1
|
Guo Y, Li J, Liu X, Ding H, Zhang W. Potential therapeutic targets for ischemic stroke in pre-clinical studies: Epigenetic-modifying enzymes DNMT/TET and HAT/HDAC. Front Pharmacol 2025; 16:1571276. [PMID: 40356977 PMCID: PMC12066669 DOI: 10.3389/fphar.2025.1571276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and disability worldwide, driven by genetic predispositions and environmental interactions, with epigenetics playing a pivotal role in mediating these processes. Specific modifying enzymes that regulate epigenetic changes have emerged as promising targets for IS treatment. DNA methyltransferases (DNMTs), ten-eleven translocation (TET) dioxygenases, histone acetyltransferases (HATs), and histone deacetylases (HDACs) are central to epigenetic regulation. These enzymes maintain a dynamic balance between DNA methylation/demethylation and histone acetylation/deacetylation, which critically influences gene expression and neuronal survival in IS. This review is based on both in vivo and in vitro experimental studies, exploring the roles of DNMT/TET and HAT/HDAC in IS, evaluating their potential as therapeutic targets, and discussing the use of natural compounds as modulators of these enzymes to develop novel treatment strategies.
Collapse
Affiliation(s)
- Yurou Guo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaodan Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Huang Ding
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Wei Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| |
Collapse
|
2
|
Zhuang W, Huang Z, Yu L, Yu M, He H, Deng Y. Berberine enhances autophagic flux to alleviate ischemic neuronal injury by facilitating N-ethylmaleimide-sensitive factor-mediated fusion of autophagosomes with lysosomes. Biochem Pharmacol 2025; 232:116715. [PMID: 39672277 DOI: 10.1016/j.bcp.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Our previous study demonstrated that Berberine (BBR) significantly enhances autophagic flux, alleviating ischemic neuronal injury by restoring autolysosomal function, but how BBR augmented autolysosomal functions remained elusive. N-ethyl-maleimide sensitive factor (NSF) is considered as a major ATPase to reactivate soluble NSF attachment protein receptors (SNAREs), which directly mediate autophagosome-lysosome fusion. However, NSF was dramatically inactivated by ischemia to hamper membrane-membrane fusion, leading to autophagic/lysosomal dysfunction in neurons. This study was to investigate whether BBR-ameliorated autophagic flux was exerted by reinforcing NSF activity, which subsequently boosted autophagosome-lysosome fusion in ischemic neurons. Rat model of ischemic stroke and neuronal ischemia model of HT22 cells were prepared by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. BBR was intraperitoneally administrated with 100 mg/Kg/d for 3 days before MCAO and was treated with 90 μM in HT22 neurons for 12 h, respectively. The results illustrated that NSF activity was markedly reinforced to facilitate autophagosome-lysosome fusion in penumbral cells and OGD HT22 neurons by BBR treatment. Consequently, the ischemia-created autophagic/lysosomal dysfunction was greatly restored to alleviate ischemic injury. Thereafter, NSF activity in OGD HT22 neurons was altered by transfection with NSF-overexpressing lentiviruses and siRNA-mediated knockdown, respectively. The data showed that BBR-enhanced autophagic flux and it-induced neuroprotection were greatly counteracted by NSF knockdown. By contrast, NSF overexpression synergistically boosted autophagosome-lysosome fusion and further attenuated neuronal death upon BBR treatment. Therefore, our study indicates that BBR-conferred neuroprotection against ischemic stroke is induced through facilitating autophagosome-lysosome fusion, by which enhancing autophagic flux in ischemic neurons.
Collapse
Affiliation(s)
- Wenting Zhuang
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiwen Huang
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, China
| | - Liling Yu
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, China
| | - Meilin Yu
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongyun He
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yihao Deng
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
3
|
Lei Q, Chen X, Xiong Y, Li S, Wang J, He H, Deng Y. Lysosomal Ca 2+ release-facilitated TFEB nuclear translocation alleviates ischemic brain injury by attenuating autophagic/lysosomal dysfunction in neurons. Sci Rep 2024; 14:24836. [PMID: 39438678 PMCID: PMC11496619 DOI: 10.1038/s41598-024-75802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Neuronal death was frequently driven by autophagic/lysosomal dysfunction after ischemic stroke, whereas how to restore the impaired autophagic flux remained elusive. Autophagic/lysosomal signaling could be augmented after transcription factor EB (TFEB) nuclear translocation, which was facilitated by its dephosphorylation. A key TFEB dephosphorylase was calcineurin (CaN), whose activity was drastically regulated by cytosolic calcium ion concentration ([Ca2+]) controlled by lysosomal Ca2+ channel-like protein of TRPML1. Our research shows that ML-SA1, an agonist of the TRPML1 channel, significantly enhanced the lysosomal Ca2+ release and the CaN expression in penumbric neurons, subsequently promoted TFEB nuclear translocation, and greatly reversed autophagy/lysosome dysfunction. Moreover, ML-SA1 treatment significantly reduced neuronal loss, infarct size, and neurological deficits. By contrast, ML-SI3, an inhibitor of TRPML1, inhibited the lysosomal Ca2+ release conversely, aggravated the impairment of autophagic flux and consequentially exacerbated brain stroke lesion. These studies suggest that TRPML1 elevation alleviates ischemic brain injury by restoring autophagic/lysosomal dysfunction via Lysosomal Ca2+ release-facilitated TFEB nuclear translocation in neurons.
