1
|
Chai C, Jin B, Bi J, Cui Y, Cui X, Shan C, Yu S, Wen H. Exploring of Antidepressant Components and Mechanisms of Zhizichi Decoction: Integration of Serum Pharmacochemistry, Network Pharmacology and Anti-inflammatory Analysis Verification. ANALYTICAL SCIENCE ADVANCES 2025; 6:e70002. [PMID: 39991188 PMCID: PMC11845310 DOI: 10.1002/ansa.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Using LC-MS to screen and analyse the characteristics of components and biological systems is a new approach to study the pharmacological substance basis of traditional Chinese medicine, which has strong novelty in analytical science. This study analyses the antidepressant material basis of Zhizichi decoction through the integration strategy of serum pharmacochemistry, network pharmacology and immunoreactivity verification, which helps in overcoming the limitations of TCM research and provided a new perspective and approach for studying the components of ZZCD. First of all, blood from SD rats was collected before and after Zhizichi decoction administration initially. The migration constituents in the serum were then analysed using ultra-high performance liquid chromatography-Q-TOF-MS/MS. By integrating the TCMSP databases with the serum pharmacochemistry results, we constructed the 'ingredients-targets-pathways' network and the protein-protein interaction network for Zhizichi decoction's depression-relieving. Finally, the inhibitory effects of Zhizichi decoction and active ingredient groups comprised of pharmacodynamic components identified in prior network pharmacology study on IL-1β, IL-6 and TNF-α were measured through an inflammatory cytokines experiments. From the serum pharmacochemistry study, 146 migration constituents in serum and their attribution were hypothesized and characterized. They were identified as 18 prototype components and 128 metabolites, of which 121 were Phase I and 7 were Phase II metabolites. The Zhizichi decoction pharmacology network illustrated the relationships of the 20 definitive ingredients, 85 potential targets and 21 signalling pathways in connection with the depression. The targets predicted by pharmacology and protein-protein interaction network were reported to be associated with neuroinflammation, which suggested that further anti-inflammatory experiment was required. For the anti-inflammatory effect of AIGs 1 composed of 14 pharmacodynamic components was basically equivalent to that of whole ZZCD recipe, AIG 1 was hypothesized to be the critical pharmacodynamic components to inhibit inflammatory factors and defined as the antidepressant components' of Zhizichi decoction, providing a scientific foundation for the pursuit of potential new drugs for depression treatments.
Collapse
Affiliation(s)
- Chuan Chai
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Bo Jin
- China Mobile Group Jiangsu Co. Ltd.NanjingJiangsuChina
| | - Jinghan Bi
- Nanjing Zenkom Pharmaceutical Co. Ltd.NanjingJiangsuChina
| | - Yuhan Cui
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Xiaobing Cui
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Chenxiao Shan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Sheng Yu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Hongmei Wen
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| |
Collapse
|
2
|
Yang XY, Wang HQ, Wang ZZ, Chen NH. Linking depression and neuroinflammation: Crosstalk between glial cells. Eur J Pharmacol 2025; 995:177408. [PMID: 39984011 DOI: 10.1016/j.ejphar.2025.177408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
The inflammatory hypothesis is one of the more widely accepted pathogenesis of depression. Glia plays an important immunomodulatory role in neuroinflammation, mediating interactions between the immune system and the central nervous system (CNS). Glial cell-driven neuroinflammation is not only an important pathological change in depression, but also a potential therapeutic target. This review discusses the association between depression and glial cell-induced neuroinflammation and elucidates the role of glial cell crosstalk in neuroinflammation. Firstly, we focus on the role of glial cells in neuroinflammation in depression and glial cell interactions; secondly, we categorize changes in different glial cells in animal models of depression and depressed patients, focusing on how glial cells mediate inflammatory responses and exacerbate depressive symptoms; Thirdly, we review how conventional and novel antidepressants affect the phenotype and function of glial cells, thereby exerting anti-inflammatory activity; finally, we discuss the role of the gut-brain axis in glial cell function and depression, and objectively analyze the problems that remain in current antidepressant therapy. This review aims to provide an objective analysis of how glial cell cross-talk may mediate neuroinflammation and thereby influence pathologic progression of depression. It is concluded that a novel therapeutic strategy may be to ameliorate glial cell-mediated inflammatory responses.
