1
|
Huang R, Zhong X, Tang P, Huang Q, Chen X, Ye L, Luo D, Yang Y, Lei Y. Fraxinellone protects against cardiac injury and decreases ventricular fibrillation susceptibility during myocardial ischemia-reperfusion. Biomed Pharmacother 2024; 180:117560. [PMID: 39442236 DOI: 10.1016/j.biopha.2024.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Acute myocardial ischemia/reperfusion injury (MIRI) with complicated mechanisms contributes to a high risk of ventricular arrhythmia, high lethality, and even sudden death. In vitro, Fraxinellone (FRA) exhibits an array of biologic activities and may possess cardioprotective effects. However, no relevant studies have examined FRA's protective potential against MIRI and related ventricular arrhythmias. The present study was undertaken to determine the effectiveness of FRA on MIRI and ventricular fibrillation (VF) susceptibility in rats and to elucidate the underlying mechanisms. METHODS 48 healthy male Sprague-Dawley (SD) rats were randomly divided into the following four groups: Sham+vehicle(n=12), Sham+FRA(n=12), I/R+vehicle(n=12) and I/R+FRA(n=12). Histopathology, electrophysiological examination, HRV analysis in combination with molecular biology were used to investigate the therapeutic benefits of FRA on cardiac injury and VF susceptibility during myocardial IR. Finally, the potential mechanism by which FRA protects myocardium from MIRI was explored. RESULTS Pretreatment with FRA ameliorated myocardial fibrosis after MIRI in vivo, alleviated myocardial injury, inflammation, oxidative stress and apoptosis in vivo and in vitro, thereby protecting myocardium from MIRI injury. In addition, FRA administration could improve HRV, prolong ventricular effective refractory period (ERP) and action potential duration (APD), attenuate VF induction rate, and contribute to improving ventricular sympathetic nerve remodeling and ion channel remodeling. Mechanistically, FRA may reduce MIRI via the PI3K/AKT pathway. CONCLUSION FRA may exert cardioprotective effects during MIRI by inhibiting myocardial inflammation, oxidative stress and apoptosis, and decrease VF susceptibility by improving sympathetic remodeling and ion channel remodeling, which might represent a potential therapeutic strategy for attenuation of MIRI.
Collapse
Affiliation(s)
- Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Provincial Key Lab of Selenium Resources and Bio Applications, Enshi, Hubei Province, China
| | - Xing Zhong
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Minzu University, Enshi, Hubei Province, China
| | - Pusong Tang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Minzu University, Enshi, Hubei Province, China
| | - Qingning Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Provincial Key Lab of Selenium Resources and Bio Applications, Enshi, Hubei Province, China
| | - Xin Chen
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Provincial Key Lab of Selenium Resources and Bio Applications, Enshi, Hubei Province, China
| | - Lu Ye
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Minzu University, Enshi, Hubei Province, China
| | - Dan Luo
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Provincial Key Lab of Selenium Resources and Bio Applications, Enshi, Hubei Province, China
| | - Yaqin Yang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Provincial Key Lab of Selenium Resources and Bio Applications, Enshi, Hubei Province, China.
| | - Yuhua Lei
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China; Hubei Provincial Key Lab of Selenium Resources and Bio Applications, Enshi, Hubei Province, China.
| |
Collapse
|
2
|
Jin Z, Lu J, Xu H, Zhang Y, Zhang S, Zhang D, Hu J, Shi Z, Li Z, Wang J. Exploring the correlation between innate immune activation of inflammasome and regulation of pyroptosis after intracerebral hemorrhage: From mechanism to treatment. Biomed Pharmacother 2024; 179:117382. [PMID: 39241565 DOI: 10.1016/j.biopha.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Stroke has emerged as the primary cause of disability and death globally in recent years. Intracerebral hemorrhage (ICH), a particularly severe kind of stroke, is occurring in an increasing number of people. The two main clinical treatments for ICH now in use are conservative pharmaceutical therapy and surgical intervention, both of which have risks and drawbacks. Consequently, it is crucial to look into the pathophysiology of ICH and consider cutting-edge therapeutic approaches. Recent research has revealed that pyroptosis is a newly identified type of cell death distinguished by the break of the cell membrane and the discharge of pro-inflammatory substances through different routes. Following ICH, glial cells experience pyroptosis, which worsens neuroinflammation. Hence, the onset and progression of ICH are strongly linked to pyroptosis, which is facilitated by different inflammasomes. It is essential to conduct a comprehensive investigation of ICH damage processes and uncover new targets for treatment. The impact and function of pyroptosis in ICH, as well as the activation and regulation of inflammasomes and their mediated pyroptosis pathways will be fully discussed in this review.
Collapse
Affiliation(s)
- Ziqi Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Ying Zhang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Shanshan Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Jing Hu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Zhao Shi
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Zhuyang Li
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China.
| |
Collapse
|
3
|
Wu H, Chen S, You G, Lei B, Chen L, Wu J, Zheng N, You C. The Mechanism of Astragaloside IV in NOD-like Receptor Family Pyrin Domain Containing 3 Inflammasome-mediated Pyroptosis after Intracerebral Hemorrhage. Curr Neurovasc Res 2024; 21:74-85. [PMID: 38409729 DOI: 10.2174/0115672026295640240212095049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the most common subtypes of stroke. OBJECTIVES This study aimed to investigate the mechanism of Astragaloside IV (AS-IV) on inflammatory injury after ICH. METHODS The ICH model was established by the injection of collagenase and treated with ASIV (20 mg/kg or 40 mg/kg). The neurological function, water content of the bilateral cerebral hemisphere and cerebellum, and pathological changes in brain tissue were assessed. The levels of interleukin-1 beta (IL-1β), IL-18, tumor necrosis factor-alpha, interferon-gamma, and IL-10 were detected by enzyme-linked immunosorbent assay. The levels of Kruppel-like factor 2 (KLF2), NOD-like receptor family pyrin domain containing 3 (NLRP3), GSDMD-N, and cleaved-caspase-1 were detected by reverse transcription-quantitative polymerase chain reaction and Western blot assay. The binding relationship between KLF2 and NLRP3 was verified by chromatin-immunoprecipitation and dual-luciferase assays. KLF2 inhibition or NLRP3 overexpression was achieved in mice to observe pathological changes. RESULTS The decreased neurological function, increased water content, severe pathological damage, and inflammatory response were observed in mice after ICH, with increased levels of NLRP3/GSDMD-N/cleaved-caspase-1/IL-1β/IL-18 and poorly-expressed KLF2 in brain tissue. After AS-IV treatment, the neurological dysfunction, high brain water content, inflammatory response, and pyroptosis were alleviated, while KLF2 expression was increased. KLF2 bonded to the NLRP3 promoter region and inhibited its transcription. Down-regulation of KLF2 or upregulation of NLRP3 reversed the effect of AS-IV on inhibiting pyroptosis and reducing inflammatory injury in mice after ICH. CONCLUSION AS-IV inhibited NLRP3-mediated pyroptosis by promoting KLF2 expression and alleviated inflammatory injury in mice after ICH.
Collapse
Affiliation(s)
- Honggang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Shu Chen
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Guoliang You
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Bo Lei
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Li Chen
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Jiachuan Wu
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Niandong Zheng
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Huang S, Huang H, Xie J, Wang F, Fan S, Yang M, Zheng C, Han L, Zhang D. The latest research progress on the prevention of storage pests by natural products: Species, mechanisms, and sources of inspiration. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|