and clinical studies on the efficacy of therapies targeting mitochondrial to treat CNS diseases, to provide evidence for use of organelle-based treatment strategies in the future.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Chong Chen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| |
Collapse
|
12
|
Javadpour P, Abbaszadeh F, Ahmadiani A, Rezaei M, Ghasemi R. Mitochondrial Transportation, Transplantation, and Subsequent Immune Response in Alzheimer's Disease: An Update. Mol Neurobiol 2024; 61:7151-7167. [PMID: 38368286 DOI: 10.1007/s12035-024-04009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by memory impairment and a progressive decline in cognitive function. Mitochondrial dysfunction has been identified as an important contributor to the development of AD, leading to oxidative stress and energy deficits within the brain. While current treatments for AD aim to alleviate symptoms, there is an urgent need to target the underlying mechanisms. The emerging field of mitotherapy, which involves the transplantation of healthy mitochondria into damaged cells, has gained substantial attention and has shown promising results. However, research in the context of AD remains limited, necessitating further investigations. In this review, we summarize the mitochondrial pathways that contribute to the progression of AD. Additionally, we discuss mitochondrial transfer among brain cells and mitotherapy, with a focus on different administration routes, various sources of mitochondria, and potential modifications to enhance transplantation efficacy. Finally, we review the limited available evidence regarding the immune system's response to mitochondrial transplantation in damaged brain regions.
Collapse
Affiliation(s)
- Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Kubat GB, Picone P. Skeletal muscle dysfunction in amyotrophic lateral sclerosis: a mitochondrial perspective and therapeutic approaches. Neurol Sci 2024; 45:4121-4131. [PMID: 38676818 PMCID: PMC11306305 DOI: 10.1007/s10072-024-07508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease that results in the loss of motor neurons and severe skeletal muscle atrophy. The etiology of ALS is linked to skeletal muscle, which can activate a retrograde signaling cascade that destroys motor neurons. This is why satellite cells and mitochondria play a crucial role in the health and performance of skeletal muscles. This review presents current knowledge on the involvement of mitochondrial dysfunction, skeletal muscle atrophy, muscle satellite cells, and neuromuscular junction (NMJ) in ALS. It also discusses current therapeutic strategies, including exercise, drugs, stem cells, gene therapy, and the prospective use of mitochondrial transplantation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Pasquale Picone
- Istituto Per La Ricerca E L'Innovazione Biomedica, Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 0146, Palermo, Italy.
| |
Collapse
|
14
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
15
|
Bodenstein DF, Siebiger G, Zhao Y, Clasky AJ, Mukkala AN, Beroncal EL, Banh L, Aslostovar L, Brijbassi S, Hogan SE, McCully JD, Mehrabian M, Petersen TH, Robinson LA, Walker M, Zachos C, Viswanathan S, Gu FX, Rotstein OD, Cypel M, Radisic M, Andreazza AC. Bridging the gap between in vitro and in vivo models: a way forward to clinical translation of mitochondrial transplantation in acute disease states. Stem Cell Res Ther 2024; 15:157. [PMID: 38816774 PMCID: PMC11140916 DOI: 10.1186/s13287-024-03771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Mitochondrial transplantation and transfer are being explored as therapeutic options in acute and chronic diseases to restore cellular function in injured tissues. To limit potential immune responses and rejection of donor mitochondria, current clinical applications have focused on delivery of autologous mitochondria. We recently convened a Mitochondrial Transplant Convergent Working Group (CWG), to explore three key issues that limit clinical translation: (1) storage of mitochondria, (2) biomaterials to enhance mitochondrial uptake, and (3) dynamic models to mimic the complex recipient tissue environment. In this review, we present a summary of CWG conclusions related to these three issues and provide an overview of pre-clinical studies aimed at building a more robust toolkit for translational trials.
Collapse
Affiliation(s)
- David F Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Gabriel Siebiger
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Avinash N Mukkala
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Erika L Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Lauren Banh
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Lili Aslostovar
- Centre for Commercialization of Regenerative Medicine, Toronto, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Sarah E Hogan
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - James D McCully
- Harvard Medical School, Boston, USA
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, USA
| | | | - Thomas H Petersen
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington, Seattle, USA
| | | | - Sowmya Viswanathan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Frank X Gu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Ori D Rotstein
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Toronto Lung Transplant Program, Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Salman M, Stayton AS, Parveen K, Parveen A, Puchowicz MA, Parvez S, Bajwa A, Ishrat T. Intranasal Delivery of Mitochondria Attenuates Brain Injury by AMPK and SIRT1/PGC-1α Pathways in a Murine Model of Photothrombotic Stroke. Mol Neurobiol 2024; 61:2822-2838. [PMID: 37946007 DOI: 10.1007/s12035-023-03739-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Ischemic stroke is one of the major causes of morbidity and mortality worldwide. Mitochondria play a vital role in the pathological processes of cerebral ischemic injury, but its transplantation and underlying mechanisms remain unclear. In the present study, we examined the effects of mitochondrial therapy on the modulation of AMPK and SIRT1/PGC-1α signaling pathway, oxidative stress, and NLRP3 inflammasome activation after photothrombotic ischemic stroke (pt-MCAO). The adult male mice were subjected to the pt-MCAO in which the proximal-middle cerebral artery was exposed with a 532-nm laser beam for 4 min by retro-orbital injection of a photosensitive dye (Rose Bengal: 15 mg/kg) before the laser light exposure and isolated mitochondria (100 μg protein) were administered intranasally at 30 min, 24 h, and 48 h following post-stroke. After 72 h, mice were tested for neurobehavioral outcomes and euthanized for infarct volume, brain edema, and molecular analysis. First, we found that mitochondria therapy significantly decreased brain infarct volume and brain edema, improved neurological dysfunction, attenuated ischemic stroke-induced oxidative stress, and neuroinflammation. Second, mitochondria treatment inhibited NLRP3 inflammasome activation. Finally, mitochondria therapy accelerated p-AMPKα(Thr172) and PGC-1α expression and resorted SIRT1 protein expression levels in pt-MCAO mice. In conclusion, our results demonstrate that mitochondria therapy exerts neuroprotective effects by inhibiting oxidative damage and inflammation, mainly dependent on the heightening activation of the AMPK and SIRT1/PGC-1α signaling pathway. Thus, intranasal delivery of mitochondria might be considered a new therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-228, Memphis, TN, 38163, USA.
| | - Amanda S Stayton
- Transplant Research Institute, College of Medicine, The University of Tennessee Health Science Center, 71 S Manassas St, Room 418H, Memphis, TN, 38103, USA
| | - Kehkashan Parveen
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arshi Parveen
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Amandeep Bajwa
- Transplant Research Institute, College of Medicine, The University of Tennessee Health Science Center, 71 S Manassas St, Room 418H, Memphis, TN, 38103, USA.