Collapse
Affiliation(s)
- Xue-Ying Yang
- Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Qin Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Wang H, Liang Q, Wen Z, Ma W, Ji S, Zhang H, Zhang X. Enriched environment alleviates NLRP3 inflammasome mediated neuroinflammation in diabetes complicated with depression rats. Sci Rep 2025; 15:14214. [PMID: 40269100 PMCID: PMC12019150 DOI: 10.1038/s41598-025-98312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Depression is a serious and common complication of diabetes, with a well-established link between the two conditions. Recent studies indicate that activation of the NLRP3 inflammasome in hippocampal microglia plays a key role in the pathogenesis of diabetes complicated with depression (DD). While environmental enrichment (EE) has demonstrated significant anti-neuroinflammatory effects, its potential to alleviate neuroinflammation specifically induced by DD remains unclear. The DD rat model was established using a combination of a high-fat diet, streptozotocin injection, and chronic unpredictable mild stress. The effects of EE on NLRP3 inflammasome activation in the hippocampal microglia of DD rats were examined through a series of behavioral tests (open field test, forced swim test, and elevated plus maze), along with enzyme-linked immunosorbent assays, hematoxylin and eosin staining, TdT-mediated dUTP nick-end labeling staining, Western blot analysis, and immunofluorescence. Compared to the control group, DD rats exhibited impaired glucose metabolism and increased depressive-like behaviors, alongside hippocampal neuronal damage and elevated apoptosis rates. Activation of the NLRP3 inflammasome in hippocampal microglia was observed, with upregulation of the NLRP3 signaling pathway and inhibition of the PI3K/AKT signaling pathway. EE significantly mitigated these effects, reducing hippocampal neuroinflammation and alleviating depressive behaviors in DD rats. Neuroinflammation in the hippocampus is a key mechanism underlying the pathogenesis of DD. This study demonstrated that EE reduces neuroinflammation, likely by inhibiting the activation of the NLRP3 inflammasome in hippocampal microglia.
Collapse
Affiliation(s)
- Hongyan Wang
- Sichuan Nursing Vocational College, Chengdu, China
- Southwest University, Chongqing, China
| | - Qingfang Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifei Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenlian Ma
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyang Ji
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangeng Zhang
- Sichuan Nursing Vocational College, Chengdu, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Zhang JD, Zhong ZA, Xing WY. Environmental enrichment for neuropathic pain via modulation of neuroinflammation. Front Mol Neurosci 2025; 18:1547647. [PMID: 40190342 PMCID: PMC11968435 DOI: 10.3389/fnmol.2025.1547647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Neuropathic pain causes tremendous biological and psychological suffering to patients worldwide. Environmental enrichment (EE) is a promising non-pharmacological strategy with high cost-effectiveness to reduce neuropathic pain and support rehabilitation therapy. Three researchers reviewed previous studies to determine the efficacy of EE for neuropathic pain to research how EE improves neuropathic pain through neuroinflammation. For this review, Embase, PubMed, and Cochran were searched. Three authors did study selection and data extraction. Out of 74 papers, 7 studies met the inclusion criteria. In the chronic constriction injury rats with acute or chronic detrimental stimulation, the change of pain behavior was influenced by environmental settings like start time, and cage size. Besides, physical EE has a larger effect than socially EE in inflammatory pain. These articles suggest employing various EE to regulate the release of pain-causing substances and changes in ion channels in the peripheral and central nerves to improve neuropathic pain behavior and depression and anxiety conditions. The existing proof provides important knowledge for upcoming preclinical investigations and the practical use of EE in clinical pain treatment. This analysis aids in the advancement of improved approaches for managing chronic pain, with a focus on internal mechanisms for controlling pain.
Collapse
Affiliation(s)
- Jian-Dong Zhang
- Physical Education College, Qilu Normal University, Jinan, China
| | - Zi-An Zhong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Wen-Yuan Xing
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
White AG, Elias E, Orozco A, Robinson SA, Manners MT. Chronic Stress-Induced Neuroinflammation: Relevance of Rodent Models to Human Disease. Int J Mol Sci 2024; 25:5085. [PMID: 38791125 PMCID: PMC11121038 DOI: 10.3390/ijms25105085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The brain is the central organ of adaptation to stress because it perceives and determines threats that induce behavioral, physiological, and molecular responses. In humans, chronic stress manifests as an enduring consistent feeling of pressure and being overwhelmed for an extended duration. This can result in a persistent proinflammatory response in the peripheral and central nervous system (CNS), resulting in cellular, physiological, and behavioral effects. Compounding stressors may increase the risk of chronic-stress-induced inflammation, which can yield serious health consequences, including mental health disorders. This review summarizes the current knowledge surrounding the neuroinflammatory response in rodent models of chronic stress-a relationship that is continually being defined. Many studies investigating the effects of chronic stress on neuroinflammation in rodent models have identified significant changes in inflammatory modulators, including nuclear factor-κB (NF-κB) and toll-like receptors (TLRs), and cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6. This suggests that these are key inflammatory factors in the chronic stress response, which may contribute to the establishment of anxiety and depression-like symptoms. The behavioral and neurological effects of modulating inflammatory factors through gene knockdown (KD) and knockout (KO), and conventional and alternative medicine approaches, are discussed.