Collapse
Affiliation(s)
- Qian Lei
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuemei Chen
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yajie Xiong
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shangdan Li
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaqian Wang
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongyun He
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
- Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yihao Deng
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
4
|
Qiu M, Zhao X, Guo T, He H, Deng Y. N-ethylmaleimide-sensitive factor elicits a neuroprotection against ischemic neuronal injury by restoring autophagic/lysosomal dysfunction. Cell Death Discov 2024; 10:368. [PMID: 39155286 PMCID: PMC11330971 DOI: 10.1038/s41420-024-02144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Autophagosome-lysosome fusion defects play a critical role in driving autolysosomal dysfunction, leading to autophagic/lysosomal impairment in neurons following ischemic stroke. However, the mechanisms hindering autophagosome-lysosome fusion remain unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) is an essential ATPase to reactivate STX17 and VAMP8, which are the paired molecules to mediate fusion between autophagosomes and lysosomes. However, NSF is frequently inactivated to inhibit the reactivation of STX17 and VAMP8 in ischemic neurons. Herein, we investigated whether autophagosome-lysosome fusion could be facilitated to alleviate autophagic/lysosomal impairment in ischemic neurons by over-expressing NSF. Rat model of middle cerebral artery occlusion (MCAO) and HT22 neuron ischemia model of oxygen-glucose deprivation (OGD) were prepared, respectively. The results demonstrated that NSF activity was significantly suppressed, accompanied by reduced expressions of STX17 and VAMP8 in penumbral neurons 48 h post-MCAO and in HT22 neurons 2 h post-OGD. Moreover, the attenuated autolysosome formation accompanied by autophagic/lysosomal dysfunction was observed. Thereafter, NSF activity in HT22 neurons was altered by over-expression and siRNA knockdown, respectively. After transfection with recombinant NSF-overexpressing lentiviruses, both STX17 and VAMP8 expressions were concurrently elevated to boost autophagosome-lysosome fusion, as shown by enhanced immunofluorescence intensity co-staining with LC3 and LAMP-1. Consequently, the OGD-created autophagic/lysosomal dysfunction was prominently ameliorated, as reflected by augmented autolysosomal functions and decreased autophagic substrates. By contrast, NSF knockdown conversely aggravated the autophagic/lysosomal impairment, and thereby exacerbated neurological damage. Our study indicates that NSF over-expression induces neuroprotection against ischemic neuronal injury by restoring autophagic/lysosomal dysfunction via the facilitation of autophagosome-lysosome fusion. Over-expression of NSF promotes fusion by reactivating STX17 and VAMP8. Black arrows represent the pathological process after cerebral ischemia, green arrows represent the mechanism of remission after NSF over-expression, and red arrows represent the effect on the pathological process after NSF knockdown.
Collapse
Affiliation(s)
- Miaomiao Qiu
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoming Zhao
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tao Guo
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongyun He
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yihao Deng
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Liu TW, Zhao YM, Jin KY, Wang JX, Zhao XF. KAT8 is upregulated and recruited to the promoter of Atg8 by FOXO to induce H4 acetylation for autophagy under 20-hydroxyecdysone regulation. J Biol Chem 2024; 300:105704. [PMID: 38309506 PMCID: PMC10904276 DOI: 10.1016/j.jbc.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024] Open
Abstract
Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.