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
- Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
17
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
18
|
Wang X, Liu Z, Zhang L, Hu G, Tao L, Zhang F. Mitochondrial transplantation for the treatment of cardiac and noncardiac diseases: mechanisms, prospective, and challenges. LIFE MEDICINE 2024; 3:lnae017. [PMID: 39872662 PMCID: PMC11749488 DOI: 10.1093/lifemedi/lnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 01/30/2025]
Abstract
Mitochondrial transplantation (MT) is a promising therapeutic strategy that involves introducing healthy mitochondria into damaged tissues to restore cellular function. This approach has shown promise in treating cardiac diseases, such as ischemia-reperfusion injury, myocardial infarction, and heart failure, where mitochondrial dysfunction plays a crucial role. Transplanting healthy mitochondria into affected cardiac tissue has resulted in improved cardiac function, reduced infract size, and enhanced cell survival in preclinical studies. Beyond cardiac applications, MT is also being explored for its potential to address various noncardiac diseases, including stroke, infertility, and genetic mitochondrial disorders. Ongoing research focused on refining techniques for mitochondrial isolation, preservation, and targeted delivery is bolstering the prospects of MT as a clinical therapy. As the scientific community gains a deeper understanding of mitochondrial dynamics and pathology, the development of MT as a clinical therapy holds significant promise. This review provides an overview of recent research on MT and discusses the methodologies involved, including sources, isolation, delivery, internalization, and distribution of mitochondria. Additionally, it explores the effects of MT and potential mechanisms in cardiac diseases, as well as non-cardiac diseases. Future prospects for MT are also discussed.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhiyuan Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guangyu Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
19
|
Zhang LY, Hu YY, Liu XY, Wang XY, Li SC, Zhang JG, Xian XH, Li WB, Zhang M. The Role of Astrocytic Mitochondria in the Pathogenesis of Brain Ischemia. Mol Neurobiol 2024; 61:2270-2282. [PMID: 37870679 DOI: 10.1007/s12035-023-03714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
The morbidity rate of ischemic stroke is increasing annually with the growing aging population in China. Astrocytes are ubiquitous glial cells in the brain and play a crucial role in supporting neuronal function and metabolism. Increasing evidence shows that the impairment or loss of astrocytes contributes to neuronal dysfunction during cerebral ischemic injury. The mitochondrion is increasingly recognized as a key player in regulating astrocyte function. Changes in astrocytic mitochondrial function appear to be closely linked to the homeostasis imbalance defects in glutamate metabolism, Ca2+ regulation, fatty acid metabolism, reactive oxygen species, inflammation, and copper regulation. Here, we discuss the role of astrocytic mitochondria in the pathogenesis of brain ischemic injury and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ling-Yan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Xi-Yun Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Xiao-Yu Wang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Shi-Chao Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
20
|
Rahane D, Dhingra T, Chalavady G, Datta A, Ghosh B, Rana N, Borah A, Saraf S, Bhattacharya P. Hypoxia and its effect on the cellular system. Cell Biochem Funct 2024; 42:e3940. [PMID: 38379257 DOI: 10.1002/cbf.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.
Collapse
Affiliation(s)
- Dipali Rahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Tannu Dhingra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Guruswami Chalavady
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
21
|
Noh SE, Lee SJ, Cho CS, Jo DH, Park KS, Kim JH. Mitochondrial transplantation attenuates oligomeric amyloid-beta-induced mitochondrial dysfunction and tight junction protein destruction in retinal pigment epithelium. Free Radic Biol Med 2024; 212:10-21. [PMID: 38101587 DOI: 10.1016/j.freeradbiomed.2023.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Transplantation of mitochondria derived from mesenchymal stem cells (MSCs) has emerged as a new treatment method to improve mitochondrial dysfunction and alleviate cell impairment. Interest in using extrinsic mitochondrial transplantation as a therapeutic approach has been increasing because it has been confirmed to be effective in treating various diseases related to mitochondrial dysfunction, including ischemia, cardiovascular disease, and toxic damage. To support this application, we conducted an experiment to deliver external mitochondria to retinal pigment epithelial cells treated with oligomeric amyloid-beta (oAβ). Externally delivered amyloid-beta internalizes into cells and interacts with mitochondria, resulting in mitochondrial dysfunction and intracellular damage, including increased reactive oxygen species and destruction of tight junction proteins. Externally delivered mitochondria were confirmed to alleviate mitochondrial dysfunction and tight junction protein disruption as well as improve internalized oAβ clearance. These results were also confirmed in a mouse model in vivo. Overall, these findings indicate that the transfer of external mitochondria isolated from MSCs has potential as a new treatment method for age-related macular degeneration, which involves oAβ-induced changes to the retinal pigment epithelium.
Collapse
Affiliation(s)
- Sung-Eun Noh
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Suh J, Lee YS. Mitochondria as secretory organelles and therapeutic cargos. Exp Mol Med 2024; 56:66-85. [PMID: 38172601 PMCID: PMC10834547 DOI: 10.1038/s12276-023-01141-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria have been primarily considered intracellular organelles that are responsible for generating energy for cell survival. However, accumulating evidence suggests that mitochondria are secreted into the extracellular space under physiological and pathological conditions, and these secreted mitochondria play diverse roles by regulating metabolism, the immune response, or the differentiation/maturation in target cells. Furthermore, increasing amount of research shows the therapeutic effects of local or systemic administration of mitochondria in various disease models. These findings have led to growing interest in exploring mitochondria as potential therapeutic agents. Here, we discuss the emerging roles of mitochondria as extracellularly secreted organelles to shed light on their functions beyond energy production. Additionally, we provide information on therapeutic outcomes of mitochondrial transplantation in animal models of diseases and an update on ongoing clinical trials, underscoring the potential of using mitochondria as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Hu C, Shi Z, Liu X, Sun C. The Research Progress of Mitochondrial Transplantation in the Treatment of Mitochondrial Defective Diseases. Int J Mol Sci 2024; 25:1175. [PMID: 38256247 PMCID: PMC10816172 DOI: 10.3390/ijms25021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles that are involved in energy production, apoptosis, and signaling in eukaryotic cells. Several studies conducted over the past decades have correlated mitochondrial dysfunction with various diseases, including cerebral ischemia, myocardial ischemia-reperfusion, and cancer. Mitochondrial transplantation entails importing intact mitochondria from healthy tissues into diseased tissues with damaged mitochondria to rescue the injured cells. In this review, the different mitochondrial transplantation techniques and their clinical applications have been discussed. In addition, the challenges and future directions pertaining to mitochondrial transplantation and its potential in the treatment of diseases with defective mitochondria have been summarized.