Collapse
Affiliation(s)
- Abigail G. White
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Elias Elias
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Andrea Orozco
- Department of Psychology, Williams College, Williamstown, MA 01267, USA
| | | | - Melissa T. Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
6
|
Geng M, Shao Q, Fu J, Gu J, Feng L, Zhao L, Liu C, Mu J, Zhang X, Zhao M, Guo X, Song C, Li Y, Wang H, Wang C. Down-regulation of MKP-1 in hippocampus protects against stress-induced depression-like behaviors and neuroinflammation. Transl Psychiatry 2024; 14:130. [PMID: 38424085 PMCID: PMC10904742 DOI: 10.1038/s41398-024-02846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Chronic stress is the primary environmental risk factor for major depressive disorder (MDD), and there is compelling evidence that neuroinflammation is the major pathomechanism linking chronic stress to MDD. Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a negative regulator of MAPK signaling pathways involved in cellular stress responses, survival, and neuroinflammation. We examined the possible contributions of MKP-1 to stress-induced MDD by comparing depression-like behaviors (anhedonia, motor retardation, behavioral despair), neuroinflammatory marker expression, and MAPK signaling pathways among rats exposed to chronic unpredictable mild stress (CUMS), overexpressing MKP-1 in the hippocampus, and CUMS-exposed rats underexpressing MKP-1 in the hippocampus. Rats exposed to CUMS exhibited MKP-1 overexpression, greater numbers of activated microglia, and enhanced expressions of neuroinflammatory markers (interleukin [IL]-6, [IL]-1β, tumor necrosis factor [TNF]-ɑ, and decreased phosphorylation levels of ERK and p38 in the hippocampus as well as anhedonia in the sucrose preference test, motor retardation in the open field, and greater immobility (despair) in the forced swimming tests. These signs of neuroinflammation and depression-like behaviors and phosphorylation levels of ERK and p38 were also observed in rats overexpressing MKP-1 without CUMS exposure, while CUMS-induced neuroinflammation, microglial activation, phosphorylation levels of ERK and p38, and depression-like behaviors were significantly reversed by MKP-1 knockdown. Moreover, MKP-1 knockdown promoted the activation of the MAPK isoform ERK, implying that the antidepressant-like effects of MKP-1 knockdown may be mediated by the ERK pathway disinhibition. These findings suggested that hippocampal MKP-1 is an essential regulator of stress-induced neuroinflammation and a promising target for antidepressant development.
Collapse
Affiliation(s)
- Mengjun Geng
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Qiujing Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Jiacheng Fu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Jingyang Gu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Laipeng Feng
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Liqin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Cong Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Junlin Mu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Xiaoli Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Mingjun Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
| | - Xinsheng Guo
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China
| | - Cai Song
- Guangdong Ocean University College of Food Science and Technoligy, Zhanjiang, China
| | - Yan Li
- The Second Affiliated Hospital of Zhengzhou University, 450014, Zhengzhou, Henan, China.
| | - Huiying Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China.
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China.
| | - Changhong Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, 453002, Xinxiang, Henan, China.
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, 453002, Xinxiang, Henan, China.
- Henan Provincial Key Laboratory of Sleep Medicine, 453002, Xinxiang, Henan, China.