Collapse
Affiliation(s)
- Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
6
|
Liu YL, Guo T, Zhang YJ, Tang SC, Zhao XM, He HY, Yu CL, Deng YH. Berberine Alleviates Ischemic Brain Injury by Enhancing Autophagic Flux via Facilitation of TFEB Nuclear Translocation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:231-252. [PMID: 38328828 DOI: 10.1142/s0192415x24500101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Berberine has been demonstrated to alleviate cerebral ischemia/reperfusion injury, but its neuroprotective mechanism has yet to be understood. Studies have indicated that ischemic neuronal damage was frequently driven by autophagic/lysosomal dysfunction, which could be restored by boosting transcription factor EB (TFEB) nuclear translocation. Therefore, this study investigated the pharmacological effects of berberine on TFEB-regulated autophagic/lysosomal signaling in neurons after cerebral stroke. A rat model of ischemic stroke and a neuronal ischemia model in HT22 cells were prepared using middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. Berberine was pre-administered at a dose of 100[Formula: see text]mg/kg/d for three days in rats and 90[Formula: see text][Formula: see text]M in HT22 neurons for 12[Formula: see text]h. 24[Formula: see text]h after MCAO and 2[Formula: see text]h after OGD, the penumbral tissues and OGD neurons were obtained to detect nuclear and cytoplasmic TFEB, and the key proteins in the autophagic/lysosomal pathway were examined using western blot and immunofluorescence, respectively. Meanwhile, neuron survival, infarct volume, and neurological deficits were assessed to evaluate the therapeutic efficacy. The results showed that berberine prominently facilitated TFEB nuclear translocation, as indicated by increased nuclear expression in penumbral neurons as well as in OGD HT22 cells. Consequently, both autophagic activity and lysosomal capacity were simultaneously augmented to alleviate the ischemic injury. However, berberine-conferred neuroprotection could be greatly counteracted by lysosomal inhibitor Bafilomycin A1 (Baf-A1). Meanwhile, autophagy inhibitor 3-Methyladenine (3-MA) also slightly neutralized the pharmacological effect of berberine on ameliorating autophagic/lysosomal dysfunction. Our study suggests that berberine-induced neuroprotection against ischemic stroke is elicited by enhancing autophagic flux via facilitation of TFEB nuclear translocation in neurons.
Collapse
Affiliation(s)
- Yi-Li Liu
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tao Guo
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yong-Jie Zhang
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Shun-Cong Tang
- Anning First People's Hospital Affiliated to Kunming, University of Science and Technology Kunming 650500, P. R. China
| | - Xiao-Ming Zhao
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Hong-Yun He
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
- Anning First People's Hospital Affiliated to Kunming, University of Science and Technology Kunming 650500, P. R. China
| | - Chun-Lei Yu
- Anning First People's Hospital Affiliated to Kunming, University of Science and Technology Kunming 650500, P. R. China
| | - Yi-Hao Deng
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
7
|
Alvarado CX, Makarious MB, Weller CA, Vitale D, Koretsky MJ, Bandres-Ciga S, Iwaki H, Levine K, Singleton A, Faghri F, Nalls MA, Leonard HL. omicSynth: An open multi-omic community resource for identifying druggable targets across neurodegenerative diseases. Am J Hum Genet 2024; 111:150-164. [PMID: 38181731 PMCID: PMC10806756 DOI: 10.1016/j.ajhg.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.
Collapse
Affiliation(s)
- Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Cory A Weller
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Mathew J Koretsky
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kristin Levine
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Faraz Faghri
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
8
|
Fu L, Yu B, Lv B, Tian Y, Zhang Y, Chen H, Yang S, Hu Y, Ren P, Li J, Gong S. Negative regulation of angiogenesis and the MAPK pathway may be a shared biological pathway between IS and epilepsy. PLoS One 2023; 18:e0286426. [PMID: 37792772 PMCID: PMC10550183 DOI: 10.1371/journal.pone.0286426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 10/06/2023] Open
Abstract
Ischemia stroke and epilepsy are two neurological diseases that have significant patient and societal burden, with similar symptoms of neurological deficits. However, the underlying mechanism of their co-morbidity are still unclear. In this study, we performed a combined analysis of six gene expression profiles (GSE58294, GSE22255, GSE143272, GSE88723, GSE163654, and GSE174574) to reveal the common mechanisms of IS and epilepsy. In the mouse datasets, 74 genes were co-upregulated and 7 genes were co-downregulated in the stroke and epilepsy groups. Further analysis revealed that the co-expressed differentially expressed genes (DEGs) were involved in negative regulation of angiogenesis and the MAPK signaling pathway, and this was verified by Gene Set Enrichment Analysis of human datasets and single cell RNA sequence of middle cerebral artery occlusion mice. In addition, combining DEGs of human and mouse, PTGS2, TMCC3, KCNJ2, and GADD45B were identified as cross species conserved hub genes. Meanwhile, molecular docking results revealed that trichostatin A and valproic acid may be potential therapeutic drugs. In conclusion, to our best knowledge, this study conducted the first comorbidity analysis of epilepsy and ischemic stroke to identify the potential common pathogenic mechanisms and drugs. The findings may provide an important reference for the further studies on post-stroke epilepsy.