Collapse
Affiliation(s)
- Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Wu DP, Wei YS, Du YX, Liu LL, Yan QQ, Zhao YD, Yu C, Liu JY, Zhong ZG, Huang JL. Ameliorative Role of Mitochondrial Therapy in Cognitive Function of Vascular Dementia Mice. J Alzheimers Dis 2024; 97:1381-1392. [PMID: 38250768 DOI: 10.3233/jad-230293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Mitochondrial dysfunction plays a vital role in the progression of vascular dementia (VaD). We hypothesized that transfer of exogenous mitochondria might be a beneficial strategy for VaD treatment. OBJECTIVE The study was aimed to investigate the role of mitochondrial therapy in cognitive function of VaD. METHODS The activity and integrity of isolated mitochondria were detected using MitoTracker and Janus Green B staining assays. After VaD mice were intravenously injected with exogenous mitochondria, Morris water maze and passive avoidance tests were used to detect cognitive function of VaD mice. Haematoxylin and eosin, Nissl, TUNEL, and Golgi staining assays were utilized to measure neuronal and synaptic injury in the hippocampus of VaD mice. Detection kits were performed to detect mitochondrial membrane potential (ΔΨ), SOD activity and the levels of ATP, ROS, and MDA in the brains of VaD mice. RESULTS The results showed that isolated mitochondria were intact and active. Mitochondrial therapy could ameliorate cognitive performance of VaD mice. Additionally, mitochondrial administration could attenuate hippocampal neuronal and synaptic injury, improve mitochondrial ΔΨ, ATP level and SOD activity, and reduce ROS and MDA levels in the brains of VaD mice. CONCLUSIONS The study reports profitable effect of mitochondrial therapy against cognitive impairment of VaD, making mitochondrial treatment become a promising therapeutic strategy for VaD.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, Jiangsu, China
| | - Yan-Su Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Xuan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiu-Qing Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Dan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin-Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Guo Zhong
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Paliwal S, Jain S, Mudgal P, Verma K, Paliwal S, Sharma S. Mitochondrial transfer restores impaired liver functions by AMPK/ mTOR/PI3K-AKT pathways in metabolic syndrome. Life Sci 2023; 332:122116. [PMID: 37739165 DOI: 10.1016/j.lfs.2023.122116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
AIM We investigated the effect of mitochondria transfer in high fat diet and streptozotocin (HFD + STZ) induced metabolic syndrome (MeS) in rats. The effect of mitochondria transfer in MeS with co-existing hypertension, hyperlipidaemia, diabetes and fatty liver together, has not been reported. MATERIALS AND METHODS Heathy mitochondria was transferred intravenously and the effect on several physiological parameters and biochemical parameters were examined in HFD + STZ rats. In addition, RNA-sequencing of healthy liver tissues was performed to elucidate the molecular pathways affected by mitochondria transfer in restoring metabolic health. KEY FINDINGS We observed reduction in both systolic and diastolic blood pressure levels, reduced blood glucose levels, and a marked reduction in serum lipid profiles. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) also improved along with evident restoration of liver morphology demonstrated by histopathological analysis. Enhanced mitochondrial biogenetics and reduction in oxidative stress and inflammatory markers was also observed. The pathway enrichment analysis revealed reduction in insulin resistance, inflammatory markers, regulation of mitochondrial bioenergetics, calcium ion homeostasis, fatty-acid β-oxidation, cytokine immune regulators, and enhanced lipid solubilisation. The significant effect of healthy mitochondria transfer in restoration of metabolic functions was observed by the activation of PI3K-AKT, AMPK/mTOR pathways and cytokine immune regulators, suggesting that inflammatory mediators were also significantly affected after mitochondria transfer. SIGNIFICANCE This study, provides insights on molecular processes triggered by mitochondria transfer in fatty liver regeneration and improvement of overall metabolic health.
Collapse
Affiliation(s)
- Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pallavi Mudgal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| |
Collapse
|
26
|
Kim SH, Kim MJ, Lim M, Kim J, Kim H, Yun CK, Yoo YJ, Lee Y, Min K, Choi YS. Enhancement of the Anticancer Ability of Natural Killer Cells through Allogeneic Mitochondrial Transfer. Cancers (Basel) 2023; 15:3225. [PMID: 37370835 DOI: 10.3390/cancers15123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
An in vitro culture period of at least 2 weeks is required to produce sufficient natural killer (NK) cells for immunotherapy, which are the key effectors in hematological malignancy treatment. Mitochondrial damage and fragmentation reduce the NK cell immune surveillance capacity. Thus, we hypothesized that the transfer of healthy mitochondria to NK cells could enhance their anticancer effects. Allogeneic healthy mitochondria isolated from WRL-68 cells were transferred to NK cells. We evaluated NK cells' proliferative capacity, cell cycle, and cytotoxic capacity against various cancer cell types by analyzing specific lysis and the cytotoxic granules released. The relationship between the transferred allogenic mitochondrial residues and NK cell function was determined. After mitochondrial transfer, the NK cell proliferation rate was 1.2-fold higher than that of control cells. The mitochondria-treated NK cells secreted a 2.7-, 4.1-, and 5-fold higher amount of granzyme B, perforin, and IFN-γ, respectively, when co-cultured with K562 cells. The specific lysis of various solid cancer cells increased 1.3-1.6-fold. However, once allogeneic mitochondria were eliminated, the NK cell activity returned to the pre-mitochondrial transfer level. Mitochondria-enriched NK cells have the potential to be used as a novel solid cancer treatment agent, without the need for in vitro cytokine-induced culture.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| | - Mi-Jin Kim
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| | - Mina Lim
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
- Research & Development Division, Humancellbio Co., Ltd., Suwon 16227, Republic of Korea
| | - Jihye Kim
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chang-Koo Yun
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| | - Yun-Joo Yoo
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| | - Youngjun Lee
- Research & Development Division, Humancellbio Co., Ltd., Suwon 16227, Republic of Korea
| | - Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
27
|
Zaninello M, Bean C. Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria. Biomolecules 2023; 13:938. [PMID: 37371518 DOI: 10.3390/biom13060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The highly specialized structure and function of neurons depend on a sophisticated organization of the cytoskeleton, which supports a similarly sophisticated system to traffic organelles and cargo vesicles. Mitochondria sustain crucial functions by providing energy and buffering calcium where it is needed. Accordingly, the distribution of mitochondria is not even in neurons and is regulated by a dynamic balance between active transport and stable docking events. This system is finely tuned to respond to changes in environmental conditions and neuronal activity. In this review, we summarize the mechanisms by which mitochondria are selectively transported in different compartments, taking into account the structure of the cytoskeleton, the molecular motors and the metabolism of neurons. Remarkably, the motor proteins driving the mitochondrial transport in axons have been shown to also mediate their transfer between cells. This so-named intercellular transport of mitochondria is opening new exciting perspectives in the treatment of multiple diseases.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