| |
Collapse
|
7
|
Jiang S, Xiong Y, Wang X. Engeletin ameliorates sevoflurane-induced cognitive impairment by activating PPAR-gamma in neonatal mice. Neuropathology 2023; 43:431-440. [PMID: 37037475 DOI: 10.1111/neup.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
Sevoflurane (SEV) is a commonly used anesthetic in pediatric surgery. Recent studies reported that repeated use of SEV contributes to cognitive impairment. Engeletin has been discovered to exert anti-inflammatory effects in various diseases. However, the detailed roles and mechanisms of engeletin in SEV-induced cognitive dysfunction of neonatal mice remain unclear. In this study, C57BL/6 neonatal mice were randomly divided into Ctrl, SEV, SEV + Engeletin (10 mg /kg), SEV + Engeletin (20 mg/kg), and SEV + Engeletin (40 mg/kg) groups. The Morris water maze (MWM) test suggested that engeletin treatment significantly improved SEV-induced cognitive impairment in neonatal mice. Employing ELISA and Nissl staining analysis, engeletin reduced neuroinflammation and loss of nerve cells caused by SEV, respectively. The treatment of engeletin dramatically suppressed the activation of microglia and apoptosis induced by SEV in the hippocampus of neonatal mice. Furthermore, the inhibition of PPAR-γ obviously reversed the abovementioned effects of engeletin in the hippocampus of newborn mice. In conclusion, this study verified that engeletin notably ameliorated SEV-induced cognitive deficiencies in neonatal mice at least partially by mediating the expression of PPAR-γ.
Collapse
Affiliation(s)
- Su Jiang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Dandi Ε, Theotokis P, Petri MC, Sideropoulou V, Spandou E, Tata DA. Environmental enrichment initiated in adolescence restores the reduced expression of synaptophysin and GFAP in the hippocampus of chronically stressed rats in a sex-specific manner. Dev Psychobiol 2023; 65:e22422. [PMID: 37796476 DOI: 10.1002/dev.22422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 10/06/2023]
Abstract
This study aims at investigating whether environmental enrichment (EE) initiated in adolescence can alter chronic unpredictable stress (CUS)-associated changes in astroglial and synaptic plasticity markers in male and female rats. To this end, we studied possible alterations in hippocampal glial fibrillary acidic protein (GFAP) and synaptophysin (SYN) in CUS rats previously housed in EE. Wistar rats on postnatal day (PND) 23 were housed for 10 weeks in standard housing (SH) or enriched conditions. On PND 66, animals were exposed to CUS for 4 weeks. SYN and GFAP expressions were evaluated in CA1 and CA3 subfields and dentate gyrus (DG). CUS reduced the expression of SYN in all hippocampal areas, whereas lower GFAP expression was evident only in CA1 and CA3. The reduced expression of SYN in DG and CA3 was evident to male SH/CUS rats, whereas the reduced GFAP expression in CA1 and CA3 was limited to SH/CUS females. EE housing increased the hippocampal expression of both markers and protected against CUS-associated decreases. Our findings indicate that the decreases in the expression of SYN and GFAP following CUS are region and sex-specific and underline the neuroprotective role of EE against these CUS-associated changes.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Christina Petri
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vaia Sideropoulou
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Dandi Ε, Spandou E, Dalla C, Tata DA. Τhe neuroprotective role of environmental enrichment against behavioral, morphological, neuroendocrine and molecular changes following chronic unpredictable mild stress: A systematic review. Eur J Neurosci 2023; 58:3003-3025. [PMID: 37461295 DOI: 10.1111/ejn.16089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 08/16/2023]
Abstract
Environmental factors interact with biological and genetic factors influencing the development and well-being of an organism. The interest in better understanding the role of environment on behavior and physiology led to the development of animal models of environmental manipulations. Environmental enrichment (EE), an environmental condition that allows cognitive and sensory stimulation as well as social interaction, improves cognitive function, reduces anxiety and depressive-like behavior and promotes neuroplasticity. In addition, it exerts protection against neurodegenerative disorders, cognitive aging and deficits aggravated by stressful experiences. Given the beneficial effects of EE on the brain and behavior, preclinical studies have focused on its protective role as an alternative, non-invasive manipulation, to help an organism to cope better with stress. A valid, reliable and effective animal model of chronic stress that enhances anxiety and depression-like behavior is the chronic unpredictable mild stress (CUMS). The variety of stressors and the unpredictability in the time and sequence of exposure to prevent habituation, render CUMS an ethologically relevant model. CUMS has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis, elevation in the basal levels of stress hormones, reduction in brain volume, dendritic atrophy and alterations in markers of synaptic plasticity. Although numerous studies have underlined the compensatory role of EE against the negative effects of various chronic stress regimens (e.g. restraint and social isolation), research concerning the interaction between EE and CUMS is sparse. The purpose of the current systematic review is to present up-to-date research findings regarding the protective role of EE against the negative effects of CUMS.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Tian Y, Li M, Zhang S, Hu J, Wu H, Wan M, Xue J, Wang L, Xiao H, Zhou G, Wang K, Liu Q. Microglia activation in the hippocampus mediates retinal degeneration-induced depressive-like behaviors via the NLRP3/IL-1β pathway. Brain Res Bull 2023; 192:70-79. [PMID: 36332880 DOI: 10.1016/j.brainresbull.