Collapse
Affiliation(s)
- Longhui Fu
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Beibei Yu
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Boqiang Lv
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yunze Tian
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yongfeng Zhang
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Huangtao Chen
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Shijie Yang
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yutian Hu
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Pengyu Ren
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Jianzhong Li
- Department of Thoracic Surgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Shouping Gong
- Department of Neurourgery, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- Xi’an Medical University, Xi’an, China
| |
Collapse
|
9
|
Alvarado CX, Makarious MB, Weller CA, Vitale D, Koretsky MJ, Bandres-Ciga S, Iwaki H, Levine K, Singleton A, Faghri F, Nalls MA, Leonard HL. omicSynth: an Open Multi-omic Community Resource for Identifying Druggable Targets across Neurodegenerative Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.06.23288266. [PMID: 37090611 PMCID: PMC10120805 DOI: 10.1101/2023.04.06.23288266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Treatments for neurodegenerative disorders remain rare, although recent FDA approvals, such as Lecanemab and Aducanumab for Alzheimer's Disease, highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use Summary-data-based Mendelian Randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer's disease, 3 amyotrophic lateral sclerosis, 5 Lewy body dementia, 46 Parkinson's disease, and 9 Progressive supranuclear palsy target genes passing multiple test corrections (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics - classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these 69.8% are expressed in the disease relevant cell type from single nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as Riluzole in AD. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community [https://nih-card-ndd-smr-home-syboky.streamlit.app/].
Collapse
Affiliation(s)
- Chelsea X. Alvarado
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK, WC1N 3BG
- UCL Movement Disorders Centre, University College London, London, UK, WC1N 3BG
| | - Cory A. Weller
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Dan Vitale
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Kristin Levine
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Faraz Faghri
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
10
|
Huang ZW, Liu YY, Chen XM, Yu CL, He HY, Deng YH. Attenuating Neuronal Autophagy Alleviates Inflammatory Injury in OGDDeprived Co-culture of HT22 with BV2. Acta Naturae 2023; 15:91-99. [PMID: 37908770 PMCID: PMC10615190 DOI: 10.32607/actanaturae.11830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/10/2023] [Indexed: 11/02/2023] Open
Abstract
Neuronal CX3CL1 suppressed microglial inflammation by binding to its receptor CX3CR1 expressed on microglia. Neuronal autophagy was prominently activated by cerebral ischemia, whereas CX3CL1 expression in autophagic neurons was conversely down-regulated to exacerbate microglial inflammation. Accordingly, this study was meant to investigate whether ischemia-activated microglial inflammation could be repressed by promoting CX3CL1 expression via the attenuation of neuronal autophagy. Immunofluorescence showed that autophagy predominantly occurred in neurons but barely in microglia. Western blot and immunofluorescence demonstrated that attenuating HT22 autophagy significantly increased its CX3CL1 expression and subsequently mitigated the BV2-mediated inflammatory responses, as indicated by decreased inflammatory factors of NF-κB-p65, IL-6, IL-1β, TNF-α, and PGE2. Meanwhile, CCK-8, Nissl staining, and FJC staining showed that an OGD (Oxygen-glycogen deprivation)-created neuronal injury was greatly alleviated by CX3CL1-suppressed microglial inflammation. Contrarily, elevating HT22 autophagy markedly decreased its CX3CL1 expression, which consequently worsened microglial inflammation and the neuronal injury. Our data suggests that attenuating neuronal autophagy may be an effective method to alleviate a microglial inflammatory injury after an ischemic stroke.