28
|
Li H, Xiao G, Tan X, Liu G, Xu Y, Gu S. Human umbilical cord blood mononuclear cells ameliorate ischemic brain injury via promoting microglia/macrophages M2 polarization in MCAO Rats. Exp Brain Res 2023; 241:1585-1598. [PMID: 37142782 DOI: 10.1007/s00221-023-06600-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Cerebral infarction is one of the most prevalent cerebrovascular disorders. Microglia and infiltrating macrophages play a key role in regulating the inflammatory response after ischemic stroke. Regulation of microglia/macrophages polarization contributes to the recovery of neurological function in cerebral infarction. In recent decades, human umbilical cord blood mononuclear cells (hUCBMNCs) have been considered a potential therapeutic alternative. However, the mechanism of action is yet unclear. Our study aimed to explore whether hUCBMNCs treatment for cerebral infarction is via regulation of microglia/macrophages polarization. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) and were treated by intravenous routine with or without hUCBMNCs at 24 h following MCAO. We evaluated the therapeutic effects of hUCBMNCs on cerebral infarction by measuring animal behavior and infarct volume, and further explored the possible mechanisms of hUCBMNCs for cerebral infarction by measuring inflammatory factors and microglia/macrophages markers using Elisa and immunofluorescence staining, respectively. We found that administration with hUCBMNCs improved behavioral functions and reduced infarct volume. Rats treated with hUCBMNCs showed a significant reduction in the level of IL-6, and TNF-α and increased the level of IL-4 and IL-10 compared to those treated without hUCBMNCs. Furthermore, hUCBMNCs inhibited M1 polarization and promoted M2 polarization of microglia/macrophages after MCAO. We conclude that hUCBMNCs could ameliorate cerebral brain injury by promoting microglia/macrophages M2 polarization in MCAO Rats. This experiment provides evidence that hUCBMNCs represent a promising therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Gai Xiao
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiao Tan
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guojun Liu
- Shandong Cord Blood Bank, Jinan, Shangdong, China
| | - Yangzhou Xu
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shaojuan Gu
- Department of Neurology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
29
|
Bamshad C, Habibi Roudkenar M, Abedinzade M, Yousefzadeh Chabok S, Pourmohammadi-Bejarpasi Z, Najafi-Ghalehlou N, Sato T, Tomita K, Jahanian-Najafabadi A, Feizkhah A, Mohammadi Roushandeh A. Human umbilical cord-derived mesenchymal stem cells-harvested mitochondrial transplantation improved motor function in TBI models through rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation. Int Immunopharmacol 2023; 118:110106. [PMID: 37015158 DOI: 10.1016/j.intimp.2023.110106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Each year, traumatic brain injury (TBI) causes a high rate of mortality throughout the world and those who survive have lasting disabilities. Given that the brain is a particularly dynamic organ with a high energy consumption rate, the inefficiency of current TBI treatment options highlights the necessity of repairing damaged brain tissue at the cellular and molecular levels, which according to research is aggravated due to ATP deficiency and reactive oxygen species surplus. Taking into account that mitochondria contribute to generating energy and controlling cellular stress, mitochondrial transplantation as a new treatment approach has lately reduced complications in a number of diseases by supplying healthy and functional mitochondria to the damaged tissue. For this reason, in this study, we used this technique to transplant human umbilical cord-derived mesenchymal stem cells (hUC-MSCs)-derived mitochondria as a suitable source for mitochondrial isolation into rat models of TBI to examine its therapeutic benefit and the results showed that the successful mitochondrial internalisation in the neuronal cells significantly reduced the number of brain cells undergoing apoptosis, alleviated astrogliosis and microglia activation, retained normal brain morphology and cytoarchitecture, and improved sensorimotor functions in a rat model of TBI. These data indicate that human umbilical cord-derived mesenchymal stem cells-isolated mitochondrial transplantation improves motor function in a rat model of TBI via rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation, maybe as a result of restoring the lost mitochondrial content.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Abedinzade
- Department of Operation Room, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
30
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. The Potential Use of Mitochondrial Extracellular Vesicles as Biomarkers or Therapeutical Tools. Int J Mol Sci 2023; 24:ijms24087005. [PMID: 37108168 PMCID: PMC10139054 DOI: 10.3390/ijms24087005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondria play a crucial role in cellular metabolism, reactive oxygen species (ROS) production, and apoptosis. Aberrant mitochondria can cause severe damage to the cells, which have established a tight quality control for the mitochondria. This process avoids the accumulation of damaged mitochondria and can lead to the release of mitochondrial constituents to the extracellular milieu through mitochondrial extracellular vesicles (MitoEVs). These MitoEVs carry mtDNA, rRNA, tRNA, and protein complexes of the respiratory chain, and the largest MitoEVs can even transport whole mitochondria. Macrophages ultimately engulf these MitoEVs to undergo outsourced mitophagy. Recently, it has been reported that MitoEVs can also contain healthy mitochondria, whose function seems to be the rescue of stressed cells by restoring the loss of mitochondrial function. This mitochondrial transfer has opened the field of their use as potential disease biomarkers and therapeutic tools. This review describes this new EVs-mediated transfer of the mitochondria and the current application of MitoEVs in the clinical environment.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
31
|
Yang X, Ning K, Wang DE, Xu H. Progress of bone marrow mesenchymal stem cell mitochondrial transfer in organ injury repair. Stem Cells Dev 2023. [PMID: 37002887 DOI: 10.1089/scd.2023.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
There has been an upsurge of interest in the bone marrow mesenchymal stem cell (BMSC) mitochondrial transfer as a potential therapeutic innovation in organ injury repair. Previous research mainly focused on its transfer routes and therapeutic effects. However, its intrinsic mechanism has not been well deciphered. The current research status needs to be summarized for the clarification of future research direction. Therefore, we review the recent significant progress in the application of BMSC mitochondrial transfer in organ injury repair. The transfer routes and effects are summarized, and some suggestions on the future research direction are provided.