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Epidemiological studies have shown that patients with glaucoma are more prone to depression, but the mechanism of comorbid depression in patients with glaucoma remains unknown. Excessive neuroinflammation has been shown to participate in glaucoma-induced retinal degeneration and hippocampal neural apoptosis in depression. However, little research has been conducted to determine whether neuroinflammation contributes to glaucoma-induced depression. Since the degeneration of retinal ganglion cells is a hallmark of glaucoma, we investigated the role of microglia-induced neuroinflammation in retinal degeneration-induced depression and its potential mechanism. An N-methyl-D-aspartate (NMDA)-induced retinal degeneration model was established, and behavioral tests were conducted at 3, 7, 14, and 21 days after retinal degeneration. After tissue collection, we used immunohistochemistry to assess the activation of microglia and real-time polymerase chain reaction to measure the levels of pro-inflammatory cytokines and the NOD-, LRR-, and pyrin-domain containing protein 3 (NLRP3) inflammasome. The mice exhibited depressive-like behaviors 14 and 21 days after retinal degeneration, based on the open field test, tail suspension test, and forced swimming test. Mice also displayed a lower body weight gain than the control group. In addition, microglial activation was observed in the hippocampus. Microglial proliferation was first observed in the dentate gyrus on day 3, while the number of microglia in cornu ammonis 1 grew the most. Moreover, not only was the expression of pro-inflammatory cytokines, including interleukin-1β, interleukin-18, and interleukin-6 promoted, but the messenger ribonucleic acid levels of the NLRP3 inflammasome were also increased. In conclusion, our research shows that NMDA-induced retinal degeneration can induce depressive-like behaviors, which may be attributed to hippocampal neuroinflammation.
Collapse
Affiliation(s)
- Yi Tian
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Meihui Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juntao Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Haoran Wu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mitchell Wan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingxin Xue
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Leilei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Honglei Xiao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
| | - Kaidi Wang
- Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
| |
Collapse
|
11
|
Zhang YM, Wei RM, Li XY, Feng YZ, Zhang KX, Ge YJ, Kong XY, Liu XC, Chen GH. Long-term environmental enrichment overcomes depression, learning, and memory impairment in elderly CD-1 mice with maternal sleep deprivation exposure. Front Aging Neurosci 2023; 15:1177250. [PMID: 37168717 PMCID: PMC10164971 DOI: 10.3389/fnagi.2023.1177250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Early-life stress disrupts central nervous system development and increases the risk of neuropsychiatric disorder in offspring based on rodent studies. Maternal sleep deprivation (MSD) in rodents has also been associated with depression and cognitive decline in adult offspring. However, it is not known whether these issues persist into old age. Environmental enrichment is a non-pharmacological intervention with proven benefits in improving depression and cognitive impairment; however, it is unclear whether these benefits hold for aging mice following MSD exposure. The aim of this study was to explore the effects of MSD on depression and cognition in elderly offspring CD-1 mice and to determine whether long-term environmental enrichment could alleviate these effects by improving neuroinflammation and synaptic plasticity. The offspring mice subjected to MSD were randomly assigned to either a standard environment or an enriched environment. At 18 months of age, the forced swimming and tail suspension tests were used to evaluated depression-like behaviors, and the Morris water maze test was used to evaluate cognitive function. The expression levels of hippocampal proinflammatory cytokines and synaptic plasticity-associated proteins were also measured. MSD increased depression-like behaviors and impaired cognition function in aging CD-1 offspring mice. These effects were accompanied by upregulated interleukin (IL)-1β, IL-6, and tumor necrosis factor-α expression, and downregulated brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin expression in the hippocampus. All of these changes were reversed by long-term exposure to an enriched environment. These findings suggest that MSD exerts long-term effects on the behaviors of offspring in mice, leading to depression and cognitive impairment in older age. Importantly, long-term environmental enrichment could counteract the behavior difficulties induced by MSD through improving hippocampal proinflammatory cytokines and synaptic plasticity-associated proteins.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi-Zhou Feng
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Chun Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Gui-Hai Chen, ; Xue-Chun Liu,
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Gui-Hai Chen, ; Xue-Chun Liu,
| |
Collapse
|
12
|
Xu G, Zou T, Deng L, Yang G, Guo T, Wang Y, Niu C, Cheng Q, Yang X, Dong J, Zhang J. Nonerythropoietic Erythropoietin Mimetic Peptide ARA290 Ameliorates Chronic Stress-Induced Depression-Like Behavior and Inflammation in Mice. Front Pharmacol 2022; 13:896601. [PMID: 36046815 PMCID: PMC9421426 DOI: 10.3389/fphar.2022.896601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder. But the treatment of depression remains challenging. Anti-inflammatory treatments frequently produce antidepressant effects. EPO-derived helix-B peptide ARA290 has been reported to retain the anti-inflammatory and tissue-protective functions of EPO without erythropoiesis-stimulating effects. The effects of ARA290 on MDD remain elusive. This study established chronic unpredictable mild stress and chronic social defeat stress mouse models. Daily administration of ARA290 during chronic stress induction in two mouse models ameliorated depression-like behavior, similar to fluoxetine. With marginal effects on peripheral blood hemoglobin and red cells, ARA290 and fluoxetine reversed chronic stress-induced increased frequencies and/or numbers of CD11b+Ly6Ghi neutrophils and CD11b+Ly6Chi monocytes in the bone marrow and meninges. Furthermore, both drugs reversed chronic stress-induced microglia activation. Thus, ARA290 ameliorated chronic stress-induced depression-like behavior in mice through, at least partially, its anti-inflammatory effects.