Collapse
Affiliation(s)
- Z. W. Huang
- Department of basic medicine, Medical School, Kunming University of Science and Technology, Kunming, 650093 China
| | - Y. Y. Liu
- Department of basic medicine, Medical School, Kunming University of Science and Technology, Kunming, 650093 China
| | - X. M. Chen
- Department of basic medicine, Medical School, Kunming University of Science and Technology, Kunming, 650093 China
| | - C. L. Yu
- Anning First People’s Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650093 China
| | - H. Y. He
- Anning First People’s Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650093 China
| | - Y. H. Deng
- Department of basic medicine, Medical School, Kunming University of Science and Technology, Kunming, 650093 China
| |
Collapse
|
11
|
Yuyuan L, Xiaoming Z, Lei Z, Tao G, Hongyun H, Yihao D. Downregulation of Histone H4 Lysine 16 Acetylation Ameliorates Autophagic Flux by Resuming Lysosomal Functions in Ischemic Neurons. ACS Chem Neurosci 2023; 14:1834-1844. [PMID: 37130066 DOI: 10.1021/acschemneuro.3c00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Autophagic/lysosomal dysfunction was a critical pathogenesis of neuronal death after an ischemic stroke, but what drove the impairment of autophagic flux remained elusive. Studies indicated that histone H4 lysine 16 acetylation (H4K16ac) drastically modulated the autophagic/lysosomal signaling pathway. Herein, we investigated whether the autophagic/lysosomal dysfunction in neurons could be restored by altering H4K16ac levels after cerebral ischemia. The rat model of ischemic stroke and the cell ischemia model in HT22 neurons were prepared by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. The result showed that H4K16ac could be effectively reduced by intracerebroventricular administration with MG149 (a H4K16ac inhibitor) after an ischemic stroke. Moreover, attenuated H4K16ac greatly alleviated the autophagic/lysosomal dysfunction in penumbral neurons, as indicated by decreased autophagic substrates of LC3-II, insoluble SQSTM1, and ubiquitinated proteins, accompanied by increased lysosomal cathepsin D. Conversely, treatment with trichostatin A (TSA, a H4K16ac facilitator) aggravated the impairment of autophagic flux. This regulative machinery of H4K16ac on the autophagic/lysosomal signaling pathway was also manifested in the OGD model of HT22 neurons. Furthermore, H4K16ac attenuation-ameliorated autophagic flux significantly alleviated stroke brain injury, as reflected by decreased infarct size, neuron loss, and neurological deficits. Similarly, the H4K16ac inhibition-mitigated autophagic/lysosomal dysfunction markedly promoted neuron survival and cell viability in OGD HT22 neurons. However, H4K16ac downregulation-ameliorated autophagic flux in neurons and thereby induced neuroprotection could be greatly counteracted by the lysosomal inhibitor bafilomycin A1 (Baf-A1). Our data indicate that cerebral ischemia-elevated H4K16ac creates the autophagic/lysosomal dysfunction due to lysosomal inefficiency, suggesting that H4K16ac attenuation benefits poststroke neuroprotection by resuming lysosomal functions in neurons.
Collapse
Affiliation(s)
- Liu Yuyuan
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhao Xiaoming
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhang Lei
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Guo Tao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - He Hongyun
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Deng Yihao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
Yu B, Tian Y, Zhang Y, Lv B, Li J, Gong S. Experimental verification and validation of immune biomarkers based on chromatin regulators in ischemic stroke. Front Genet 2022; 13:992847. [PMID: 36105086 PMCID: PMC9465164 DOI: 10.3389/fgene.2022.992847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemic stroke (IS) is a disease characterized by rapid progression and high mortality and disability rates. Its pathophysiological process is inseparable from immune dysfunction. Recently, chromatin regulators (CRs) have been described as a class of enzymes that can recognize, form, and maintain the epigenetic state of an organism, and are closely associated with immune regulation. Nevertheless, the role of CR-related genes in IS has not been fully elucidated. In this study, seven CR-related immune biomarkers in the GSE58294 and GSE22255 datasets were identified by combining differential gene expression analysis, weighted correlation network analysis, and single sample gene set enrichment analysis. After experimental validation using quantitative polymerase chain reaction, four genes (DPF2, LMNB1, MLLT3, and JAK2) were screened as candidate immune biomarkers. These four biomarkers demonstrated good predictive power in the clinical risk model (area under the curve, 0.775). Molecular docking simulations revealed that mevastatin, WP1066, cladribine, trichostatin A, mequitazine, and zuclomiphene may be potential immunomodulatory drugs for IS. Overall, the results of this study contribute to the identification of CR-related immune therapeutics target in IS and provide an important reference for further research.
Collapse
Affiliation(s)
- Beibei Yu
- Department of Neurourgery, the Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yunze Tian
- Department of Neurourgery, the Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yongfeng Zhang
- Department of Neurourgery, the Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Boqiang Lv
- Department of Neurourgery, the Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| | - Shouping Gong
- Department of Neurourgery, the Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| |
Collapse
|