Collapse
Affiliation(s)
- Xuezhou Yang
- Northwestern Polytechnical University, 26487, School of Life Sciences, Xi'an, Shaanxi, China
| | - Kaiting Ning
- Northwestern Polytechnical University, 26487, School of Life Sciences, Xi'an, Shaanxi, China
| | - Dong-en Wang
- Northwestern Polytechnical University, 26487, School of Life Sciences, Xi'an, Shaanxi, China
| | - Huiyun Xu
- Northwestern Polytechnical University, 26487, School of Life Sciences, Xi'an, Shaanxi, China
| |
Collapse
|
32
|
Huang H, Oo TT, Apaijai N, Chattipakorn N, Chattipakorn SC. An Updated Review of Mitochondrial Transplantation as a Potential Therapeutic Strategy Against Cerebral Ischemia and Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 2023; 60:1865-1883. [PMID: 36595193 DOI: 10.1007/s12035-022-03200-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Regardless of the progress made in the pathogenesis of ischemic stroke, it remains a leading cause of adult disability and death. To date, the most effective treatment for ischemic stroke is the timely recanalization of the occluded artery. However, the short time window and reperfusion injury have greatly limited its application and efficacy. Mitochondrial dysfunction and ATP depletion have become regarded as being hallmarks of neuropathophysiology following ischemic stroke. Mitochondrial transplantation is a novel potential therapeutic intervention for ischemic stroke that has sparked widespread concern during the past few years. This review summarizes and discusses the effects of mitochondrial transplantation in in vitro and in vivo ischemic stroke models. In addition, pharmacological interventions promoting mitochondrial transplantation are reviewed and discussed. We also discuss the potential challenges to the clinical application of mitochondrial transplantation in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huatuo Huang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
33
|
Hayashida K, Takegawa R, Endo Y, Yin T, Choudhary RC, Aoki T, Nishikimi M, Murao A, Nakamura E, Shoaib M, Kuschner C, Miyara SJ, Kim J, Shinozaki K, Wang P, Becker LB. Exogenous mitochondrial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest. BMC Med 2023; 21:56. [PMID: 36922820 PMCID: PMC10018842 DOI: 10.1186/s12916-023-02759-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Mitochondrial transplantation (MTx) is an emerging but poorly understood technology with the potential to mitigate severe ischemia-reperfusion injuries after cardiac arrest (CA). To address critical gaps in the current knowledge, we test the hypothesis that MTx can improve outcomes after CA resuscitation. METHODS This study consists of both in vitro and in vivo studies. We initially examined the migration of exogenous mitochondria into primary neural cell culture in vitro. Exogenous mitochondria extracted from the brain and muscle tissues of donor rats and endogenous mitochondria in the neural cells were separately labeled before co-culture. After a period of 24 h following co-culture, mitochondrial transfer was observed using microscopy. In vitro adenosine triphosphate (ATP) contents were assessed between freshly isolated and frozen-thawed mitochondria to compare their effects on survival. Our main study was an in vivo rat model of CA in which rats were subjected to 10 min of asphyxial CA followed by resuscitation. At the time of achieving successful resuscitation, rats were randomly assigned into one of three groups of intravenous injections: vehicle, frozen-thawed, or fresh viable mitochondria. During 72 h post-CA, the therapeutic efficacy of MTx was assessed by comparison of survival rates. The persistence of labeled donor mitochondria within critical organs of recipient animals 24 h post-CA was visualized via microscopy. RESULTS The donated mitochondria were successfully taken up into cultured neural cells. Transferred exogenous mitochondria co-localized with endogenous mitochondria inside neural cells. ATP content in fresh mitochondria was approximately four times higher than in frozen-thawed mitochondria. In the in vivo survival study, freshly isolated functional mitochondria, but not frozen-thawed mitochondria, significantly increased 72-h survival from 55 to 91% (P = 0.048 vs. vehicle). The beneficial effects on survival were associated with improvements in rapid recovery of arterial lactate and glucose levels, cerebral microcirculation, lung edema, and neurological function. Labeled mitochondria were observed inside the vital organs of the surviving rats 24 h post-CA. CONCLUSIONS MTx performed immediately after resuscitation improved survival and neurological recovery in post-CA rats. These results provide a foundation for future studies to promote the development of MTx as a novel therapeutic strategy to save lives currently lost after CA.
Collapse
Affiliation(s)
- Kei Hayashida
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Eriko Nakamura
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Cyrus Kuschner
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Santiago J Miyara
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
34
|
Lee EH, Kim M, Ko SH, Kim CH, Lee M, Park CH. Primary astrocytic mitochondrial transplantation ameliorates ischemic stroke. BMB Rep 2023; 56:90-95. [PMID: 36195567 PMCID: PMC9978364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 02/24/2023] Open
Abstract
Mitochondria are important organelles that regulate adenosine triphosphate production, intracellular calcium buffering, cell survival, and apoptosis. They play therapeutic roles in injured cells via transcellular transfer through extracellular vesicles, gap junctions, and tunneling nanotubes. Astrocytes can secrete numerous factors known to promote neuronal survival, synaptic formation, and plasticity. Recent studies have demonstrated that astrocytes can transfer mitochondria to damaged neurons to enhance their viability and recovery. In this study, we observed that treatment with mitochondria isolated from rat primary astrocytes enhanced cell viability and ameliorated hydrogen peroxide-damaged neurons. Interestingly, isolated astrocytic mitochondria increased the number of cells under damaged neuronal conditions, but not under normal conditions, although the mitochondrial transfer efficiency did not differ between the two conditions. This effect was also observed after transplanting astrocytic mitochondria in a rat middle cerebral artery occlusion model. These findings suggest that mitochondria transfer therapy can be used to treat acute ischemic stroke and other diseases. [BMB Reports 2023; 56(2): 90-95].