Collapse
Affiliation(s)
- Guanglei Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tingting Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yi Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- *Correspondence: Jiyan Zhang,
| |
Collapse
|
13
|
Liu K, Zhu R, Jiang H, Li B, Geng Q, Li Y, Qi J. Taurine inhibits KDM3a production and microglia activation in lipopolysaccharide-treated mice and BV-2 cells. Mol Cell Neurosci 2022; 122:103759. [PMID: 35901929 DOI: 10.1016/j.mcn.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia activation has been suggested as the key factor in neuro-inflammation and thus participates in neurological diseases. Although taurine exhibits anti-inflammatory and neuro-protective effects, its underlying epigenetic mechanism is unknown. In this study, taurine was administered to lipopolysaccharide (LPS)-treated mice and BV-2 cells. Behavioral test, morphological analyze, detection of microglia activation, and lysine demethylase 3a (KDM3a) measurements were performed to investigate the mechanism by which taurine regulates KDM3a and subsequently antagonizes microglia activation. Taurine improved the sociability of LPS-treated mice, inhibited microglia activation in the hippocampus, and reduced generation of brain inflammatory factors, such as interleukin-6, tumor necrosis factor-α, inducible nitric oxide synthase, and cyclooxygenase-2. Meanwhile, taurine suppressed the LPS-induced increase in microglial KDM3a, and increased the level of mono-, di- or tri-methylation of lysine 9 on histone H3 (H3K9me1/2/3). Furthermore, taurine inhibited the LPS-induced increase in KDM3a, elevated the H3K9me1/2/3 level, and reduced inflammatory factors and reactive oxygen species in a concentration-dependent manner in LPS-stimulated BV-2 cells. In conclusion, taurine inhibited KDM3a and microglia activation, thereby playing an anti-inflammatory role in LPS-treated mice and BV-2 cells.
Collapse
Affiliation(s)
- Kun Liu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China; Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Runying Zhu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Hongwei Jiang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Bin Li
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Qi Geng
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| |
Collapse
|
14
|
Wan T, Li X, Fu M, Gao X, Li P, Guo W. NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Front Cell Neurosci 2022; 16:863426. [PMID: 35722622 PMCID: PMC9204297 DOI: 10.3389/fncel.2022.863426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Depression, a major public health problem, imposes a significant economic burden on society. Recent studies have gradually unveiled the important role of neuroinflammation in the pathogenesis of depression. Pyroptosis, a programmed cell death mediated by Gasdermins (GSDMs), is also considered to be an inflammatory cell death with links to inflammation. Pyroptosis has emerged as an important pathological mechanism in several neurological diseases and has been found to be involved in several neuroinflammatory-related diseases. A variety of chemical agents and natural products have been found to be capable of exerting therapeutic effects by modulating pyroptosis. Studies have shown that depression is closely associated with pyroptosis and the induced neuroinflammation of relevant brain regions, such as the hippocampus, amygdala, prefrontal cortex neurons, etc., in which the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome plays a crucial role. This article provides a timely review of recent findings on the activation and regulation of pyroptosis in relation to depression.
Collapse
Affiliation(s)
- Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Teng Wan
| | - Xiaoyu Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
15
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|