Collapse
Affiliation(s)
- Eun-Hye Lee
- Hanyang Biomedical Research Institute, Seoul 04763, Korea
| | - Minkyung Kim
- Department of Bioengineering, College of Engineering, Seoul 04763, Korea
| | - Seung Hwan Ko
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | | | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Seoul 04763, Korea,Corresponding authors. Minhyung Lee, Tel: +82-2-2220-0484; Fax: +82-2-2220-4454; E-mail: ; Chang-Hwan Park, Tel: +82-2-2220-0646; Fax: +82-2-2220-2422; E-mail: chshpark@ hanyang.ac.kr
| | - Chang-Hwan Park
- Hanyang Biomedical Research Institute, Seoul 04763, Korea,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea,Department of Microbiology, College of Medicine, Hanyang University, Seoul 04763, Korea,Corresponding authors. Minhyung Lee, Tel: +82-2-2220-0484; Fax: +82-2-2220-4454; E-mail: ; Chang-Hwan Park, Tel: +82-2-2220-0646; Fax: +82-2-2220-2422; E-mail: chshpark@ hanyang.ac.kr
| |
Collapse
|
35
|
Malekpour K, Hazrati A, Soudi S, Hashemi SM. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J Control Release 2023; 354:755-769. [PMID: 36706838 DOI: 10.1016/j.jconrel.2023.01.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) perform their therapeutic effects through various mechanisms, including their ability to differentiate, producing different growth factors, immunomodulatory factors, and extracellular vesicles (EVs). In addition to the mentioned mechanisms, a new aspect of the therapeutic potential of MSCs has recently been noticed, which occurs through mitochondrial transfer. Various methods of MSCs mitochondria transfer have been used in studies to benefit from their therapeutic potential. Among these methods, mitochondrial transfer after MSCs transplantation in cell-to-cell contact, EVs-mediated transfer of mitochondria, and the use of MSCs isolated mitochondria (MSCs-mt) are well studied. Pathological conditions can affect the cells in the damaged microenvironment and lead to cells mitochondrial damage. Since the defect in the mitochondrial function of the cell leads to a decrease in ATP production and the subsequent cell death, restoring the mitochondrial content, functions, and hemostasis can affect the functions of the damaged cell. Various studies show that the transfer of MSCs mitochondria to other cells can affect vital processes such as proliferation, differentiation, cell metabolism, inflammatory responses, cell senescence, cell stress, and cell migration. These changes in cell attributes and behavior are very important for therapeutic purposes. For this reason, their investigation can play a significant role in the direction of the researchers'.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran..
| |
Collapse
|
36
|
Lee EH, Kim M, Ko SH, Kim CH, Lee M, Park CH. Primary astrocytic mitochondrial transplantation ameliorates ischemic stroke. BMB Rep 2023; 56:90-95. [PMID: 36195567 PMCID: PMC9978364 DOI: 10.5483/bmbrep.2022-0108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 08/13/2023] Open
Abstract
Mitochondria are important organelles that regulate adenosine triphosphate production, intracellular calcium buffering, cell survival, and apoptosis. They play therapeutic roles in injured cells via transcellular transfer through extracellular vesicles, gap junctions, and tunneling nanotubes. Astrocytes can secrete numerous factors known to promote neuronal survival, synaptic formation, and plasticity. Recent studies have demonstrated that astrocytes can transfer mitochondria to damaged neurons to enhance their viability and recovery. In this study, we observed that treatment with mitochondria isolated from rat primary astrocytes enhanced cell viability and ameliorated hydrogen peroxide-damaged neurons. Interestingly, isolated astrocytic mitochondria increased the number of cells under damaged neuronal conditions, but not under normal conditions, although the mitochondrial transfer efficiency did not differ between the two conditions. This effect was also observed after transplanting astrocytic mitochondria in a rat middle cerebral artery occlusion model. These findings suggest that mitochondria transfer therapy can be used to treat acute ischemic stroke and other diseases. [BMB Reports 2023; 56(2): 90-95].
Collapse
Affiliation(s)
- Eun-Hye Lee
- Hanyang Biomedical Research Institute, Seoul 04763, Korea
| | - Minkyung Kim
- Department of Bioengineering, College of Engineering, Seoul 04763, Korea
| | - Seung Hwan Ko
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | | | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Seoul 04763, Korea
| | - Chang-Hwan Park
- Hanyang Biomedical Research Institute, Seoul 04763, Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Microbiology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
37
|
D'Amato M, Morra F, Di Meo I, Tiranti V. Mitochondrial Transplantation in Mitochondrial Medicine: Current Challenges and Future Perspectives. Int J Mol Sci 2023; 24:1969. [PMID: 36768312 PMCID: PMC9916997 DOI: 10.3390/ijms24031969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial diseases (MDs) are inherited genetic conditions characterized by pathogenic mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Current therapies are still far from being fully effective and from covering the broad spectrum of mutations in mtDNA. For example, unlike heteroplasmic conditions, MDs caused by homoplasmic mtDNA mutations do not yet benefit from advances in molecular approaches. An attractive method of providing dysfunctional cells and/or tissues with healthy mitochondria is mitochondrial transplantation. In this review, we discuss what is known about intercellular transfer of mitochondria and the methods used to transfer mitochondria both in vitro and in vivo, and we provide an outlook on future therapeutic applications. Overall, the transfer of healthy mitochondria containing wild-type mtDNA copies could induce a heteroplasmic shift even when homoplasmic mtDNA variants are present, with the aim of attenuating or preventing the progression of pathological clinical phenotypes. In summary, mitochondrial transplantation is a challenging but potentially ground-breaking option for the treatment of various mitochondrial pathologies, although several questions remain to be addressed before its application in mitochondrial medicine.
Collapse
Affiliation(s)
- Marco D'Amato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Francesca Morra
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
38
|
Mitochondria in Cell-Based Therapy for Stroke. Antioxidants (Basel) 2023; 12:antiox12010178. [PMID: 36671040 PMCID: PMC9854436 DOI: 10.3390/antiox12010178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Despite a relatively developed understanding of the pathophysiology underlying primary and secondary mechanisms of cell death after ischemic injury, there are few established treatments to improve stroke prognoses. A major contributor to secondary cell death is mitochondrial dysfunction. Recent advancements in cell-based therapies suggest that stem cells may be revolutionary for treating stroke, and the reestablishment of mitochondrial integrity may underlie these therapeutic benefits. In fact, functioning mitochondria are imperative for reducing oxidative damage and neuroinflammation following stroke and reperfusion injury. In this review, we will discuss the role of mitochondria in establishing the anti-oxidative effects of stem cell therapies for stroke.
Collapse
|
39
|
Mitochondrial transplant after ischemia reperfusion promotes cellular salvage and improves lung function during ex-vivo lung perfusion. J Heart Lung Transplant 2023; 42:575-584. [PMID: 36707296 DOI: 10.1016/j.healun.2023.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In lung transplantation, ischemia-reperfusion injury associated with mitochondrial damage can lead to graft rejection. Intact, exogenous mitochondria provide a unique treatment option to salvage damaged cells within lung tissue. METHODS We developed a novel method to freeze and store allogeneic mitochondria isolated from porcine heart tissue. Stored mitochondria were injected into a model of induced ischemia-reperfusion injury using porcine ex-vivo lung perfusion. Treatment benefits to immune modulation, antioxidant defense, and cellular salvage were evaluated. These findings were corroborated in human lungs undergoing ex-vivo lung perfusion. Lung tissue homogenate and primary lung endothelial cells were then used to address underlying mechanisms. RESULTS Following cold ischemia, mitochondrial transplant reduced lung pulmonary vascular resistance and tissue pro-inflammatory signaling and cytokine secretion. Further, exogenous mitochondria reduced reactive oxygen species by-products and promoted glutathione synthesis, thereby salvaging cell viability. These results were confirmed in a human model of ex-vivo lung perfusion wherein transplanted mitochondria decreased tissue oxidative and inflammatory signaling, improving lung function. We demonstrate that transplanted mitochondria induce autophagy and suggest that bolstered autophagy may act upstream of the anti-inflammatory and antioxidant benefits. Importantly, chemical inhibitors of the MEK autophagy pathway blunted the favorable effects of mitochondrial transplant. CONCLUSIONS These data provide direct evidence that mitochondrial transplant improves cellular health and lung function when administered during ex-vivo lung perfusion and suggest the mechanism of action may be through promotion of cellular autophagy. Data herein contribute new insights into the therapeutic potential of mitochondrial transplant to abate ischemia-reperfusion injury during lung transplant, and thus reduce graft rejection.
Collapse
|
40
|
Payal N, Sharma L, Sharma A, Hobanii YH, Hakami MA, Ali N, Rashid S, Sachdeva M, Gulati M, Yadav S, Chigurupati S, Singh A, Khan H, Behl T. Understanding the Therapeutic Approaches for Neuroprotection. Curr Pharm Des 2023; 29:3368-3384. [PMID: 38151849 DOI: 10.2174/0113816128275761231103102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/07/2023] [Indexed: 12/29/2023]
Abstract
The term "neurodegenerative disorders" refers to a group of illnesses in which deterioration of nerve structure and function is a prominent feature. Cognitive capacities such as memory and decision-making deteriorate as a result of neuronal damage. The primary difficulty that remains is safeguarding neurons since they do not proliferate or regenerate spontaneously and are therefore not substituted by the body after they have been damaged. Millions of individuals throughout the world suffer from neurodegenerative diseases. Various pathways lead to neurodegeneration, including endoplasmic reticulum stress, calcium ion overload, mitochondrial dysfunction, reactive oxygen species generation, and apoptosis. Although different treatments and therapies are available for neuroprotection after a brain injury or damage, the obstacles are inextricably connected. Several studies have revealed the pathogenic effects of hypothermia, different breathed gases, stem cell treatments, mitochondrial transplantation, multi-pharmacological therapy, and other therapies that have improved neurological recovery and survival outcomes after brain damage. The present review highlights the use of therapeutic approaches that can be targeted to develop and understand significant therapies for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Nazrana Payal
- Department of Pharmacy, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Yahya Hosan Hobanii
- Department of Pharmacy, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Monika Sachdeva
- Department of Pharmacy, Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Abhiav Singh
- Department of Pharmacy, Indian Council of Medical Research, New Delhi, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tapan Behl
- Department of Pharmacy, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| |
Collapse
|
41
|
Bamshad C, Najafi-Ghalehlou N, Pourmohammadi-Bejarpasi Z, Tomita K, Kuwahara Y, Sato T, Feizkhah A, Roushnadeh AM, Roudkenar MH. Mitochondria: how eminent in ageing and neurodegenerative disorders? Hum Cell 2023; 36:41-61. [PMID: 36445534 DOI: 10.1007/s13577-022-00833-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushnadeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
42
|
Khan MM, Paez HG, Pitzer CR, Alway SE. The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Curr Neuropharmacol 2023; 21:1100-1116. [PMID: 36089791 PMCID: PMC10286589 DOI: 10.2174/1570159x05666220908100545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative and neurovascular disorders affect millions of people worldwide and account for a large and increasing health burden on the general population. Thus, there is a critical need to identify potential disease-modifying treatments that can prevent or slow the disease progression. Mitochondria are highly dynamic organelles and play an important role in energy metabolism and redox homeostasis, and mitochondrial dysfunction threatens cell homeostasis, perturbs energy production, and ultimately leads to cell death and diseases. Impaired mitochondrial function has been linked to the pathogenesis of several human neurological disorders. Given the significant contribution of mitochondrial dysfunction in neurological disorders, there has been considerable interest in developing therapies that can attenuate mitochondrial abnormalities and proffer neuroprotective effects. Unfortunately, therapies that target specific components of mitochondria or oxidative stress pathways have exhibited limited translatability. To this end, mitochondrial transplantation therapy (MTT) presents a new paradigm of therapeutic intervention, which involves the supplementation of healthy mitochondria to replace the damaged mitochondria for the treatment of neurological disorders. Prior studies demonstrated that the supplementation of healthy donor mitochondria to damaged neurons promotes neuronal viability, activity, and neurite growth and has been shown to provide benefits for neural and extra-neural diseases. In this review, we discuss the significance of mitochondria and summarize an overview of the recent advances and development of MTT in neurodegenerative and neurovascular disorders, particularly Parkinson's disease, Alzheimer's disease, and stroke. The significance of MTT is emerging as they meet a critical need to develop a diseasemodifying intervention for neurodegenerative and neurovascular disorders.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hector G. Paez
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Christopher R. Pitzer
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Stephen E. Alway
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Tennessee Institute of Regenerative Medicine, 910 Madison Avenue, Memphis, TN, 38163, USA
| |
Collapse
|
43
|
Li M, Tang H, Li Z, Tang W. Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience 2022; 507:112-124. [PMID: 36341725 DOI: 10.1016/j.neuroscience.2022.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) injury is a common feature of ischemic stroke which occurs when the blood supply is restored after a period of ischemia in the brain. Reduced blood-flow to the brain during CI/RI compromises neuronal cell health as a result of mitochondrial dysfunction, oxidative stress, cytokine production, inflammation and tissue damage. Reperfusion therapy during CI/RI can restore the blood flow to ischemic regions of brain which are not yet infarcted. The long-term goal of CI/RI therapy is to reduce stroke-related neuronal cell death, disability and mortality. A range of drug and interventional therapies have emerged that can alleviate CI/RI mediated oxidative stress, inflammation and apoptosis in the brain. Herein, we review recent studies on CI/RI interventions for which a mechanism of action has been described and the potential of these therapeutic modalities for future use in the clinic.
Collapse
Affiliation(s)
- Mengxing Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heyong Tang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhen Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Tang
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
44
|
Preferred Migration of Mitochondria toward Cells and Tissues with Mitochondrial Damage. Int J Mol Sci 2022; 23:ijms232415734. [PMID: 36555376 PMCID: PMC9779580 DOI: 10.3390/ijms232415734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MTGFP). When MTGFP were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MTGFP injected intravenously into normal mice, MTGFP injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites.
Collapse
|
45
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
46
|
Fairley LH, Grimm A, Eckert A. Mitochondria Transfer in Brain Injury and Disease. Cells 2022; 11:3603. [PMID: 36429030 PMCID: PMC9688459 DOI: 10.3390/cells11223603] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
Intercellular mitochondria transfer is a novel form of cell signalling in which whole mitochondria are transferred between cells in order to enhance cellular functions or aid in the degradation of dysfunctional mitochondria. Recent studies have observed intercellular mitochondria transfer between glia and neurons in the brain, and mitochondrial transfer has emerged as a key neuroprotective mechanism in a range of neurological conditions. In particular, artificial mitochondria transfer has sparked widespread interest as a potential therapeutic strategy for brain disorders. In this review, we discuss the mechanisms and effects of intercellular mitochondria transfer in the brain. The role of mitochondrial transfer in neurological conditions, including neurodegenerative disease, brain injury, and neurodevelopmental disorders, is discussed as well as therapeutic strategies targeting mitochondria transfer in the brain.
Collapse
Affiliation(s)
- Lauren H. Fairley
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
| | - Amandine Grimm
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
| |
Collapse
|
47
|
Noh SE, Lee SJ, Lee TG, Park KS, Kim JH. Inhibition of Cellular Senescence Hallmarks by Mitochondrial Transplantation in Senescence-induced ARPE-19 cells. Neurobiol Aging 2022; 121:157-165. [DOI: 10.1016/j.neurobiolaging.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/03/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
|
48
|
Mitochondrial Transplantation Promotes Remyelination and Long-Term Locomotion Recovery following Cerebral Ischemia. Mediators Inflamm 2022; 2022:1346343. [PMID: 36157892 PMCID: PMC9499812 DOI: 10.1155/2022/1346343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cerebral ischemia usually leads to axonal degeneration and demyelination in the adjacent white matter. Promoting remyelination still remains a challenging issue in the field. Considering that ischemia deprives energy supply to neural cells and high metabolic activities are required by oligodendrocyte progenitor cells (OPCs) for myelin formation, we assessed the effects of transplanting exogenous healthy mitochondria on the degenerating process of oligodendrocytes following focal cerebral ischemia in the present study. Our results showed that exogenous mitochondria could efficiently restore the overall mitochondrial function and be effectively internalized by OPCs in the ischemic cortex. In comparison with control cortex, there were significantly less apoptotic and more proliferative OPCs in mitochondria-treated cortex. More importantly, higher levels of myelin basic protein (MBP) and more morphologically normal myelin-wrapped axons were observed in mitochondria-treated cortex at 21 days postinjury, as revealed by light and electron microscope. Behavior assay showed better locomotion recovery in mitochondria-treated mice. Further analysis showed that olig2 and lipid synthesis signaling were significantly increased in mitochondria-treated cortex. In together, our data illustrated an antidegenerating and myelination-promoting effect of exogenous mitochondria, indicating mitochondria transplantation as a potentially valuable treatment for ischemic stroke.
Collapse
|
49
|
Kit O, Frantsiyants E, Neskubina I, Shikhlyarova A, Kaplieva I. Mitochondrial therapy: a vision of the outlooks for treatment of main twenty-first-century diseases. CARDIOMETRY 2022. [DOI: 10.18137/cardiometry.2022.22.1827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are dynamic organelles which constantly change their shape, size, and location within the cells. Mitochondrial dynamics is associated with mesenchymal metabolism or epithelial-mesenchymal transition to regulate the stem cell differentiation, proliferation, migration, and apoptosis. The transfer of mitochondria from one cell to another is necessary to improve and maintain homeostasis in an organism. Mitochondrial transplantation is a therapeutic approach that involves an introduction of healthy mitochondria into damaged organs. Recent evidence data have shown that the physiological properties of healthy mitochondria provide their ability to replace damaged mitochondria, with suggesting that replacing damaged mitochondria with healthy mitochondria may protect cells from further damage. Moreover, mitochondria can also be actively released into the extracellular space and potentially be transferred between the cells in the central nervous system. This increased interest in mitochondrial therapy calls for a deeper understanding of the mechanisms, which build the basis for mitochondrial transfer, uptake, and cellular defense. In this review, questions related to the involvement of mitochondria in the pathogenesis of cancer will be discussed. Particular attention will be paid to mitochondrial transplantation as a therapeutic approach to treat the mitochondrial dysfunction under some pathological conditions.
Collapse
|
50
|
Zheng J, Mao X, Wang D, Xia S. Preconditioned MSCs Alleviate Cerebral Ischemia-Reperfusion Injury in Rats by Improving the Neurological Function and the Inhibition of Apoptosis. Brain Sci 2022; 12:631. [PMID: 35625017 PMCID: PMC9140028 DOI: 10.3390/brainsci12050631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have great application prospects in the treatment of ischemic injury. However, their long-time cultivation before transplantation and poor survival after transplantation greatly limit the therapeutic effect and applications. This study aimed to investigate whether MSCs under the ischemic microenvironment could improve their survival and better alleviate cerebral ischemic injury. Firstly, we used ischemic brain tissue to culture MSCs and evaluated the functional changes of MSCs. Then a middle cerebral artery occlusion (MCAO) model was induced in rats, and the pretreated MSCs were injected via the tail vein. The adhesive removal test, rotarod test, modified neurological severity score, and pathological analyses were applied to assess the rats' neurological function. Then the expression of neuron and apoptosis related markers was detected. The results indicated that ischemic brain tissue pretreated MSCs promoted the proliferation and the release of the growth factors of MSCs. Meanwhile, in MCAO model rats, transplantation of pretreated MSCs enhanced the neurogenesis, attenuated behavioral changes, reduced infarct size, and inhibited apoptosis. The expression of B-cell lymphoma-2 (Bcl-2), brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), NF-L, and NeuN were increased, while BCL2-Associated X (Bax) and Caspase-3 decreased. Our results suggest that MSCs pretreatment with stroke brain tissue could be an effective strategy in treating cerebral ischemic injury.
Collapse
Affiliation(s)
- Jin Zheng
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xueyu Mao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai 201199, China; (X.M.); (D.W.); (S.X.)
| | - Delong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai 201199, China; (X.M.); (D.W.); (S.X.)
| | - Shiliang Xia
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai 201199, China; (X.M.); (D.W.); (S.X.)
| |
Collapse
|